5/23/2016

Distributed Systems

Operating Systems Principles 13A. Distributed Systems: Goals & Challenges
13B. Distributed Systems: Communication

13C. Distributed Systems: Security

Distributed Systems 13D. Distributed Systems: Synchronization

Mark Kampe

(markk@cs.ucla.edu)

Distributed Systems: Issues and Appro:

Peter Deutsch's
"Seven Falacies of Network Computing"

Goals of Distributed Systems

scalability and performance . network is reliable

— appsrequire more resources than one computer has . no |atency (instant response tlme)
. available bandwidth is infinite

. network is secure

— grow system capacity /bandwidth to meet demand

improved reliability and availability
— 24x7 service despite disk/computer/software failures
¢ ease of use, with reduced operating expenses
— centralized management of all services and systems
— buy (better) services rather than computer equipment

. network topology & membership are stable
. network admin is complete & consistent

N o o A WN R

* enable new collaboration and business models - cost of transporting additional data is zero

— collaborations that span system (or national) boundaries Bottom Line: true transparency is not achievable
— a global free market for a wide range of new services

Heterogenous Interoperability Fundmental Building Blocks Change

* heterogenous clients * the old model

— different instruction set architectures — programs run in processes

— different operating systems and versions — programs use APIs to access system resources
* heterogenous servers — APl services implemented by OS and libraries

— different implementations ¢ the new model

— offered by competing service providers — clients and servers run on nodes
* heterogenous networks — clients use APIs to access services

— public and private — API services are exchanged via protocols

— managed by different orgs in different countries ¢ local is a (very important) special case

Changing Paradigms

¢ network connectivity becomes "a given"
— new applications assume/exploit connectivity
— new distributed programming paradigms emerge
— new functionality depends on network services

¢ applications demand new kinds of services:
— location independent operations
— rendezvous between cooperating processes
— WAN scale communication, synchronization

5/23/2016

General Paradigm — RPC

e procedure calls — a fundamental paradigm
— primary unit of computation in most languages
— unit of information hiding in most methodologies
— primary level of interface specification
* anatural boundary between client and server
— turn procedure calls into message send/receives
* afew limitations
— no implicit parameters/returns (e.g. global variables)
— no call-by-reference parameters
— much slower than procedure calls (TANSTAAFL)

Remote Procedure Call Concepts

* Interface Specification
— methods, parameter types, return types
¢ eXternal Data Representation
— machine independent data-type representations
— may have optimizations for like client/server
¢ client stub
— client-side proxy for a method in the API
¢ server stub (or skeleton)

— server-side recipient for APl invocations

Remote Procedure Calls — Tool Chain

RPC
interface
specification

RPC
generation
tool

i External Data server
ClletntbRPC Representation RPC
stubs access fucntions skeleton

client server
application implementation
code \ / code

(RPC — Key Features)

client application links against local procedures

— calls local procedures, gets results

all rpc implementation is inside those procedures
client application does not know about RPC

— does not know about formats of messages

— does not worry about sends, timeouts, resents
— does not know about external data representation

* all of this is generated automatically by RPC tools
¢ the key to the tools is the interface specification

RPC is not a complete solution

client/server binding model

— expects to be given a live connection

threading model implementaiton
—a single thread service requests one-at-a-time
— numerous one-per-request worker threads
e failure handling

— client must arrange for timeout and recovery
* higher level abstractions
— e.g. Microsoft DCOM, Java RMI, DRb, Pyro

Distributed Systems: Issues and Approache

Evolving Interaction Paradigms

e HTTP is becoming the preferred transport

— well supported, tunnels through firewalls
¢ Simple Object Access Protocol (SOAP)

— HTTP transport of XML encoded RPC requests

— options for other transports and encodings

— supports non-RPC interactions (e.g. transactions)
¢ REpresentational State Transfer (REST)

— stateless, scalable, cacheable, layerable

— operations limited to Create/Read/Update/Delete

Distributed Systems: Issues and Appro:

5/23/2016

Sample SOAP Request

“http://www.w3.0rg/2003/05/soap-envelope”>

“http://www.example.org/stock/Surya”>

IBM

Distributed Systems: Issues and Appro:

Sample REST (json) Request
{

"username" : "my_username",
"password" : "my_password",
"validation-factors" : {
"validationFactors" : [
{
"name" : "remote_address",
"value" : "127.0.0.1"

How does the OS ensure security?

