Operating Systems Principles

Distributed File Systems

Mark Kampe

(markk@cs.ucla.edu)

5/25/2016

Distributed File Systems

14A. Remote Data Access: Architectures
14B. Remote Data Access: Security

14C. Remote Data Access: Reliability
14D. Remote Data Access: Performance
14E. Remote Data Access: Scalability

Distributed File System:

Dist

Remote Data Access: Goals

Transparency
— indistinguishable from local files for all uses
— all clients see all files from anywhere

Performance

— per-client: at least as fast as local disk

— scalability: unaffected by the number of clients
Cost

— capital: less than local (per client) disk storage
— operational: zero, it requires no administration
Capacity: unlimited, it is never full
Availability: 100%, no failures or down-time

ted File Syst

Client/Server Models

* Peer-to-Peer
— most systems have resources (e.g. disks, printers)
— they cooperate/share with one-another
¢ Thin Client
— few local resources (e.g. CPU, NIC, display)
— most resources on work-group or domain servers
* Cloud Services
— clients access services rather than resources
— clients do not see individual servers

ted File Syst

Remote File Transfer

explicit commands to copy remote files

— OS specific: scp(1), rsync(1), S3 tools

— IETF protocols: FTP, SFTP

implicit remote data transfers

— browsers (transfer files with HTTP)

— email clients (move files with IMAP/POP/SMTP)
advantages: efficient, requires no OS support

disadvantages: latency, lack of transparency

Distributed File System:

Remote Data Access

¢ 0OS makes remote files appear to be local
— remote disk access (e.g. Storage Area Network)
— remote file access (e.g. Network Attached Storage)
— distributed file systems (NAS on steroids)
¢ advantages
— transparency, availability, throughput
— scalability, cost (capital and operational)
¢ disadvantages
— complexity, issues with shared access

Distributed File System:

Remote Disk Access

* Goal: complete transparency
— normal file system calls work on remote files
—all programs “just work” with remote files
* Typical Architectures
— Storage Area Network (SCSI over Fibre Chanel)
« very fast, very expensive, moderately scalable
—iSCSI (SCSI over ethernet)
« client driver turns reads/writes into network requests
* server daemon receives/serves requests

* moderate performance, inexpensive, highly scalable

Distributed File Systems

5/25/2016

Remote Disk Access Architecture

client server

Distributed File Systems

Rating Remote Disk Access

Advantages:

— provides excellent transparency

— decouples client hardware from storage capacity

— performance/reliability/availability per back-end
Disadvantages

— inefficient fixed partition space allocation

— can’t support file sharing by multiple client systems
— message losses can cause file system errors

* This is THE model for Virtual Machines

Distributed File Systems

Remote File Access

¢ Goal: complete transparency
— normal file system calls work on remote files
— support file sharing by multiple clients
— performance, availability, reliability, scalability
* Typical Architecture
— exploits plug-in file system architecture
— client-side file system is a local proxy
— translates file operations into network requests
— server-side daemon receives/process requests
— translates them into real file system operations

Distributed File Systems

Remote File Access Architecture

client server

Distributed File Systems 11

Rating Remote File Access

* Advantages
— very good application level transparency
— very good functional encapsulation
— able to support multi-client file sharing
— potential for good performance and robustness
¢ Disadvantages
— at least part of implementation must be in the OS
— client and server sides tend to be fairly complex

* This is THE model for client/server storage

Distributed File Systems

Cloud Model

* alogical extension of client/server model
— all services accessed via standard protocols
e opaque encapsulation of servers/resources
— resources are abstract/logical, thin-provisioned
—one, highly available, IP address for all services
— mirroring/migration happen under the covers
¢ protocols likely to be WAN-scale optimized
* advantages:
—simple, scalable, highly available, low cost
—a very compelling business model

Distributed File System:

5/25/2016

Remote Disk/File Access

Distributed File System

client

¥

server |

| server |

server |

server | server |

s s s)

Distributed File System:

(Remote vs. Distributed FS)

¢ Remote File Access (e.g. NFS, CIFS)
— client talks to (per FS) primary server
— secondary server may take over if primary fails
— advantages: simplicity
« Distributed File System (e.g. Ceph, RAMCloud)
— data is spread across numerous servers
— client may talk directly to many/all of them
— advantages: performance, scalability
— disadvantages: complexity++

ted File Syst

Security: Anonymous access

e all files available to all users
— no authentication required
— may be limited to read-only access
— examples: anonymous FTP, HTTP
¢ advantages
— simple implementation
» disadvantages
—incapable of providing information privacy
— write access often managed by other means

ted File Syst

Peer-to-Peer Security

client-side authentication/authorization
—all users are known to all systems

— all systems are trusted to enforce access control
— example: basic NFS

¢ advantages
— simple implementation
¢ disadvantages
—assumes all clients to be trusted
— doesn’t work in heterogeneous OS environment
— universal user registry is not scalable

