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Operating System Security – Goals

• privacy
– keep other people from seeing your private data

• integrity
– keep other people from changing your protected data

• trust
– programs you run cannot compromise your data

– remote parties are who they claim to be

– binding commitments and authoritative records

• controlled sharing
– you can grant other people access to your data

– but they can only access it in ways you specify
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Security Concepts

• principals

– (e.g. users) own, control, and use protected objects

• agents

– (e.g. programs) act on behalf of principals

• authentication

– confirming the identity of requesting principal

– confirming the integrity of a request

• credentials

– information that confirms identity of requesting principal

• authorization

– determining if a particular request is allowed

• mediated access

– agents must access objects through control points

Security and Privacy 4

Why Security is Difficult

• complexity of our software and systems

– millions of lines of code, thousands of developers

– rich and powerful protocols and APIs

– numerous interactions with other software

– constantly changing features and technology

– absence of comprehensive validation tools

• determined and persistent adversaries

– commercial information theft/black-mail

– national security, sabotage
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Security – Key Elements

• reliable authentication

– we must be sure who is requesting every operation

– we must prevent masquerading of people/processes

• trusted policy data

– policy data accurately describes desired access rules

• reliable enforcement mechanisms

– all operations on protected objects must be checked 

– it must be impossible to circumvent these checks

• audit trails

– reliable records of who did what, when
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External (user) Authentication

• authentication done by trusted "login" agent
– typically based on passwords and/or identity tokens

– movement towards biometric authentication

• ensuring secure passwords
– they must not be guess-able or brute-force-able

– they must not be steal-able

• ensuring secure authentication dialogs
– protection from crackers: humanity checkers

– protection from snoopers: challenge/response

– protection from fraudulent servers: certificates 

• evolving encryption technology can assist us here
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Cryptographic Hash Functions

• “one-way encryption” function: H(M)

– H(M) is much shorter than M

– it is inexpensive to compute H(M)

– it is infeasible to compute M(H)

– it is infeasible to find an M’: H(M’) = H(M)

• uses

– store passwords as H(pw)

• verify by testing H(entered) = stored H(pw)

– secure integrity assurance

• deliver H(msg) over a separate channel
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challenge/response authentication

• untrusted authentication
– client/server distrust one-another & connecting wire

– both claim to know the secret password

– neither is willing to send it over the network

• client and server agree on a complex function
– response = F(challenge,password)

– F may be well known, but is very difficult to invert

• server issues random challenge string to client
– server & client both compute F(challenge,password)

– client sends response to server, server validates it

• man-in-middle cannot snoop, spoof, or replay
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Internal (process) Authentication

• OS associates credentials with each process

– stored, within the OS, in the process descriptor

– automatically inherited by all child processes

– identify the agent on whose behalf requests are made

• they are the basis for access control decisions

– they are consulted when accessing protected data

– they are reported in audit logs of who did what

• they are established by a privileged system call

– only a small number of trusted programs can use it

– they must be carefully written, reviewed, and tested
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UNIX Credential Establishment
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shell prompt

The Authorization Matrix
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• A[principal,object] = principal’s access to object

– row list of represents principal’s capabilities

– column represents objects’s access control list

Principal Object 1 Object 2 Object 3 …

User 1 Read/write Read/write Read-only

User 2 read Read/write

User 3 Read-only Read/write
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(The Authorization Matrix)

• provides the answer to access control questions

– can subject S perform operation O on object X?

– this can be abstractly thought of as a matrix A[S,X]

• there are two obvious real representations

– what things a subject is allowed to do (capabilities)

– who can access an object (access control lists)

• updating this matrix is a critical operation

– errors in the data will result in incorrect decisions

– updating this data is, itself a controlled operation (e.g. 

is S allowed to change access control data for X?)

13Security and Privacy

Capabilities and ACLs

• Capabilities – per agent access control

– record, for each principal, what it can access

– each granted access is called a "capability"

– a capability is required to access any system object

• Access Control Lists – per object access control

– record, for each object, which principals have access

– each protected object has an Access Control List

– OS consults ACL when granting access to any object

• Either must be protected & enforced by the OS
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Access Control Lists vs. Capabilities

• Access Control Lists

– short to store and easy to administer

• Capabilities make very convenient handles

– if you have the capability, you can do the operation

– without one, you can't even ask for operations

• many operating systems actually use both

– ACLs describe what accesses are allowed

– when access is granted, a Capability is issued

– capability is used as handle for subsequent operations
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Unix files – access control lists

• Subject Credentials:

– user and group ID, established by password login

• Supported operations:

– read, write, execute, chown, chgrp, chmod

• Representation of ACL information:

– rules (owner:rwx, group:rwx, others:rwx)

– owner privileges apply to the file's owner

– group privileges apply to the file's owning group

– others privileges apply to all other users

– only owner can chown/chgrp/chmod

16Security and Privacy

Unix File Access – example

given a file with:

user ID: 100

group ID:   15

file protection:

UID/GID read write execute chmod

yes yes yes yes

yes no yes no

yes no no no

yes yes yes yes

* In UNIX, a process with UID=0 (super user) can do anything

r w x r - x r - -

100/001

001/015

001/001

000/###*
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Unix files also have capabilities