« all key resources are kept inside of the OS
— protected by hardware (mode, memory management)
— processes cannot access them directly
* all users are authenticated to the OS
— by a trusted agent that is (essentially) part of the OS
* all access control decisions are made by the OS
— the only way to access resources is through the OS
— we trust the OS to ensure privacy and proper sharing
* what if key resources could not be kept in OS?

Network Security — things get worse

¢ the OS cannot guarantee privacy and integrity
— network transactions happen outside of the OS
* authentication
— all possible agents may not be in local password file
* "man-in-the-middle" attacks
— wire connecting the user to the system is insecure
* systems are open to vandalism and espionage
— many systems are purposely open to the public
— even supposedly private systems may be on internet

Distributed Systems: Issues and Approache

Man-in-the-Middle Attacks

¢ assume someone watching all network traffic
— your traffic is being routed through many machines
— most internet traffic is not encrypted
— snooping utilities are widely available
— passwords may be sent in clear text

¢ assume someone can forge messages from you
— your traffic is being routed through many machines
— some of them may be owned by bad people
— they can hijack connection after you log in
— they can replay previous messages, forge new ones

Distributed Systems: Issues and Approache

Goals of Network Security

* secure conversations

— privacy: only you and your partner know what is said

— integrity: nobody can tamper with your messages
* positive identification of both parties

— authentication of the identity of message sender

— assurance that a message is not a replay or forgery

— non-repudiation: he cannot claim "I didn't say that"

¢ they must be assured in an insecure environment

— messages are exchanged over public networks
— messages are filtered through private computers

Distributed Systems: Issu

nd Approaches

5/23/2016

Elements of Network Security

¢ simple symmetric encryption

— can be used to ensure both privacy and integrity
e cryptographic hashes

— powerful tamper detection
¢ public key encryption

— basis for modern digital privacy and authentication
« digital signatures and public key certificates

— powerful tools to authenticate a message's sender
¢ delegated authority

— enabling us to trust a stranger's credentials

Simple Symmetric Encryption

sender’s system insecure network receiver’s system

message message

encrypted transmission

[.| sharedsecret | :
(e.g. password)

Distributed Systems: Issues and Approaches

Symmetric Encryption

¢ simple fast algorithms
— encryption and decryption use the same key
— requires sender and receiver to both know the key
e symmetric encryption provides privacy
— in order to decrypt the data, you must know the key
e symmetric encryption provides integrity
— in order to generate false messages, you must know the key
e symmetric encryption algorithms are weak
— if someone watches long enough they will figure out the key
— asecret among two people is known by one too many

Distributed Systems: Issues and Approaches

Tamper Detection: Cryptographic Hashes

¢ check-sums often used to detect data corruption
— add up all bytes in a block, send sum along with data
— recipient adds up all the received bytes
— if check-sums agree, the data is probably OK
— check-sum (parity, CRC, ECC) algorithms are weak

e cryptographic hashes are very strong check-sums
— unique —two messages won’t produce same hash
— one way — cannot infer original input from output
— well distributed — any change to input changes output

Cryptographic Hash Authentication

insecure ission

secure transmission

summary

Using Cryptographic Hashes

start with a message you want to protect
compute a cryptographic hash for that message
— e.g. using the Message Digest 5 (MD5) algorithm
transmit the hash over a separate channel
recipient does same computation on received
text

— if both hash results agree, the message is intact

— else message has been corrupted/compromised
hash must be delivered over a secure channel
— or else bad guy could just forge the validation hash

