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Goals of Distributed Computing

• better services

– scalability

• apps too big to run on a single computer

• grow system capacity to meet growing demand

– improved  reliability and availability

– improved ease of use, reduced CapEx/OpEx

• new services

– applications that span multiple system boundaries

– global resource domains, services (vs. systems)

– complete location transparency
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Major Classes of Distributed Systems

• Symmetric Multi-Processors (SMP)

– multiple CPUs, sharing memory and I/O devices

• Single-System Image (SSI) & Cluster Computing

– a group of computers, acting like a single computer

• loosely coupled, horizontally scalable systems

– coordinated, but relatively independent systems

• application level distributed computing

– peer-to-peer, application level protocols

– distributed middle-ware platforms
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Evaluating Distributed Systems

• Performance

– overhead, scalability, availability

• Functionality

– adequacy and abstraction for target applications

• Transparency

– compatibility with previous platforms

– scope and degree of location independence

• Degree of Coupling

– on how many things do distinct systems agree

– how is that agreement achieved
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SMP systems and goals

• Characterization:

– multiple CPUs sharing memory and devices

• Motivations:

– price performance (lower price per MIP)

– scalability (economical way to build huge systems)

– perfect application transparency

• Example:

– single socket, multi-core Intel CPUs
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SMP Price/Performance

• a computer is much more than a CPU

– mother-board, disks, controllers, power supplies, case

– CPU might cost 10-15% of the cost of the computer

• adding CPUs to a computer is very cost-effective

– a second CPU yields cost of 1.1x, performance 1.9x

– a third CPU yields cost of 1.2x, performance 2.7x

• same argument also applies at the chip level

– making a machine twice as fast is ever more difficult

– adding more cores to the chip gets ever easier

• massive multi-processors are obvious direction
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SMP Operating System Design

• one processor boots with power on

– it controls the starting of all other processors

• same OS code runs in all processors

– one physical copy in memory, shared by all CPUs

• Each CPU has its own registers, cache, MMU

– they must cooperatively share memory and devices

• ALL kernel operations must be Multi-Thread-Safe

– protected by appropriate locks/semaphores

– very fine grained locking to avoid contention
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SMP Parallelism

• scheduling and load sharing

– each CPU can be running a different process

– just take the next ready process off the run-queue

– processes run in parallel

– most processes don't interact (other than in kernel)

• serialization

– mutual exclusion achieved by locks in shared memory

– locks can be maintained with atomic instructions

– spin locks acceptable for VERY short critical sections

– if a process blocks, that CPU finds next ready process
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The Challenge of SMP Performance

• scalability depends on memory contention

– memory bandwidth is limited, can't handle all CPUs

– most references satisfied from per-core cache

– if too many requests go to memory, CPUs slow down

• scalability depends on lock contention

– waiting for spin-locks wastes time

– context switches waiting for kernel locks waste time

• contention wastes cycles, reduces throughput

– 2 CPUs might deliver only 1.9x performance

– 3 CPUs might deliver only 2.7x performance 
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Managing Memory Contention

• Fast n-way memory is very expensive

– without it, memory contention taxes performance

– cost/complexity limits how many CPUs we can add

• Non-Uniform Memory Architectures (NUMA)

– each CPU has its own memory

• each CPU has fast path to its own memory

– connected by a Scalable Coherent Interconnect

• a very fast, very local network between memories

• accessing memory over the SCI may be 3-20x slower

– these interconnects can be highly scalable
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Non-Uniform Memory Architecture
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OS design for NUMA systems

• it is all about local memory hit rates

– every outside reference costs us 3-20x performance

– we need 75-95% hit rate just to break even

• How can the OS ensure high hit-rates?

