
5/25/2016

1

Operating Systems Principles

Distributed File Systems

Mark Kampe

(markk@cs.ucla.edu)

Distributed File Systems

14A. Remote Data Access: Architectures

14B. Remote Data Access: Security

14C. Remote Data Access: Reliability

14D. Remote Data Access: Performance

14E. Remote Data Access: Scalability

Distributed File Systems 2

Remote Data Access: Goals

• Transparency

– indistinguishable from local files for all uses

– all clients see all files from anywhere

• Performance

– per-client: at least as fast as local disk

– scalability: unaffected by the number of clients

• Cost

– capital: less than local (per client) disk storage

– operational: zero, it requires no administration

• Capacity: unlimited, it is never full

• Availability: 100%, no failures or down-time
3Distributed File Systems

Client/Server Models

• Peer-to-Peer

– most systems have resources (e.g. disks, printers)

– they cooperate/share with one-another

• Thin Client

– few local resources (e.g. CPU, NIC, display)

– most resources on work-group or domain servers

• Cloud Services

– clients access services rather than resources

– clients do not see individual servers

Distributed File Systems 4

Remote File Transfer

• explicit commands to copy remote files

– OS specific: scp(1), rsync(1), S3 tools

– IETF protocols: FTP, SFTP

• implicit remote data transfers

– browsers (transfer files with HTTP)

– email clients (move files with IMAP/POP/SMTP)

• advantages: efficient, requires no OS support

• disadvantages: latency, lack of transparency

Distributed File Systems 5

Remote Data Access

• OS makes remote files appear to be local

– remote disk access (e.g. Storage Area Network)

– remote file access (e.g. Network Attached Storage)

– distributed file systems (NAS on steroids)

• advantages

– transparency, availability, throughput

– scalability, cost (capital and operational)

• disadvantages

– complexity, issues with shared access

Distributed File Systems 6

5/25/2016

2

Remote Disk Access

• Goal: complete transparency

– normal file system calls work on remote files

– all programs “just work” with remote files

• Typical Architectures

– Storage Area Network (SCSI over Fibre Chanel)

• very fast, very expensive, moderately scalable

– iSCSI (SCSI over ethernet)

• client driver turns reads/writes into network requests

• server daemon receives/serves requests

• moderate performance, inexpensive, highly scalable

7Distributed File Systems

Remote Disk Access Architecture

system calls

U
N

IX
 F

S

D
O

S
 F

S

C
D

 F
S

block I/O

CD
drivers

E
X

T3 F
S

virtual file system integration layer

file
operations

directory
operations

file
I/O

socket
I/O

disk
drivers

remote
disk
client

NIC
driver

UDP

IP

MAC
driver

device
I/O

socket
I/O

NIC
driver

UDP

IP

MAC
driver

disk
drivers

remote server
file system

client server

remote disk server

TCP TCP

8Distributed File Systems

Rating Remote Disk Access

• Advantages:

– provides excellent transparency

– decouples client hardware from storage capacity

– performance/reliability/availability per back-end

• Disadvantages

– inefficient fixed partition space allocation

– can’t support file sharing by multiple client systems

– message losses can cause file system errors

• This is THE model for Virtual Machines

9Distributed File Systems

Remote File Access

• Goal: complete transparency

– normal file system calls work on remote files

– support file sharing by multiple clients

– performance, availability, reliability, scalability

• Typical Architecture
– exploits plug-in file system architecture

– client-side file system is a local proxy

– translates file operations into network requests

– server-side daemon receives/process requests

– translates them into real file system operations

10Distributed File Systems

Remote File Access Architecture

system calls

U
N

IX
 F

S

D
O

S
 F

S

C
D

 F
S

block I/O

CD
drivers

rem
ote F

S

virtual file system integration layer

file
operations

directory
operations

file
I/O

socket
I/O

disk
drivers

NIC
driver

UDP

IP

MAC
driver

client server

TCP

flash
drivers

block I/O

E
X

T3 F
S

socket
I/O

disk
driver

NIC
driver

UDP

IP

MAC
driver

TCP

remote FS server

11Distributed File Systems

Rating Remote File Access

• Advantages

– very good application level transparency

– very good functional encapsulation

– able to support multi-client file sharing

– potential for good performance and robustness

• Disadvantages

– at least part of implementation must be in the OS

– client and server sides tend to be fairly complex

• This is THE model for client/server storage

12Distributed File Systems

5/25/2016

3

Cloud Model

• a logical extension of client/server model

– all services accessed via standard protocols

• opaque encapsulation of servers/resources

– resources are abstract/logical, thin-provisioned

– one, highly available, IP address for all services

– mirroring/migration happen under the covers

• protocols likely to be WAN-scale optimized

• advantages:

– simple, scalable, highly available, low cost

– a very compelling business model

Distributed File Systems 13

Remote Disk/File Access

Distributed File Systems 14

client primary

secondary

Distributed File System

client

server server server server server

(Remote vs. Distributed FS)

