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Remote Data Access: Goals 

• Transparency

– indistinguishable from local files for all uses

– all clients see all files from anywhere

• Performance

– per-client: at least as fast as local disk

– scalability: unaffected by the number of clients 

• Cost

– capital: less than local (per client) disk storage

– operational: zero, it requires no administration

• Capacity: unlimited, it is never full

• Availability: 100%, no failures or down-time
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Client/Server Models

• Peer-to-Peer

– most systems have resources (e.g. disks, printers)

– they cooperate/share with one-another

• Thin Client

– few local resources (e.g. CPU, NIC, display)

– most resources on work-group or domain servers

• Cloud Services

– clients access services rather than resources

– clients do not see individual servers
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Remote File Transfer

• explicit commands to copy remote files

– OS specific: scp(1), rsync(1), S3 tools

– IETF protocols: FTP, SFTP

• implicit remote data transfers

– browsers (transfer files with HTTP)

– email clients (move files with IMAP/POP/SMTP)

• advantages: efficient, requires no OS support

• disadvantages: latency, lack of transparency
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Remote Data Access

• OS makes remote files appear to be local

– remote disk access (e.g. Storage Area Network)

– remote file access (e.g. Network Attached Storage)

– distributed file systems (NAS on steroids)

• advantages

– transparency, availability, throughput

– scalability, cost (capital and operational)

• disadvantages

– complexity, issues with shared access
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Remote Disk Access

• Goal: complete transparency

– normal file system calls work on remote files

– all programs “just work” with remote files

• Typical Architectures

– Storage Area Network (SCSI over Fibre Chanel)

• very fast, very expensive, moderately scalable

– iSCSI (SCSI over ethernet)

• client driver turns reads/writes into network requests

• server daemon receives/serves requests

• moderate performance, inexpensive, highly scalable
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Remote Disk Access Architecture
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Rating Remote Disk Access

• Advantages:

– provides excellent transparency

– decouples client hardware from storage capacity

– performance/reliability/availability per back-end

• Disadvantages

– inefficient fixed partition space allocation

– can’t support file sharing by multiple client systems

– message losses can cause file system errors

• This is THE model for Virtual Machines
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Remote File Access

• Goal: complete transparency

– normal file system calls work on remote files

– support file sharing by multiple clients

– performance, availability, reliability, scalability

• Typical Architecture
– exploits plug-in file system architecture

– client-side file system is a local proxy

– translates file operations into network requests

– server-side daemon receives/process requests

– translates them into real file system operations
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Remote File Access Architecture
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Rating Remote File Access

• Advantages

– very good application level transparency

– very good functional encapsulation

– able to support multi-client file sharing

– potential for good performance and robustness

• Disadvantages

– at least part of implementation must be in the OS

– client and server sides tend to be fairly complex

• This is THE model for client/server storage
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Cloud Model

• a logical extension of client/server model

– all services accessed via standard protocols

• opaque encapsulation of servers/resources

– resources are abstract/logical, thin-provisioned

– one, highly available, IP address for all services

– mirroring/migration happen under the covers

• protocols likely to be WAN-scale optimized

• advantages: 

– simple, scalable, highly available, low cost

– a very compelling business model
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Remote Disk/File Access
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client primary

secondary

Distributed File System

client
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(Remote vs. Distributed FS)

• Remote File Access (e.g. NFS, CIFS)

– client talks to (per FS) primary server

– secondary server may take over if primary fails

– advantages: simplicity

• Distributed File System (e.g. Ceph, RAMCloud)

– data is spread across numerous servers

– client may talk directly to many/all of them

– advantages: performance, scalability

– disadvantages: complexity++

Distributed File Systems 15

Security: Anonymous access

• all files available to all users

– no authentication required

– may be limited to read-only access

– examples: anonymous FTP, HTTP

• advantages

– simple implementation

• disadvantages

– incapable of providing information privacy

– write access often managed by other means
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Peer-to-Peer Security

