5/18/2016

Operating Systems Principles

Security and Privacy

Mark Kampe

(markk@cs.ucla.edu)

Security and Privacy

12A. Operating Systems Security
12B. Authentication

12C. Authorization

12D. Trust

12E. At-Rest Encryption

Operating System Security — Goals

* privacy

— keep other people from seeing your private data
* integrity

— keep other people from changing your protected data
* trust

— programs you run cannot compromise your data

— remote parties are who they claim to be

— binding commitments and authoritative records
¢ controlled sharing

— you can grant other people access to your data

— but they can only access it in ways you specify

Security Concepts

e principals
— (e.g. users) own, control, and use protected objects
* agents
— (e.g. programs) act on behalf of principals
* quthentication
— confirming the identity of requesting principal
— confirming the integrity of a request
e credentials
— information that confirms identity of requesting principal
authorization
— determining if a particular request is allowed
* mediated access
— agents must access objects through control points

Why Security is Difficult

¢ complexity of our software and systems
— millions of lines of code, thousands of developers
— rich and powerful protocols and APIs
— numerous interactions with other software
— constantly changing features and technology
— absence of comprehensive validation tools
* determined and persistent adversaries
— commercial information theft/black-mail
— national security, sabotage

Security — Key Elements

reliable authentication

— we must be sure who is requesting every operation
— we must prevent masquerading of people/processes
trusted policy data

— policy data accurately describes desired access rules
reliable enforcement mechanisms

— all operations on protected objects must be checked
— it must be impossible to circumvent these checks
audit trails

— reliable records of who did what, when

5/18/2016

External (user) Authentication

¢ authentication done by trusted "login" agent
— typically based on passwords and/or identity tokens
— movement towards biometric authentication
e ensuring secure passwords
— they must not be guess-able or brute-force-able
— they must not be steal-able
e ensuring secure authentication dialogs
— protection from crackers: humanity checkers
— protection from snoopers: challenge/response
— protection from fraudulent servers: certificates
* evolving encryption technology can assist us here

Cryptographic Hash Functions

¢ “one-way encryption” function: H(M)
— H(M) is much shorter than M
— it is inexpensive to compute H(M)
— it is infeasible to compute M(H)
—itis infeasible to find an M’: H(M’) = H(M)
® uses
— store passwords as H(pw)
« verify by testing H(entered) = stored H(pw)
— secure integrity assurance
« deliver H(msg) over a separate channel

challenge/response authentication

* untrusted authentication
— client/server distrust one-another & connecting wire
— both claim to know the secret password
— neither is willing to send it over the network

¢ client and server agree on a complex function
— response = F(challenge,password)
— F may be well known, but is very difficult to invert

* server issues random challenge string to client
— server & client both compute F(challenge,password)
— client sends response to server, server validates it

* man-in-middle cannot snoop, spoof, or replay

Internal (process) Authentication

¢ OS associates credentials with each process

— stored, within the OS, in the process descriptor

— automatically inherited by all child processes

— identify the agent on whose behalf requests are made
¢ they are the basis for access control decisions

— they are consulted when accessing protected data

— they are reported in audit logs of who did what
* they are established by a privileged system call

— only a small number of trusted programs can use it

— they must be carefully written, reviewed, and tested

UNIX Credential Establishment

encrypted
[EWI

lookup(name;

_encrypted password

lookup(name)
{ uID, GID

setGid/setUid
exec(shell)

shell prompt

virtual

terminal

name, password N

The Authorization Matrix
[priocosl Jomea1 obletz [obeets [|

User 1 Read/write Read/write Read-only
User 2 read Read/write
User 3 Read-only Read/write

e Alprincipal,object] = principal’s access to object
—row list of represents principal’s capabilities
— column represents objects’s access control list

(The Authorization Matrix)

* provides the answer to access control questions
— can subject S perform operation O on object X?
— this can be abstractly thought of as a matrix A[S,X]

* there are two obvious real representations
— what things a subject is allowed to do (capabilities)
— who can access an object (access control lists)

¢ updating this matrix is a critical operation
— errors in the data will result in incorrect decisions

— updating this data is, itself a controlled operation (e.g.
is S allowed to change access control data for X?)