• Remote File Access (e.g. NFS, CIFS)

– client talks to (per FS) primary server

– secondary server may take over if primary fails

– advantages: simplicity

• Distributed File System (e.g. Ceph, RAMCloud)

– data is spread across numerous servers

– client may talk directly to many/all of them

– advantages: performance, scalability

– disadvantages: complexity++

Distributed File Systems 15

Security: Anonymous access

• all files available to all users

– no authentication required

– may be limited to read-only access

– examples: anonymous FTP, HTTP

• advantages

– simple implementation

• disadvantages

– incapable of providing information privacy

– write access often managed by other means

Distributed File Systems 16

Peer-to-Peer Security

• client-side authentication/authorization

– all users are known to all systems

– all systems are trusted to enforce access control

– example: basic NFS

• advantages

– simple implementation

• disadvantages

– assumes all clients to be trusted

– doesn’t work in heterogeneous OS environment

– universal user registry is not scalable

Distributed File Systems 17

Server Authenticated Sessions

• client agent authenticates to each server

– session authorization based on those credentials

– example: CIFS

• advantages

– simple implementation

• disadvantages

– may not work in heterogeneous OS environment

– universal user registry is not scalable

– no automatic fail-over if server dies

Distributed File Systems 18

5/25/2016

4

Domain Authentication Service

• independent authentication of client & server

– each authenticates with authentication service

– each knows/trusts only the authentication service

• may issue signed “tickets”

– assuring each of the others’ identity and rights

– may be revocable or timed lease

• may establish secure two-way session

– privacy – nobody else can snoop on conversation

– integrity – nobody can generate fake messages

19Distributed File Systems

example: KERBEROS
• establishes secure client/server sessions

• based on digital signatures
– every agent has a secret (symmetric) key

– keys are known only to agent, and KERBEROS

• request to KERBEROS encrypted w/client key
– KERBEROS can decrypt it, authenticating requester

• KERBEROS response is two-part work ticket
– part 1: encrypted with client's key

• a symmetric session key
• part 2 (to be forward, by client, to server)

– part 2: encrypted with server's key
• client ID, ticket duration,
• symmetric session key

20Distributed File Systems

KERBEROS Work Tickets

request
client ID
server ID

expiration time

Client Authentication

Service
Server

C-ticket
session key

server ID
expiration time

S-ticket
session key

client ID
expiration time

generate session key

encrypt w/server key

encrypt w/client keydecrypt w/client key decrypt w/server key

subsequent communication encrypted w/symmetric session keys

21Distributed File Systems

Distributed Authorization

• Authentication service returns credentials

– which server checks against Access Control List

– advantage: auth service doesn’t know about ACLs

• Authentication service returns Capabilities

– which server can verify (by signature)

– advantage: servers do not know about clients

• Both approaches are commonly used

– credentials: if subsequent authorization required

– capabilities: if access can be granted all-at-once

Distributed File Systems 22

Reliability and Availability

• Reliability … probability of not losing data

– disk/server failures to not result in data loss

• RAID (mirroring, parity, erasure coding)

• copies on multiple servers

– automatic recovery (of redundancy) after failure

• Availability … fraction of time service available

– disk/server failures do not impact data availability

• backup servers with automatic fail-over

– automatic recovery (back up to date) after rejoin

Distributed File Systems 23

Availability: Fail-Over

• data must be mirrored to secondary server

• failure of primary server must be detected

• client must be failed-over to secondary

• session state must be reestablished

– client authentication/credentials

– session parameters (e.g. working directory, offset)

• in-progress operations must be retransmitted

– client must expect timeouts, retransmit requests

– client responsible for writes until server ACKs

Distributed File Systems 24

5/25/2016

5

Reliability: Data Mirroring

Distributed File Systems 25

client primary

secondary

Back-side Mirroring

client primary

secondary

secondary

Front-side Mirroring

secondary

(Mirroring, Parity, Erasure Coding)

• Similar to trade-offs we made in RAID

– the extra copies mean more network I/O

• Mirroring – multiple copies

– fast, but requires a great deal of space

• Parity – able to recover from one/two errors

– lower space overhead

– requires full strip write buffering

• Erasure coding – recover with N/M copies

– very space efficient

– very slow/expensive reads and writes

Distributed File Systems 26

Availability: Failure Detect/Rebind

• client driven recovery

– client detects server failure (connection error)

– client reconnects to (successor) server

– client reestablishes session

• transparent failure recovery

– system detects server failure (health monitoring)

– successor assumes primary’s IP address

– state reestablishment

• successor recovers last primary state check-point

• stateless protocol

Distributed File Systems 27

Availability: Stateless Protocols

• a statefull protocol (e.g. TCP)

– operations occur within a context

– each operation depends on previous operations

– successor server must remember session state

• a stateless protocol (e.g. HTTP)