• if a process wants to read or write a file

– it must open the file, requesting read or write access

– open will check permissions before granting access

– if operation permitted, OS returns a file descriptor

• the user file descriptor is a capability

– it is an unforgable token conferring access to the file

– it confers a specific access (r/w) to a specific file

– a required argument to the read/write system calls

– without a file descriptor reads/writes are impossible

18Security and Privacy
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Truly Unforgeable Capabilities

• real capabilities come from a trusted source (OS)

– who checks access permissions before granting them

– having a capability conveys access to the resource

• resource references must be unforgable

– otherwise people could forge references for anything

• ensure this by keeping them inside the OS

– give the user an index into a per-process table

• e.g. user file descriptors are index into a per-process array

– process can only refer to capabilities by index number

• a system call can pass capabilities to others

– because only the OS can create the table entries
19Security and Privacy

Very Hard-to-forge Capabilities

• random cookies from sparse name spaces

– they can be verified, but are very difficult to forge

– this is easily achieved with encryption techology

• resource mgr decrypts cookie on each request

– determine which object is to be used

– ensure requester has adequate access for operation

• this is also a very common approach

– product activation codes (product, version)

– heavily exploited in distributed systems

• such cookies are easily exchanged in messages
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Enforcing Access Control

• protected resources must be inaccessible

– hardware protection must be used to ensure this

– only the OS can make them accessible to a process

• to get access, issue request to resource manager

– resource manager consults access control policy data

• access may be granted directly

– resource manager maps resource into process

• access may be granted indirectly

– resource manager returns a “capability” to process

– capability can be used in subsequent requests
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Access Mediation

• Per-Operation Mediation (e.g. file)

– all operations are via requests

– we can check access on every operation

– revocation is simple (cancel the capability)

– access is relatively expensive (system call/request)

• Open-Time Mediation (e.g. shared segment)

– one-time access check at open time

– if permitted, resources is mapped in to process

– subsequent access is direct (very efficient)

– revocation may be difficult or awkward
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Principle of Least Privilege

• operate with minimum possible privileges

– surrender privileges when no longer needed

– operate in the most restricted possible context

• allow minimum possible access to resources

– apply multiple levels of protection

• trust, but verify

– sanity check requests before performing them

• minimize amount of privileged software

– minimize the attack surface

– minimize amount of code to be audited
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Quis Custodiet ipsos Custodes?

• OS can do a very good job of enforcement

– if reasonably designed, reviewed, and implemented

• What does the OS enforce?

– all access is according to access control database

• Enforcement is only as good as the policy data

– human beings set up the authorization policy data

– they may misunderstand our intentions

– they may make errors in entering the rules

– they may deliberately violate our intentions

• These are problems the OS cannot solve
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Privileged Users – the big hole

• OS Maintenance requires extraordinary privileges

– installing and configuring system software

– backing up and restoring file systems

• many systems have privileged users

– authorized to update system files

– authorized to perform privileged operations

– often there is a Super-User, who can do anything

• users with these passwords are dangerous

– they can make mistakes or do mischief

– they can leak the passwords to others

25Security and Privacy

Finer Granularity Authorization

• “super users” are dangerous

– they are permitted to do anything

• not merely a single particular privileged operation

– accidentally mistyped commands can be disastrous

• ordinary file protections do not prevent them

• finer granularities of privilege

– backups, file system allocation, user creation, etc.

• finer granularities of operations

– privilege granted for only one operation at a time

– confirmation dialogs in system management tools
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Role Based Access Control (RBAC)

• system management is not “a person”

– it is a role that some people, sometimes, perform

• don’t predicate authorization decisions on identity

– users are authorized to perform roles

– they must declare that they are operating in a role

• checks their authorization to function in the role

• creates credentials to authorize role based operations

– privileged operations check role credentials

• specifically check for role-specific privileges

• superior authorization control

– fine grained operation control for limited periods

– audit records record the “real person” who took the actions
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Trusted Computing Base

• All protection information stored in OS

– applications cannot directly access/modify it

• OS creates and maintains process state

– OS can associate a principal w/each process

• OS implements file, process, IPC operations

– OS can mediate all access to these objects

– no way to access without going through OS

• This is a foundation on which apps run

– apps can depend on processes and files

– higher level services can depend on these
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Trust Worthy Software

• very carefully developed

– designed with security as a primary goal

– stringent design and code review processes

– extensive testing

– open source helps, but is a two-edged sword

• obtained from a trusted source

– who can certify its authenticity

– who has a high stake in its correctness

– who maintains and updates it well
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Trusted Applications

• Not all trusted code is in the OS kernel

– file system management and back-up

– login and user-account management

– network services (remote file systems, email)

• These applications have special privileges

– they can execute privileged system calls

– they can access files that belong to multiple users

– they can access otherwise protected devices

– they can compromise system security
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Special Application Privileges

• privileged daemons ... started by the OS

– many system daemons run as the super user

– others are run as the owner of key resources

• privileged commands ... run by users

– UNIX SetUID/SetGID load modules

– run with the credentials of the program’s owner

– may be able to create/set their own credentials

• e.g. login, sudo

– these must be very carefully designed/reviewed
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Can we trust trusted applications?