Distributed File System:

Server Authenticated Sessions

client agent authenticates to each server

— session authorization based on those credentials
— example: CIFS

¢ advantages
— simple implementation
» disadvantages
— may not work in heterogeneous OS environment
— universal user registry is not scalable
— no automatic fail-over if server dies

Distributed File System:

5/25/2016

Domain Authentication Service example: KERBEROS

. L . * establishes secure client/server sessions
¢ independent authentication of client & server « based on digital signatures
— every agent has a secret (symmetric) key
— each knows/trusts only the authentication service — keys are known only to agent, and KERBEROS

« may issue signed “tickets” * request to KERBEROS encrypted w/client key

) N) . — KERBEROS can decrypt it, authenticating requester
— assuring each of the others’ identity and rights « KERBEROS response is two-part work ticket

— may be revocable or timed lease — part 1: encrypted with client's key

. _ . ¢ a symmetric session key

* may establish secure two-way session * part 2 (to be forward, by client, to server)

— part 2: encrypted with server's key

— integrity — nobody can generate fake messages * client ID, ticket duration,

* symmetric session key

Distributed File System:

— each authenticates with authentication service

— privacy — nobody else can snoop on conversation

Distributed File System:

KERBEROS Work Tickets Distributed Authorization

Client Authentication S
en Service erver ¢ Authentication service returns credentials
Eﬁi‘ﬁff% -+ generate session key — which server checks against Access Control List
server
expiration tim — advantage: auth service doesn’t know about ACLs
C-ticket S-ticket
session key || "sessionkey | .

server 1D client 1D
xpiration timeexpiration tim|

Authentication service returns Capabilities
— which server can verify (by signature)

encrypt w/server key

decrypt w/client key encrypt w/client key decrypt w/server key —advantage: servers do not know about clients
- o * Both approaches are commonly used
subseguent communication encrygted w/symmetric session keys
— credentials: if subsequent authorization required
— capabilities: if access can be granted all-at-once
Y
Disrbuted Fle Syt Distrbuted Fl yst
Reliability and Availability Availability: Fail-Over
¢ Reliability ... probability of not losing data * data must be mirrored to secondary server
— disk/server failures to not result in data loss e failure of primary server must be detected
* RAID (mirroring, parity, erasure coding) * client must be failed-over to secondary
* copies on multiple servers . .
— automatic recovery (of redundancy) after failure * session state must be reestablished
S — client authentication/credentials
¢ Availability ... fraction of time service available /) o
. . . L — session parameters (e.g. working directory, offset
— disk/server failures do not impact data availability) P) (e-8 € ¥ i)
« backup servers with automatic fail-over * in-progress operations must be retransmitted
— automatic recovery (back up to date) after rejoin — client must expect timeouts, retransmit requests
— client responsible for writes until server ACKs
Distributed File System: Distributed File System:

Reliability: Data Mirroring

client I ’I primary I

Front-side Mirroring

| client

Distributed File System:

5/25/2016

(Mirroring, Parity, Erasure Coding)

* Similar to trade-offs we made in RAID
— the extra copies mean more network 1/0
* Mirroring — multiple copies
— fast, but requires a great deal of space
e Parity — able to recover from one/two errors
— lower space overhead
— requires full strip write buffering
* Erasure coding — recover with N/M copies
— very space efficient
— very slow/expensive reads and writes

Distributed File System:

Availability: Failure Detect/Rebind

e client driven recovery
— client detects server failure (connection error)
— client reconnects to (successor) server
— client reestablishes session
e transparent failure recovery
— system detects server failure (health monitoring)
— successor assumes primary’s IP address
— state reestablishment

* successor recovers last primary state check-point
* stateless protocol

Availability: Stateless Protocols

* astatefull protocol (e.g. TCP)
— operations occur within a context
— each operation depends on previous operations
— successor server must remember session state

* a stateless protocol (e.g. HTTP)
— client supplies necessary context w/each request
— each operation is complete and unambiguous
— successor server has no memory of past events

* stateless protocols make fail-over easy

Availability: Idempotent Operations

¢ can be repeated many times with same effect
—read block 100 of file X
— write block 100 of file X with contents Y
— delete file X version 3
— non-idempotent operations
« read next block of current file
¢ append contents Y to end of file X
« if client gets no response, resend request
— if server gets multiple requests, no harm done
— works for server failure, lost request, lost response
* but no ACK does not mean operation did not happen

Distributed File System:

Performance: Bandwidth

client

:

a single server has limited throughput

)

client

i

client

!