• client-side authentication/authorization

– all users are known to all systems

– all systems are trusted to enforce access control

– example: basic NFS

• advantages

– simple implementation

• disadvantages

– assumes all clients to be trusted

– doesn’t work in heterogeneous OS environment

– universal user registry is not scalable
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Server Authenticated Sessions

• client agent authenticates to each server

– session authorization based on those credentials

– example: CIFS

• advantages

– simple implementation

• disadvantages

– may not work in heterogeneous OS environment

– universal user registry is not scalable

– no automatic fail-over if server dies
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Domain Authentication Service

• independent authentication of client & server

– each authenticates with authentication service

– each knows/trusts only the authentication service

• may issue signed “tickets”

– assuring each of the others’ identity and rights

– may be revocable or timed lease

• may establish secure two-way session

– privacy – nobody else can snoop on conversation

– integrity – nobody can generate fake messages
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example: KERBEROS
• establishes secure client/server sessions

• based on digital signatures
– every agent has a secret (symmetric) key

– keys are known only to agent, and KERBEROS

• request to KERBEROS encrypted w/client key
– KERBEROS can decrypt it, authenticating requester

• KERBEROS response is two-part work ticket
– part 1: encrypted with client's key

• a symmetric session key
• part 2 (to be forward, by client, to server)

– part 2: encrypted with server's key
• client ID, ticket duration,
• symmetric session key
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KERBEROS Work Tickets

request
client ID
server ID

expiration time

Client Authentication 

Service
Server

C-ticket
session key

server ID
expiration time

S-ticket
session key

client ID
expiration time

generate session key

encrypt w/server key

encrypt w/client keydecrypt w/client key decrypt w/server key

subsequent communication encrypted w/symmetric session keys
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Distributed Authorization

• Authentication service returns credentials

– which server checks against Access Control List

– advantage: auth service doesn’t know about ACLs

• Authentication service returns Capabilities

– which server can verify (by signature)

– advantage:  servers do not know about clients

• Both approaches are commonly used

– credentials: if subsequent authorization required

– capabilities: if access can be granted all-at-once
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Reliability and Availability

• Reliability … probability of not losing data

– disk/server failures to not result in data loss

• RAID (mirroring, parity, erasure coding)

• copies on multiple servers

– automatic recovery (of redundancy) after failure

• Availability … fraction of time service available

– disk/server failures do not impact data availability

• backup servers with automatic fail-over

– automatic recovery (back up to date) after rejoin
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Availability: Fail-Over

• data must be mirrored to secondary server

• failure of primary server must be detected

• client must be failed-over to secondary

• session state must be reestablished

– client authentication/credentials

– session parameters (e.g. working directory, offset)

• in-progress operations must be retransmitted

– client must expect timeouts, retransmit requests

– client responsible for writes until server ACKs
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Reliability: Data Mirroring
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(Mirroring, Parity, Erasure Coding)

• Similar to trade-offs we made in RAID

– the extra copies mean more network I/O

• Mirroring – multiple copies

– fast, but requires a great deal of space

• Parity – able to recover from one/two errors

– lower space overhead

– requires full strip write buffering

• Erasure coding – recover with N/M copies

– very space efficient

– very slow/expensive reads and writes
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Availability: Failure Detect/Rebind

• client driven recovery

– client detects server failure (connection error)

– client reconnects to (successor) server

– client reestablishes session

• transparent failure recovery

– system detects server failure (health monitoring)

– successor assumes primary’s IP address

– state reestablishment

• successor recovers last primary state check-point

• stateless protocol
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Availability: Stateless Protocols

• a statefull protocol (e.g. TCP)

– operations occur within a context

– each operation depends on previous operations

– successor server must remember session state

• a stateless protocol (e.g. HTTP)

– client supplies necessary context w/each request

– each operation is complete and unambiguous

– successor server has no memory of past events

• stateless protocols make fail-over easy
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Availability: Idempotent Operations