Capabilities and ACLs

* Capabilities — per agent access control

— record, for each principal, what it can access
— each granted access is called a "capability"
— a capability is required to access any system object

* Access Control Lists — per object access control

— record, for each object, which principals have access
— each protected object has an Access Control List
— OS consults ACL when granting access to any object

¢ Either must be protected & enforced by the OS

Access Control Lists vs. Capabilities

* Access Control Lists
— short to store and easy to administer
* Capabilities make very convenient handles
— if you have the capability, you can do the operation
— without one, you can't even ask for operations
* many operating systems actually use both
— ACLs describe what accesses are allowed
— when access is granted, a Capability is issued
— capability is used as handle for subsequent operations

Unix files — access control lists

¢ Subject Credentials:

— user and group ID, established by password login

¢ Supported operations:

—read, write, execute, chown, chgrp, chmod

¢ Representation of ACL information:

—rules (owner:rwx, group:rwx, others:rwx)

— owner privileges apply to the file's owner

— group privileges apply to the file's owning group
— others privileges apply to all other users

—only owner can chown/chgrp/chmod

Unix File Access — example

given a file with:

user ID: 100

group ID: 15

file protection: [riwlx] [r][-]x] [r]-][-]
UID/GID read write execute chmod
100/001 yes yes yes yes
001/015 yes no yes no
001/001 yes no no no
000/###* yes yes yes yes

* In UNIX, a process with UID=0 (super user) can do anything

Unix files also have capabilities

* if a process wants to read or write a file
— it must open the file, requesting read or write access
— open will check permissions before granting access
— if operation permitted, OS returns a file descriptor

* the user file descriptor is a capability
— itis an unforgable token conferring access to the file
— it confers a specific access (r/w) to a specific file
— arequired argument to the read/write system calls
— without a file descriptor reads/writes are impossible

5/18/2016

Truly Unforgeable Capabilities

real capabilities come from a trusted source (OS)

— who checks access permissions before granting them

— having a capability conveys access to the resource
resource references must be unforgable

— otherwise people could forge references for anything
ensure this by keeping them inside the OS

— give the user an index into a per-process table

* e.g. user file descriptors are index into a per-process array

— process can only refer to capabilities by index number
a system call can pass capabilities to others
— because only the OS can create the table entries

ecurity and

5/18/2016

Very Hard-to-forge Capabilities

random cookies from sparse name spaces

— they can be verified, but are very difficult to forge
— this is easily achieved with encryption techology
resource mgr decrypts cookie on each request
— determine which object is to be used

— ensure requester has adequate access for operation
this is also a very common approach

— product activation codes (product, version)

— heavily exploited in distributed systems
such cookies are easily exchanged in messages

Enforcing Access Control

protected resources must be inaccessible

— hardware protection must be used to ensure this

— only the OS can make them accessible to a process
to get access, issue request to resource manager
— resource manager consults access control policy data
access may be granted directly

— resource manager maps resource into process
access may be granted indirectly

— resource manager returns a “capability” to process
— capability can be used in subsequent requests

Access Mediation

¢ Per-Operation Mediation (e.g. file)

— all operations are via requests

— we can check access on every operation

— revocation is simple (cancel the capability)

— access is relatively expensive (system call/request)
Open-Time Mediation (e.g. shared segment)
— one-time access check at open time

— if permitted, resources is mapped in to process

— subsequent access is direct (very efficient)

— revocation may be difficult or awkward

Principle of Least Privilege

operate with minimum possible privileges

— surrender privileges when no longer needed

— operate in the most restricted possible context
allow minimum possible access to resources
— apply multiple levels of protection
trust, but verify

— sanity check requests before performing them
minimize amount of privileged software

— minimize the attack surface

— minimize amount of code to be audited

ecurity and Privac

Quis Custodiet ipsos Custodes?