@ striping files across

multiple servers

—)I primary |@ provides scalable
throughput
=

client

-

Distributed File System:

Performance: Cost of Reads

client-side caching

— eliminate waits for remote read requests
—reduces network traffic

—reduces per-client load on server

e whole file (vs. block) caching

— higher network latency justifies whole file pulls
— stored in local (cache-only) file system

— satisfy early reads before entire file arrives

Distributed File System:

5/25/2016

Performance: Cost of Writes

* write-back cache
— create the illusion of fast writes
— combine small writes into larger writes
— fewer, larger network and disk writes
— enable local read-after-write consistency
¢ whole-file updates
— wait until close(2) or fsync(2)
— reduce many successive updates to final result
— possible file will be deleted before it is written
— enable atomic updates, close-to-open consistency

Distributed File System:

Performance: Cost of Consistency

¢ caching is essential in distributed systems
— for both performance and scalability

e caching is easy in a single-writer system
— force all writes to go through the cache

e multi-writer distributed caching is hard
—Time To Live is a cute idea that doesn’t work
— constant validity checks defeat the purpose
— one-writer-at-a-time is too restrictive for most FS
— change notifications are a reasonable alternative

ted File Syst

Performance: Cost of Mirroring

e multi-host vs multi-disk mirroring
— protects against host and disk failures
— creates much additional network traffic
* mirroring by primary
— primary becomes throughput bottleneck
— replication traffic on back-side network
* mirroring by client
— data flows directly from client to storage servers
— replication traffic goes through client NIC
— parity/erasure code computation on client CPU

ted File Syst

Performance: Direct Data Path

s s s g

server |

server |

server |

server |

T 1 T T

all data flows through primary

data direct to storage nodes

server | | primary | server |

— = = =

Distributed File System:

| server |

server |

(benefits of direct data path)

architecture
— primary tells clients where which data resides
— client communicates directly w/storage servers
¢ throughput
— data is striped across multiple storage servers
* latency
— no intermediate relay through primary server
* scalability
— fewer messages on network
— much less data flowing through primary servers

Distributed File System:

Performance: Recovery Time

Availability = MTTF
MTTF + MTTR

Mean Time To Failure.

h/w, s/w, external

Mean Time To Repair

1. detect failure

. promote 2"-ary

. journal recovery

. clients re-bind

. reestablish session state

2
degraded 3
service 4

5

Distributed File System:

(availability)

e MTTR (time before service can be restored)
— primary failure detected
— secondary promoted to primary role
— recent/in-progress operations recovered
— clients learn of change and re-bind
— session state (if any) has been reestablished
* Degraded service may persist longer
— restoring lost redundancy may take a while
— heavily loading servers, disks, and network

Distributed File System:

Scalability — Traffic

¢ network messages are expensive
— NIC and network capacity to carry them
— server CPU cycles to process them
— client delays awaiting responses
¢ minimize messages/client/second
— cache results to eliminate requests entirely
— enable complex operations w/single request
— buffer up large writes in write-back cache
— pre-fetch large reads into local cache

Scalability - Bottlenecks

¢ avoid a single control points
— partition responsibility over many nodes
¢ separated data- and control-planes

— control nodes choreograph the flow of data
* where data should be stored or obtained from
 ensuring coherency and correct serialization
— data flows directly from producer to consumer
« data paths are optimized for throughput/efficiency
¢ dynamic re-partitioning of responsibilities
—in response to failures and/or load changes

Control and Data Planes

:
control plane

,..___.___-__.

storage
server

storage
server

data plane

storage
server

Distributed File System:

Scalability: Cluster Protocols

* Consensus protocols do not scale well

—they only work for small numbers of nodes

¢ Minimize number of consensus operations

— elect a single master who makes decisions
— partitioned and delegated responsibility

 Avoid large-consensus/transaction groups

— partition work among numerous small groups

* Avoid high communications fan-in/fan-out

— hierarchical information gathering/distribution

Distributed File System:

5/25/2016

5/25/2016

Small Transaction Clusters Hierarchical Communication Structure

oe

OX @) -
o0
L JOX N N XN

Distributed File Systems a3 Distributed File Systems

Assignments

* for the next lecture:
— Symmetric Multi-Processors
— Clustering Concepts
— Cloud Concepts
— Eventual Consistency

Distributed File Systems