– replicate shared code pages in each CPU's memory

– assign processes to CPUs, allocate all memory there

– migrate processes to achieve load balancing

– spread kernel resources among all the CPUs

– attempt to preferentially allocate local resources

– migrate resource ownership to CPU that is using it

Advanced Architectures 14

Single System Image (SSI) Clusters

• Characterization:

– a group of seemingly independent computers 
collaborating to provide SMP-like transparency

• Motivation:

– higher reliability, availability than SMP/NUMA

– more scalable than SMP/NUMA

– excellent application transparency

• Examples:

– Locus, Sun Clusters, MicroSoft Wolf-Pack, OpenSSI

– enterprise database servers
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The Dream
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Programs don’t run on hardware, they run atop operating systems.  

All the resources that processes see are already virtualized.  

Instead of merely virtualizing all the resources in a single system, 

virtualize all the resources in a cluster of systems.  Applications 

that run in such a cluster are (automatically and transparently) 

distributed.

Modern Clustered Architecture
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Active systems service independent requests in parallel.  They cooperate to maintain

shared global locks, and are prepared to take over partner’s work in case of failure.

State replication to a back-up site is handled by external mechanisms.
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Structure of a Modern OS
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OS design for SSI clustering

• all nodes agree on the state of all OS resources

– file systems, processes, devices, locks IPC ports

– any process can operate on any object, transparently

• they achieve this by exchanging messages

– advising one-another of all changes to resources

• each OS's internal state mirrors the global state

– request execution of node-specific requests

• node-specific requests are forwarded to owning node

• implementation is large, complex, difficult

• the exchange of messages can be very expensive
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SSI Clustered Performance

• clever implementation can minimize overhead

– 10-20% overall is not uncommon, can be much worse

• complete transparency

– even very complex applications "just work"

– they do not have to be made "network aware"

• good robustness

– when one node fails, others notice and take-over

– often, applications won't even notice the failure

• nice for application developers and customers

– but they are complex, and not particularly scalable
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Lessons Learned

• consensus protocols are expensive

– they converge slowly and scale poorly

• systems have a great many resources

– resource change notifications are expensive

• location transparency encouraged non-locality

– remote resource use is much more expensive

• a greatly complicated operating system

– distributed objects are more complex to manage

– complex optimizations to reduce the added overheads

– new modes of failure w/complex recovery procedures
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Loosely Coupled Systems

• Characterization:

– a parallel group of independent computers 

– serving similar but independent requests

– minimal coordination and cooperation required

• Motivation:

– scalability and price performance

– availability – if protocol permits stateless servers

– ease of management, reconfigurable capacity

• Examples:

– web servers, Google search farm, Hadoop
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Horizontal Scalability w/HA
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(elements of architecture)

• farm of independent servers

– servers run same software, serve different requests

– may share a common back-end database

• front-ending switch

– distributes incoming requests among available servers

– can do both load balancing and fail-over

• service protocol

– stateless servers and idempotent operations

– successive requests may be sent to different servers
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Horizontally scaled performance

• individual servers are very inexpensive

– blade servers may be only $100-$200 each

• scalability is excellent

– 100 servers deliver approximately 100x performance

• service availability is excellent

– front-end automatically bypasses failed servers

– stateless servers and client retries fail-over easily

• the challenge is managing thousands of servers

– automated installation, global configuration services

– self monitoring, self-healing systems
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Limited Transparency Clusters

• Single System Image Clusters had problems

– all nodes had to agree on state of all objects

– lots of messages, lots of complexity, poor scalability

• What if they only had to agree on a few objects

– like cluster membership and global locks

– fewer objects, fewer operations, much less traffic

– objects could be designed for distributed use

• leases, commitment transactions, dynamic server binding

• Simpler, better performance, better scalability

– combines best features of SSI and Horizontally scaled
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Limited LocationTransparency

• what things look the same as local?

– remote file systems

– remote terminal sessions, X sessions

– remote procedure calls

• what things don't look the same as local?