OS can do a very good job of enforcement

— if reasonably designed, reviewed, and implemented
What does the OS enforce?

— all access is according to access control database
Enforcement is only as good as the policy data
— human beings set up the authorization policy data
— they may misunderstand our intentions

— they may make errors in entering the rules

— they may deliberately violate our intentions

These are problems the OS cannot solve

5/18/2016

Privileged Users — the big hole

OS Maintenance requires extraordinary privileges
— installing and configuring system software

— backing up and restoring file systems

many systems have privileged users

— authorized to update system files

— authorized to perform privileged operations

— often there is a Super-User, who can do anything
users with these passwords are dangerous

— they can make mistakes or do mischief

— they can leak the passwords to others

ecurity and P

Finer Granularity Authorization

e “super users” are dangerous
— they are permitted to do anything
* not merely a single particular privileged operation
— accidentally mistyped commands can be disastrous
« ordinary file protections do not prevent them

finer granularities of privilege
— backups, file system allocation, user creation, etc.

finer granularities of operations
— privilege granted for only one operation at a time
— confirmation dialogs in system management tools

curity and P

Role Based Access Control (RBAC)

system management is not “a person”
— itis a role that some people, sometimes, perform
don’t predicate authorization decisions on identity
— users are authorized to perform roles

— they must declare that they are operating in a role
« checks their authorization to function in the role
* creates credentials to authorize role based operations

— privileged operations check role credentials
« specifically check for role-specific privileges
superior authorization control
— fine grained operation control for limited periods
— audit records record the “real person” who took the actions

Trusted Computing Base

All protection information stored in OS

— applications cannot directly access/modify it

¢ OS creates and maintains process state
— OS can associate a principal w/each process

e OSimplements file, process, IPC operations
— OS can mediate all access to these objects
— no way to access without going through OS

* This is a foundation on which apps run

— apps can depend on processes and files

— higher level services can depend on these

Trust Worthy Software

very carefully developed

— designed with security as a primary goal

— stringent design and code review processes
— extensive testing

— open source helps, but is a two-edged sword
obtained from a trusted source

— who can certify its authenticity

— who has a high stake in its correctness

— who maintains and updates it well

Trusted Applications

* Not all trusted code is in the OS kernel
— file system management and back-up
— login and user-account management
— network services (remote file systems, email)

¢ These applications have special privileges
—they can execute privileged system calls
—they can access files that belong to multiple users
— they can access otherwise protected devices
—they can compromise system security

Special Application Privileges

¢ privileged daemons ... started by the OS
— many system daemons run as the super user
— others are run as the owner of key resources
* privileged commands ... run by users
— UNIX SetUID/SetGID load modules
—run with the credentials of the program’s owner

— may be able to create/set their own credentials
* e.g.login, sudo

— these must be very carefully designed/reviewed

Security and Privacy

5/18/2016

Can we trust trusted applications?

* most complex programs have many bugs
— unfortunately even the best code is imperfect
— some bugs just make the program fail
— some bugs make the programs do the wrong thing

* real example: login buffer overflow bug
— login program checks entered passwd w/correct one
— buffer for real passwd is after buffer for entered one
— entering a very long password overwrites real one

¢ determined hackers will find & exploit such bugs

Security and Privacy

the login buffer overflow bug

char inbuf[80]; /* buffer for user entered password */
char pwbuf[80]; /* buffer for real password (encrypted) */
getpwent(uname, pwbuf); /* get real (encrypted) password */
stty(0, no_echo); /* no echo, character at a time input */
write(1,”password: “, 9); /* prompt user for password */
p = inbuf;
do { read(0, p, 1); /* read password entered by user */
}while (*p++) I="\n"); /* until a newline character isentered ~ */
pwencrypt(inbuf); /* encrypt what the user entered */
if (strncmp(inbuf, pwbuf, 8) == 0) /* see if it matches real password */
...he'sin