• can be repeated many times with same effect

– read block 100 of file X

– write block 100 of file X with contents Y

– delete file X version 3

– non-idempotent operations
• read next block of current file

• append contents Y to end of file X

• if client gets no response, resend request

– if server gets multiple requests, no harm done

– works for server failure, lost request, lost response
• but no ACK does not mean operation did not happen
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Performance: Bandwidth
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Performance: Cost of Reads

• client-side caching

– eliminate waits for remote read requests

– reduces network traffic

– reduces per-client load on server

• whole file (vs. block) caching

– higher network latency justifies whole file pulls

– stored in local (cache-only) file system

– satisfy early reads before entire file arrives
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Performance: Cost of Writes

• write-back cache

– create the illusion of fast writes

– combine small writes into larger writes

– fewer, larger network and disk writes

– enable local read-after-write consistency

• whole-file updates

– wait until close(2) or fsync(2)

– reduce many successive updates to final result

– possible file will be deleted before it is written

– enable atomic updates, close-to-open consistency
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Performance: Cost of Consistency

• caching is essential in distributed systems

– for both performance and scalability

• caching is easy in a single-writer system

– force all writes to go through the cache

• multi-writer distributed caching is hard

– Time To Live is a cute idea that doesn’t work

– constant validity checks defeat the purpose

– one-writer-at-a-time is too restrictive for most FS

– change notifications are a reasonable alternative
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Performance: Cost of Mirroring

• multi-host vs multi-disk mirroring

– protects against host and disk failures

– creates much additional network traffic

• mirroring by primary

– primary becomes throughput bottleneck

– replication traffic on back-side network

• mirroring by client

– data flows directly from client to storage servers

– replication traffic goes through client NIC

– parity/erasure code computation on client CPU
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Performance: Direct Data Path
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client

server server primary server server

server server

primary

server server

all data flows through primary

data direct to storage nodes

(benefits of direct data path)

• architecture

– primary tells clients where which data resides

– client communicates directly w/storage servers

• throughput

– data is striped across multiple storage servers

• latency

– no intermediate relay through primary server

• scalability

– fewer messages on network

– much less data flowing through primary servers

Distributed File Systems 36



5/25/2016

7

Performance: Recovery Time
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• MTTR (time before service can be restored)

– primary failure detected

– secondary promoted to primary role

– recent/in-progress operations recovered

– clients learn of change and re-bind

– session state (if any) has been reestablished

• Degraded service may persist longer

– restoring lost redundancy may take a while

– heavily loading servers, disks, and network
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Scalability – Traffic

• network messages are expensive

– NIC and network capacity to carry them

– server CPU cycles to process them

– client delays awaiting responses

• minimize messages/client/second

– cache results to eliminate requests entirely

– enable complex operations w/single request

– buffer up large writes in write-back cache

– pre-fetch large reads into local cache
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Scalability - Bottlenecks

• avoid a single control points

– partition responsibility over many nodes

• separated data- and control-planes

– control nodes choreograph the flow of data

• where data should be stored or obtained from

• ensuring coherency and correct serialization

– data flows directly from producer to consumer

• data paths are optimized for throughput/efficiency

• dynamic re-partitioning of responsibilities

– in response to failures and/or load changes
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Control and Data Planes
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Scalability: Cluster Protocols

• Consensus protocols do not scale well

– they only work for small numbers of nodes

• Minimize number of consensus operations

– elect a single master who makes decisions

– partitioned and delegated responsibility

• Avoid large-consensus/transaction groups

– partition work among numerous small groups

• Avoid high communications fan-in/fan-out

– hierarchical information gathering/distribution
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Small Transaction Clusters
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Hierarchical Communication Structure
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Assignments

• for the next lecture:

– Symmetric Multi-Processors

– Clustering Concepts

– Cloud Concepts

– Eventual Consistency
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