• most complex programs have many bugs

– unfortunately even the best code is imperfect

– some bugs just make the program fail

– some bugs make the programs do the wrong thing

• real example: login buffer overflow bug

– login program checks entered passwd w/correct one

– buffer for real passwd is after buffer for entered one

– entering a very long password overwrites real one

• determined hackers will find & exploit such bugs
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the login buffer overflow bug

char inbuf[80]; /* buffer for user entered password */

char pwbuf[80]; /* buffer for real password (encrypted) */

....

getpwent( uname, pwbuf ); /* get real (encrypted) password */

stty( 0, no_echo ); /* no echo, character at a time input */

write(1,”password: “, 9); /* prompt user for password */

p = inbuf; 

do { read(0, p, 1); /* read password entered by user */

} while (*p++) != '\n'); /* until a newline character is entered */

pwencrypt(inbuf); /* encrypt what the user entered */

if (strncmp(inbuf, pwbuf, 8) == 0) /* see if it matches real password */

... he's in
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Trojan Horses

• accidental bugs in trusted software create holes

– what if the software was designed with evil intent?

• the original "Trojan Horse" and the fall of Troy

– the Greeks built it, left it, and departed 

– the Trojans thought it was a tribute to their valor

– the Trojans brought it into the city and had a party

– that night, soldiers came out and destroyed Troy

• modern “Trojan Horses” (pfishing)

– pretend to be the login program

– pretend to be financial institution web-page
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Ken Thompson's 3-part Trojan Horse

login program

Trojan horse #1

C compiler

Trojan horse #2

Trojan horse #3

Trojan horse #1 … in the login program

recognizes a special (hard-coded) password and will 

allow anyone who knows it to log on as any user.

Trojan horse #2 … in the C compiler

recognizes the password checking code in the login 

program, and automatically inserts Trojan horse #1 

into the compiled code.

Trojan horse #3 … in the C compiler

recognizes the code generator in the C compiler, 

and automatically inserts both Trojan horses (#2 

and #3) into the compiled code. None of these can be found by reading 

the code of either the login program or 

compiler.
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Bypassing Mediation

• OS can enforce authorization policy

– control the operations processes can perform

• OS enforcement has exceptions and limits

– privileged users can override file protection

– passwords can be observed/stolen/guessed

– bugs may enable malware to gain privileges

– backups can be accessed w/o the OS

– file systems can be accessed w/o OS

– data stored in the cloud is beyond our protection

Security and Privacy 36



5/18/2016

7

At-Rest Encryption

• added data protection, beyond file protection

• Disk (or file system) level

– password must be given at boot or mount time

– driver or file system does encrypt/decrypt

– protects computer against unauthorized access

• File level

– password must be given when file is opened

– application (or library) does encrypt/decrypt

– protects file against unauthorized access
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Assignments

• for the next lecture:

– Challenges of Distributed Systems

– Arpaci ch 47 … distributed dystems

– Saltzer sections 11.3-4 … distributed security

– Secure Socket Layer … private session protocol

– RESTful interfaces … a new interface paradigm

– Resource Leases … distributed before/after

– Distributed Transactions … distributed all/none

– Distributed Consensus … a hard problem
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Supplementary Slides
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Why Should we Trust the OS

• Can we trust the supplier’s intentions?

– do they have the right business incentives?

– will their customers keep them honest?

• Can we trust the supplier’s processes?

– design and code review processes

– testing processes (including penetration)

– security bug fixes and patches

– security bug frequency and severity

• Open Source … a two edged sword
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Direct Access to Resources

• resource is mapped into process address space

– process manipulates resource w/normal instructions

– examples: shared data segment or video frame buffer

• advantages

– access check is performed only once, at grant time

– very efficient, process can access resource directly

• disadvantages

– process may be able to corrupt the resource

– access revocation may be awkward
C2
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Indirect Access to Resources

• resource is not directly mapped into process

– process must issue service requests to use resource

– examples: network and IPC connections

• advantages

– only resource manager actually touches resource

– resource manager can ensure integrity of resource

– access can be checked, blocked, revoked at any time

• disadvantages

– overhead of system call every time resource is used

C3
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Can we trust the OS?

• trusted software is developed with great care

– it is very carefully designed, reviewed, and tested

– it may be audited/certified by a respected third party

• but we obtain software from insecure places

– e.g. down-loading drivers, applications and plug-ins

• how can we know new software is good?

– is it authentic, or a cleverly crafted Trojan horse?

– has an originally good program been infected?

• we need tamper-proof certificates of authenticity
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Computer Viruses

• a biological virus is the simplest form of life

– so simple that people argue about whether it is alive

• a biological virus can only do three things:

– penetrate cells and get to the nucleus

– force the cell to replicate many more copies of itself

– copies spread to other cells, the process continues

• a computer virus is completely analogous

– enter computer, copy itself, spread to other 
computers

– enters system through e-mail or infected software

– some merely reproduce, others are destructive

44Security and Privacy