– client supplies necessary context w/each request

– each operation is complete and unambiguous

– successor server has no memory of past events

• stateless protocols make fail-over easy

28Distributed File Systems

Availability: Idempotent Operations

• can be repeated many times with same effect

– read block 100 of file X

– write block 100 of file X with contents Y

– delete file X version 3

– non-idempotent operations
• read next block of current file

• append contents Y to end of file X

• if client gets no response, resend request

– if server gets multiple requests, no harm done

– works for server failure, lost request, lost response
• but no ACK does not mean operation did not happen

29Distributed File Systems

Performance: Bandwidth

Distributed File Systems 30

client primary

client

client

a single server has limited throughput

client primary

primary

primary

striping files across

multiple servers

provides scalable

throughput

5/25/2016

6

Performance: Cost of Reads

• client-side caching

– eliminate waits for remote read requests

– reduces network traffic

– reduces per-client load on server

• whole file (vs. block) caching

– higher network latency justifies whole file pulls

– stored in local (cache-only) file system

– satisfy early reads before entire file arrives

Distributed File Systems 31

Performance: Cost of Writes

• write-back cache

– create the illusion of fast writes

– combine small writes into larger writes

– fewer, larger network and disk writes

– enable local read-after-write consistency

• whole-file updates

– wait until close(2) or fsync(2)

– reduce many successive updates to final result

– possible file will be deleted before it is written

– enable atomic updates, close-to-open consistency

Distributed File Systems 32

Performance: Cost of Consistency

• caching is essential in distributed systems

– for both performance and scalability

• caching is easy in a single-writer system

– force all writes to go through the cache

• multi-writer distributed caching is hard

– Time To Live is a cute idea that doesn’t work

– constant validity checks defeat the purpose

– one-writer-at-a-time is too restrictive for most FS

– change notifications are a reasonable alternative

Distributed File Systems 33

Performance: Cost of Mirroring

• multi-host vs multi-disk mirroring

– protects against host and disk failures

– creates much additional network traffic

• mirroring by primary

– primary becomes throughput bottleneck

– replication traffic on back-side network

• mirroring by client

– data flows directly from client to storage servers

– replication traffic goes through client NIC

– parity/erasure code computation on client CPU

Distributed File Systems 34

Performance: Direct Data Path

Distributed File Systems 35

client

server server primary server server

server server

primary

server server

all data flows through primary

data direct to storage nodes

(benefits of direct data path)

• architecture

– primary tells clients where which data resides

– client communicates directly w/storage servers

• throughput

– data is striped across multiple storage servers

• latency

– no intermediate relay through primary server

• scalability

– fewer messages on network

– much less data flowing through primary servers

Distributed File Systems 36

5/25/2016

7

Performance: Recovery Time

Distributed File Systems 37

full

service

no

service

Mean Time To Failure

h/w, s/w, external

Mean Time To Repair

1. detect failure

2. promote 2nd-ary

3. journal recovery

4. clients re-bind

5. reestablish session state

re-replication

Availability = MTTF

MTTF + MTTR

degraded

service

(availability)

• MTTR (time before service can be restored)

– primary failure detected

– secondary promoted to primary role

– recent/in-progress operations recovered

– clients learn of change and re-bind

– session state (if any) has been reestablished

• Degraded service may persist longer

– restoring lost redundancy may take a while

– heavily loading servers, disks, and network

Distributed File Systems 38

Scalability – Traffic

• network messages are expensive

– NIC and network capacity to carry them

– server CPU cycles to process them

– client delays awaiting responses

• minimize messages/client/second

– cache results to eliminate requests entirely

– enable complex operations w/single request

– buffer up large writes in write-back cache

– pre-fetch large reads into local cache

Distributed File Systems 39

Scalability - Bottlenecks

• avoid a single control points

– partition responsibility over many nodes

• separated data- and control-planes

– control nodes choreograph the flow of data

• where data should be stored or obtained from

• ensuring coherency and correct serialization

– data flows directly from producer to consumer

• data paths are optimized for throughput/efficiency

• dynamic re-partitioning of responsibilities

– in response to failures and/or load changes

Distributed File Systems 40

Control and Data Planes

Distributed File Systems 41

client
metadata

server

storage

server

storage

server

storage

server

control plane

data plane

Scalability: Cluster Protocols

• Consensus protocols do not scale well

– they only work for small numbers of nodes

• Minimize number of consensus operations

– elect a single master who makes decisions

– partitioned and delegated responsibility

• Avoid large-consensus/transaction groups

– partition work among numerous small groups

• Avoid high communications fan-in/fan-out

– hierarchical information gathering/distribution

Distributed File Systems 42

5/25/2016

8

Small Transaction Clusters

Distributed File Systems 43

Hierarchical Communication Structure

Distributed File Systems 44

Assignments

• for the next lecture:

– Symmetric Multi-Processors

– Clustering Concepts

– Cloud Concepts

– Eventual Consistency

Distributed File Systems 45