Trojan Horses

¢ accidental bugs in trusted software create holes
— what if the software was designed with evil intent?
* the original "Trojan Horse" and the fall of Troy
— the Greeks built it, left it, and departed
— the Trojans thought it was a tribute to their valor
— the Trojans brought it into the city and had a party
— that night, soldiers came out and destroyed Troy

modern “Trojan Horses” (pfishing)
— pretend to be the login program
— pretend to be financial institution web-page

Ken Thompson's 3-part Trojan Horse

Trojan horse #1 ... in the login program

recognizes a special (hard-coded) password and will
allow anyone who knows it to log on as any user.

Trojan horse #2 ... in the C compiler

recognizes the password checking code in the login
program, and automatically inserts Trojan horse #1
into the compiled code.

Trojan horse #3 ... in the C compiler

recognizes the code generator in the C compiler,

and automatically inserts both Trojan horses (#2

and #3) into the compiled code. None of these can be found by reading
the code of either the login program or
compiler.

Security and Privacy

Bypassing Mediation

¢ OS can enforce authorization policy
— control the operations processes can perform
¢ 0S enforcement has exceptions and limits
— privileged users can override file protection
— passwords can be observed/stolen/guessed
— bugs may enable malware to gain privileges
— backups can be accessed w/o the OS
— file systems can be accessed w/o 0OS
— data stored in the cloud is beyond our protection

Security and Privacy

At-Rest Encryption

¢ added data protection, beyond file protection
* Disk (or file system) level

— password must be given at boot or mount time

— driver or file system does encrypt/decrypt

— protects computer against unauthorized access
* File level

— password must be given when file is opened

— application (or library) does encrypt/decrypt

— protects file against unauthorized access

ecurity and P

5/18/2016

Assignments

« for the next lecture:
— Challenges of Distributed Systems
— Arpaci ch 47 ... distributed dystems
— Saltzer sections 11.3-4 ... distributed security
— Secure Socket Layer ... private session protocol
— RESTful interfaces ... a new interface paradigm
— Resource Leases ... distributed before/after
— Distributed Transactions ... distributed all/none
— Distributed Consensus ... a hard problem

Supplementary Slides

Why Should we Trust the OS

¢ Can we trust the supplier’s intentions?
— do they have the right business incentives?
— will their customers keep them honest?

¢ Can we trust the supplier’s processes?
— design and code review processes
— testing processes (including penetration)
— security bug fixes and patches
— security bug frequency and severity

¢ Open Source ... a two edged sword

Direct Access to Resources

resource is mapped into process address space
— process manipulates resource w/normal instructions
— examples: shared data segment or video frame buffer
advantages

— access check is performed only once, at grant time

— very efficient, process can access resource directly
disadvantages

— process may be able to corrupt the resource

— access revocation may be awkward

Indirect Access to Resources

e resource is not directly mapped into process
— process must issue service requests to use resource
— examples: network and IPC connections
¢ advantages
— only resource manager actually touches resource
— resource manager can ensure integrity of resource
— access can be checked, blocked, revoked at any time
¢ disadvantages

— overhead of system call every time resource is used

5/18/2016

Can we trust the OS?

trusted software is developed with great care

— itis very carefully designed, reviewed, and tested

— it may be audited/certified by a respected third party
but we obtain software from insecure places

— e.g. down-loading drivers, applications and plug-ins
how can we know new software is good?

— is it authentic, or a cleverly crafted Trojan horse?

— has an originally good program been infected?

we need tamper-proof certificates of authenticity

Computer Viruses

¢ a biological virus is the simplest form of life

— so simple that people argue about whether it is alive
* a biological virus can only do three things:

— penetrate cells and get to the nucleus

— force the cell to replicate many more copies of itself

— copies spread to other cells, the process continues
¢ a computer virus is completely analogous

— enter computer, copy itself, spread to other

computers
— enters system through e-mail or infected software
— some merely reproduce, others are destructive

curity and P