5/23/2016

Asymmetric Encryption
(public key)

sender’s system insecure network receiver’s system

message message

encrypted transmission

complementary keys

secret secret
K Te-i (dataencrypted [0 K

with one must be
decrypted with the
other) *

Public Key Encryption

an asymmetric (two key) encryption technique
— one key is private — (not shared) only the key owner knows it
— one key is public — it is advertised to the entire world
it can be used to implement "your eyes only" privacy
— encrypt a message with the recipient's public key
— the message can only be decrypted with his private key
it can be used to implement guaranteed signatures
— sender encrypts message with his own private key
— if it decrypts with sender's public key, it must be from sender
these can be combined for authentication + privacy

How does the OS ensure security?

« all key resources are kept inside of the OS
— protected by hardware (mode, memory management)
— processes cannot access them directly
* all users are authenticated to the OS
— by a trusted agent that is (essentially) part of the OS
* all access control decisions are made by the OS
— the only way to access resources is through the OS
— we trust the OS to ensure privacy and proper sharing

¢ what if key resources could not be kept in 0OS?

Network Security — things get worse

the OS cannot guarantee privacy and integrity
— network transactions happen outside of the OS
authentication

— all possible agents may not be in local password file
"man-in-the-middle" attacks

— wire connecting the user to the system is insecure
systems are open to vandalism and espionage

— many systems are purposely open to the public

— even supposedly private systems may be on internet

Man-in-the-Middle Attacks

¢ assume someone watching all network traffic
— your traffic is being routed through many machines
— most internet traffic is not encrypted
— snooping utilities are widely available
— passwords may be sent in clear text

¢ assume someone can forge messages from you
— your traffic is being routed through many machines
— some of them may be owned by bad people
— they can hijack connection after you log in
— they can replay previous messages, forge new ones

Distributed Systems: Issues and Approache

Goals of Network Security

* secure conversations
— privacy: only you and your partner know what is said
— integrity: nobody can tamper with your messages
* positive identification of both parties
— authentication of the identity of message sender
— assurance that a message is not a replay or forgery
— non-repudiation: he cannot claim "I didn't say that"
¢ they must be assured in an insecure environment
— messages are exchanged over public networks
— messages are filtered through private computers

Distributed Systems: Issues and Approaches

5/23/2016

Elements of Network Security

¢ simple symmetric encryption

— can be used to ensure both privacy and integrity
e cryptographic hashes

— powerful tamper detection
¢ public key encryption

— basis for modern digital privacy and authentication
« digital signatures and public key certificates

— powerful tools to authenticate a message's sender
¢ delegated authority

— enabling us to trust a stranger's credentials

Simple Symmetric Encryption

sender’s system insecure network receiver’s system

message message

encrypted transmission

[.| sharedsecret | :
(e.g. password)

(Symmetric Encryption)

¢ simple fast algorithms
— encryption and decryption use the same key
— requires sender and receiver to both know the key
e symmetric encryption provides privacy
— in order to decrypt the data, you must know the key
e symmetric encryption provides integrity
— in order to generate false messages, you must know key
¢ symmetric encryption algorithms are weak
— if someone watches long enough they can determine key
— asecret by shared two people is known by one too many

Distributed Systems: Issues and Approaches

T %
Cryptographic Hash Authentication
summary secure transmission w

*

(Using Cryptographic Hashes)

* start with a message you want to protect

e compute a cryptographic hash for that message
— e.g. using the Message Digest 5 (MD5) algorithm

¢ transmit the hash over a separate channel

* recipient does same computation on received
text

— if both hash results agree, the message is intact
— else message has been corrupted/compromised

¢ hash must be delivered over a secure channel
— or else bad guy could just forge the validation hash

Asymmetric Encryption
(public key)

sender’s system insecure network receiver’s system

message message

encrypted transmission

complementary keys

secret secret
K “e- il (dataencrypted [T K

with one must be
decrypted with the

Distributed Systems: Issues and Approaches

5/23/2016

other) i\f

(Public Key Encryption)