– primitive synchronization (e.g. mutexes)

– basic Inter-Process Communication (e.g. signals)

– process create, destroy, status, authorization

– Accessing devices (e.g. tape drives)
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Loosely Coupled Scalability
(Beowulf High Performance Computing Cluster)
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There is no effort at transparency here.  Applications are specifically written for a parallel execution

platform and use a Message Passing Interface to mediate exchanges between cooperating computations.
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Distributed Systems – Summary

• different degrees of transparency

– do applications see a network or single system image

• different degrees of coupling

– making multiple computers cooperate is difficult

– doing it without shared memory is even worse

• performance vs. independence vs. robustness

– cooperating redundant nodes offer higher availability

– communication and coordination are expensive

– mutual-dependency creates more modes of failure
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Clouds: Applied Horizontal Scalability

• Many servers, continuous change

– dramatic fluctuations in load volume and types

– continuous node additions for increased load

– nodes and devices are failing continuously

– continuous and progressive s/w updates

• Most services delivered via switched HTTP

– clients/server communication is over WAN links

– large (whole file) transfers to optimize throughput

– switches route requests to appropriate servers

– heavy reliance on edge caching
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Geographic Disaster Recovery

• Cloud reliability/availability are key

– one data center serves many (103-107) clients

• Local redundancy can only provide 4-5 nines

– fires, power and communications disruptions

– regional scale (e.g. flood, earthquake) disasters

• Data Centers in distant Availability Zones

– may be running active/active or active/stand-by

– key data is replicated to multiple data centers

– traffic can be redirected if a primary site fails
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WAN-Scale Replication

• WAN-scale mirroring is slow and expensive

– much slower than local RAID or network mirroring

• Synchronous Mirroring

– each write must be ACKed by remote servers

• Asynchronous Mirroring

– write locally, queue for remote replication

• Mirrored Snapshots

– writes are local, snapshots are mirrored

• Fundamental tradeoff: reliability vs. latency
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WAN-Scale Consistency

• CAP theorem - it is not possible to assure:

– Consistency (all readers see the same result)

– Availability (bounded response time)

– Partition Tolerance (survive node failures)

• ACID databases sacrifice partition tolerance

• BASE semantics make a different trade-off

– Basic Availability (most services most of the time)

– Soft state (there is no global consistent state)

– Eventual consistency (changes propagate, slowly)
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Dealing with Eventual Consistency

• distributed system has no single, global state

– state updates are not globally serialized events

– different nodes may have different opinions

• expose the inconsistencies to the applications

– ask the cloud, receive multiple answers

– let each application reconcile the inconsistencies

• BASE semantics are neither simple nor pretty

– they embrace parallelism and independence

– they reflect the complexity of distributed systems
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Distributed Computing Reformation

• systems must be more loosely coupled
– tight coupling is complex, slow, and error-prone

– move towards coordinated independent systems

• move away from old single system APIs
– local objects and services don’t generalize

– services are obtained through messages (or RPCs)

– in-memory objects, local calls are a special case

• embrace the brave new (distributed) world
– topology and partnerships are ever-changing

– failure-aware services (commits, leases, rebinds)

– accept distributed (e.g. BASE) semantics
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Changing Architectural Paradigms

• a “System” is a collection of services

– interacting via stable and standardized protocols

– implemented by app software deployed on nodes

• Operating Systems

– manage the hardware on which the apps run

– implement the services/ABIs the apps need

• The operating system is a platform

– upon which higher level software can be built

– goodness is measured by how well it does that job
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What Operating Systems Do

• Originally (and at the start of this course)
– abstract heterogeneous hardware into useful services
– manage system resources for user-mode processes
– ensure resource integrity and trusted resource sharing
– provide a powerful platform for developers

• None of this has changed, but …
– notion of a self-contained system becoming obsolete
– hardware and OS heterogeneity is a given
– most important interfaces are higher level protocols

• Operating Systems continue to evolve as
– new applications demand new services
– new hardware must be integrated and exploited
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Final Exam (Mon 6/6)

• Location: Humanities A51

• Part 1: 11:30-13:00

– 10 questions, similar to mid-term

– covering weeks 6-10

• Part 2: 13:00-14:30

– 6 hard questions, choose any 3 to answer

• real problems: analyze, explain, propose approach

• questions not answered in reading or lecture

– covering the entire course
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Supplementary Slides
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Scalability: Cluster Protocols