¢ an asymmetric (two key) encryption technique
— one key is private — (not shared) only key owner knows it
— one key is public— it is advertised to the entire world

* it can be used to implement "your eyes only" privacy
— encrypt a message with the recipient's public key
— the message can only be decrypted with his private key

¢ it can be used to implement guaranteed signatures
— sender encrypts message with his own private key
— if it decrypts w/sender's public key, it must be from sender

* these can be combined for authentication + privacy

Distributed Systems: Issues and Approaches

example: Secure Socket Layer

¢ establishes secure two-way communication
— privacy — nobody can snoop on conversation
— integrity — nobody can generate fake messages
* certificate based authentication of server
— client knows what server he is talking to
* optional certificate based authentication of client
— if server requires authentication and non-repudiation
e uses symmetric encryption with session keys
— safety of public key, efficiency of symmetric

Distributed Systems: Issues and Approaches

SSL session establishment

CLIENT SERVER

algorithm selection, and random string B

server’s Public Key certificate

validate server’s certificate
generate random string C

encrypt C with server’s public key
encrypted string C

compute F(A,B,C) decrypt C with server’s Private key
use result to generate session keys compute F(A,B,C)
use result to generate session keys

subsequent communication encrypted w/symmetric session keys
Y

Distributed Systems: Issues and Approaches 20

Digital Signatures

inse¢ure

transmission

ke ke

Distributed Systems: Issues and Approaches

(Signing a message)

e encrypting a message with private key signs it
— only you could have encrypted it, it must be from you
— it has not been tampered with since you wrote it

* encrypting everything w/private key is a bad idea
— if use a key too much, someone will eventually crack it
— asymmetric encryption is extremely slow

* no need to encrypt whole message w/private key
— compute a cryptographic hash of your message
— encrypt the cryptographic hash with your private key
— faster and safer than encrypting whole message

Distributed Systems: Issues and Approaches

Using Digital Signatures

e much better than ink signatures or fingerprints
— uniquely identify the document signer
— uniquely identify the document that was signed
— signature cannot be copied onto another document
* we know document has not been tampered with
— we can recompute the cryptographic hash at any time
— confirm it matches message the sender signed
— sender cannot later claim not to have signed message
« digitally signed contracts can be legally binding
— several states have passed such legislation

Distributed Systems: Issues and Appro:

5/23/2016

Signed Load Modules

* how do we know we can trust a program?
— digital signatures can provide this
¢ designate a certification authority
— perhaps the OS manufacturer (Microsoft, Sun, ...)
¢ they verify the reliability of the software
— by code review, by testing, etc
— sign certified module with their private key
¢ we can verify signature with their public key
— proves the module was certified by them
— proves the module has not been tampered with

Distributed Systems: Issues and Appro:

Can we trust public keys?

if | have a public key

— | can authenticate received messages

— I know they were sent by the owner of the private key
but how do | know who that person is?

— can | be sure who a public key belongs to?

— how do | know that this is really my bank's public key?
— could some swindler have sent me his key instead?

I would like a certificate of authenticity

— guaranteeing who the real owner of a public key is

Public Key Certificates

Certificate:

Data:

Version: v3; Serial Number: 3;

Issuer: OU=Ace Certificate Authority, O=Ace Industry, C=US
Validity: Not After: Sun Oct 17 18:36:25 1999

Subject: CN=Jane Doe, OU=Finance, O=Ace Industry, C=US
Subject Public Key Info: Algorithm: PKCS #1 RSA Encryption

Public Key: Modulus:
00:ca:fa:79:98:8f:19:f8:d7:de:e4:49:80:48:€6:2a:2a:86:

Signature:
Algorithm: PKCS #1 MD5 With RSA Encryption
Signature:
6d:23:af:f3:d3:b6:7a:df:90:df:cd:7e:18:6¢:01:69:8e:54:65:fc:06:

Using Public Key Certificates

 if | know public key of the authority who signed it
— | can validate the signature is correct
— | can tell the certificate has not been tampered with

e if | trust the authority who signed the certificate
— | can trust they authenticated the certificate owner
— e.g. we trust drivers licenses and passports

e but first | must know and trust signing authority
— everybody knows and trusts RSA as an authority
— does that mean that only RSA can sign certificates?