• Consensus protocols do not scale well

– they only work for small numbers of nodes

• Minimize number of consensus operations

– elect a single master who makes decisions

– partitioned and delegated responsibility

• Avoid large-consensus/transaction groups

– partition work among numerous small groups

• Avoid high communications fan-in/fan-out

– hierarchical information gathering/distribution
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Small Transaction Clusters
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Hierarchical Communication Structure
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Paradigm – Objects

• dominant application development paradigm

• good interface/implementation separation
– all we can know about object is through its methods

– implementation and private data opquely 
encapsulated

• powerful programming model
– polymorphism ... methods adapt themselves to clients

– inheritance ... build complex objects from simple ones

– instantiation ... trivial to create distinct object 
instances

• objects are not intrinsically location sensitive
– you don’t reference them, you call them
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Simple Local Objects
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Objects – Local vs. Distributed

• local objects

– supported by compilers, inside an address space

– compiler generates code to instantiate new 
objects

– compiler generates calls for method invocations

• this doesn't work in a distributed environment

– all objects are no longer in a single address space

– different machines use different binary 
representations

– method invocation is done via message exchange
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Proxies for Distributed Objects
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(invoking remote object methods)

• program compiles with proxy object 

implementation

– defines the same interface (methods and properties)

– all method invocations go through the local proxy

• local implementation is proxy for remote server

– translate parameters into a standard representation

– send request message to remote object server

– get response and translate it to local representation

– return result to caller

• client cannot tell that object is not local 

Advanced Architectures 50



5/29/2016

9

Dynamic Object Binding

• local objects are compiled into an application

– the compiler “knows” about all available objects

– there is no need to "discover" their implementations

• distributed objects are provided by servers

– the available servers change from minute to minute

– new object classes can be created in real time

• we need a run-time object "match-maker"

– tracks object servers and classes as they come and go

– matches clients' object requests with available servers

(like DLLs on steroids)

Advanced Architectures 51

Object Request Brokers (ORBs)

• a local portal to the domain of available objects

• a registry for available object implementations
– object implementers register with the broker

• meeting place for object clients and 
implementers
– clients go to broker to obtain services of new objects

• a local interface to remote object components
– clients reference all remote objects through local ORB

• a router between local and remote requests
– ORBs pass messages between clients and servers

• a repository for object interface definitions
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ORBs and Distributed Objects
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Distributed Applications

• Operating Systems started on single computer

– this biased the definition of system services

• Networking was added on afterwards

– some system services are still networking-naive

– new APIs were required to exploit networking

– many applications remained networking-impaired

• New programming paradigms embrace network

– focus on services and interfaces, not implementations

– goal is to make distributed applications easier to write
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SMP Device I/O

• all processors can access all memory/devices

– any processor can initiate an I/O operation

• initiating processor need not be one that requested the I/O

– any processor can service an I/O interrupt

• servicing processor need not be one that initiated I/O

• interrupt controller picks which CPU to interrupt

– dynamic priorities, always interrupt lowest priority 

CPU

– fixed binding of some or all interrupts to one CPU

– automatic round-robin delivery
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Global Resource View
(heterogeneous systems &resources)
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Single Point of Management
(for heterogeneous systems)
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Loosely Coupled Availability
(Kimberlite HA Linux platforms)
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There is global resource view or synchronization of resource state.  The systems are completely

Independently of one-another, but agree on the division of tasks, and are prepared to take over 

the partner’s work load if he fails.
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Internet Inter-ORB Protocol

• different ORBs may have very different goals

– hard real time, small footprint, very fast local IPC

– huge numbers of clients, high-availability

• Common Object Request Broker Architecture

– define standard model for objects and services

• IIOP

– the common inter-ORB language

– enable different ORBs to exchange 
objects/services

– machine, language, operating system independent
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