Distributed Systems: Issues and Approache

DI

Delegated Authority

| can accept certificates from a known authority
— not practical for one authority to issue all certificates
— how to validate certificates from unknown authority
what if he has a certificate

— that is signed by an authority | know and trust

— that authorizes him to issue certificates
if | trust RSA, | should also trust their "delegates"
— perhaps | can also trust people they delegate

— but I would need to see the entire chain of certificates

tributed Systems: Issues and Approache

Certificate Authority Hierarchy

! ! !
UCLA
Certificate Authority

Distributed Syste

5/23/2016

Distributed Synchronization

* spatial separation

— different processes run on different systems
— no shared memory for (atomic instruction) locks
— they are controlled by different operating systems

¢ temporal separation

— can’t “totally order” spatially separated events
— before/simultaneous/after lose their meaning

¢ independent modes of failure

— one partner can die, while others continue

Leases — more robust locks

¢ obtained from resource manager
— gives client exclusive right to update the file
— lease “cookie” must be passed to server w/update
— lease can be released at end of critical section
¢ only valid for a limited period of time
— after which the lease cookie expires
¢ updates with stale cookies are not permitted
— after which new leases can be granted
¢ handles a wide range of failures
— process, client node, server node, network

Lock Breaking and Recovery

¢ revoking an expired lease is fairly easy
— lease cookie includes a “good until” time
— any operation involving a “stale cookie” fails
* this makes it safe to issue a new lease
— old lease-holder can no longer access object
— was object left in a “reasonable” state?
 object must be restored to last “good” state
— roll back to state prior to the aborted lease
— implement all-or-none transactions

Distributed Consensus

* achieving simultaneous, unanimous agreement
— even in the presence of node & network failures
— required: agreement, termination, validity, integrity
— desired: bounded time

e consensus algorithms tend to be complex
— and may take a long time to converge

¢ they tend to be used sparingly
— e.g. use consensus to elect a leader
— who makes all subsequent decisions by fiat

Typical Consensus Algorithm

1. Each interested member broadcasts his nomination.

2. All parties evaluate the received proposals according to a
fixed and well known rule.

3. After allowing a reasonable time for proposals, each
voter acknowledges the best proposal it has seen.

4. If a proposal has a majority of the votes, the proposing
member broadcasts a claim that the question has been
resolved.

5. Each party that agrees with the winner’s claim
acknowledges the announced resolution.

6. Election is over when a quorum acknowledges the result.

Assignments

« for the next lecture:
— Arpaci ch 48 ... NFS (Network File System)
— Arpaci ch 49 ... AFS (Andrew File System)
— Kerberos ... authentication/authorization
— Wikipedia: ACID Semantics

Distributed Systems: Issues and Approache

5/23/2016

Supplementary Slides

Distributed Systems: Issues and Approache

Distributed Temporal Separation

Reader Writer Server Server Writer Reader
1 1 1 2 2 2
et
_—> x=1
_—

_ Different clients see
*2 !, different values at the
same time
3
x=2 A x=3
. ————> Different clients see
= successive values in

different orders

1. The system does not have a scalar state. State is a vector.
2. There is no total ordering; There are only partial orderings.

Tamper Detection: Cryptographic Hashes

» check-sums often used to detect data corruption
— add up all bytes in a block, send sum along with data
— recipient adds up all the received bytes
— if check-sums agree, the data is probably OK
— check-sum (parity, CRC, ECC) algorithms are weak

e cryptographic hashes are very strong check-sums
— unique —two messages won’t produce same hash
— one way — cannot infer original input from output
— well distributed — any change to input changes output

10

