
5/29/2016

1

Operating Systems Principles

Advanced Architectures

Mark Kampe

(markk@cs.ucla.edu)

Advanced Architectures

15A. Distributed Computing

15B. Multi-Processor (and NUMA) Systems

15C. Tightly Coupled (SSI) Clusters

15D. Loosely Coupled (Horizontally Scalable)

15E. Cloud Models

3F. Virtual Machines

Advanced Architectures 2

Goals of Distributed Computing

• better services

– scalability

• apps too big to run on a single computer

• grow system capacity to meet growing demand

– improved reliability and availability

– improved ease of use, reduced CapEx/OpEx

• new services

– applications that span multiple system boundaries

– global resource domains, services (vs. systems)

– complete location transparency
Advanced Architectures 3

Major Classes of Distributed Systems

• Symmetric Multi-Processors (SMP)

– multiple CPUs, sharing memory and I/O devices

• Single-System Image (SSI) & Cluster Computing

– a group of computers, acting like a single computer

• loosely coupled, horizontally scalable systems

– coordinated, but relatively independent systems

• application level distributed computing

– peer-to-peer, application level protocols

– distributed middle-ware platforms

Advanced Architectures 4

Evaluating Distributed Systems

• Performance

– overhead, scalability, availability

• Functionality

– adequacy and abstraction for target applications

• Transparency

– compatibility with previous platforms

– scope and degree of location independence

• Degree of Coupling

– on how many things do distinct systems agree

– how is that agreement achieved

Advanced Architectures 5

SMP systems and goals

• Characterization:

– multiple CPUs sharing memory and devices

• Motivations:

– price performance (lower price per MIP)

– scalability (economical way to build huge systems)

– perfect application transparency

• Example:

– single socket, multi-core Intel CPUs

Advanced Architectures 6

5/29/2016

2

shared memory & device busses

memory

device

controller

device

controller

device

controller

CPU 1

cache

CPU 2

cache

CPU 3

cache

CPU 4

cache

interrupt

controller

Symmetric Multi-Processors

Advanced Architectures 7

SMP Price/Performance

• a computer is much more than a CPU

– mother-board, disks, controllers, power supplies, case

– CPU might cost 10-15% of the cost of the computer

• adding CPUs to a computer is very cost-effective

– a second CPU yields cost of 1.1x, performance 1.9x

– a third CPU yields cost of 1.2x, performance 2.7x

• same argument also applies at the chip level

– making a machine twice as fast is ever more difficult

– adding more cores to the chip gets ever easier

• massive multi-processors are obvious direction

Advanced Architectures 8

SMP Operating System Design

• one processor boots with power on

– it controls the starting of all other processors

• same OS code runs in all processors

– one physical copy in memory, shared by all CPUs

• Each CPU has its own registers, cache, MMU

– they must cooperatively share memory and devices

• ALL kernel operations must be Multi-Thread-Safe

– protected by appropriate locks/semaphores

– very fine grained locking to avoid contention

Advanced Architectures 9

SMP Parallelism

• scheduling and load sharing

– each CPU can be running a different process

– just take the next ready process off the run-queue

– processes run in parallel

– most processes don't interact (other than in kernel)

• serialization

– mutual exclusion achieved by locks in shared memory

– locks can be maintained with atomic instructions

– spin locks acceptable for VERY short critical sections

– if a process blocks, that CPU finds next ready process

Advanced Architectures 10

The Challenge of SMP Performance

• scalability depends on memory contention

– memory bandwidth is limited, can't handle all CPUs

– most references satisfied from per-core cache

– if too many requests go to memory, CPUs slow down

• scalability depends on lock contention

– waiting for spin-locks wastes time

– context switches waiting for kernel locks waste time

• contention wastes cycles, reduces throughput

– 2 CPUs might deliver only 1.9x performance

– 3 CPUs might deliver only 2.7x performance

Advanced Architectures 11

Managing Memory Contention

• Fast n-way memory is very expensive

– without it, memory contention taxes performance

– cost/complexity limits how many CPUs we can add

• Non-Uniform Memory Architectures (NUMA)

– each CPU has its own memory

• each CPU has fast path to its own memory

– connected by a Scalable Coherent Interconnect

• a very fast, very local network between memories

• accessing memory over the SCI may be 3-20x slower

– these interconnects can be highly scalable

Advanced Architectures 12

5/29/2016

3

Non-Uniform Memory Architecture

Symmetric Multi-Processors

PCI bus

device

controller

device

controller

CPU n+1

cache
local

memory

PCI bridge

CC NUMA

interface

PCI bus

device

controller

device

controller

CPU n

cache
local

memory

PCI bridge

CC NUMA

interface

Scalable Coherent Interconnect

Advanced Architectures 13

OS design for NUMA systems

• it is all about local memory hit rates

– every outside reference costs us 3-20x performance

– we need 75-95% hit rate just to break even

• How can the OS ensure high hit-rates?

– replicate shared code pages in each CPU's memory

– assign processes to CPUs, allocate all memory there

– migrate processes to achieve load balancing

– spread kernel resources among all the CPUs

– attempt to preferentially allocate local resources

– migrate resource ownership to CPU that is using it

Advanced Architectures 14

Single System Image (SSI) Clusters

• Characterization:

– a group of seemingly independent computers
collaborating to provide SMP-like transparency

• Motivation:

– higher reliability, availability than SMP/NUMA

– more scalable than SMP/NUMA

– excellent application transparency

• Examples:

– Locus, Sun Clusters, MicroSoft Wolf-Pack, OpenSSI

– enterprise database servers

Advanced Architectures 15

The Dream

virtual HA computer w/4x MIPS & memory

one large HA virtual file system

disk 1A

disk 1B

disk 2A

disk 2B

disk 3A

disk 3B

disk 4A

disk 4B

one global pool

of devices

physical systems

CD1

LP2

CD3

LP3

SCN4

CD1

CD3

LP2

LP3

SCN4

secondary replicas

primary copies

proc 101

proc 103

proc 106

lock 1A

proc 202

proc 204

proc 205

proc 301

proc 305

proc 306

lock 3B

proc 403

proc 405

proc 407

processes

101, 103, 106, +

202, 204, 205,
+ 301, 305, 306,

+ 403, 405, 407

locks

1A, 3B

Programs don’t run on hardware, they run atop operating systems.

All the resources that processes see are already virtualized.

Instead of merely virtualizing all the resources in a single system,

virtualize all the resources in a cluster of systems. Applications

that run in such a cluster are (automatically and transparently)

distributed.

Modern Clustered Architecture

SMP

system #1

SMP

system #2

dual ported

RAID

SMP

system #3

SMP

system #4

dual ported

RAIDprimary site
optional

back-up site
synchronous FC replication

switch switch
geographic fail over

ethernet request replication

Active systems service independent requests in parallel. They cooperate to maintain

shared global locks, and are prepared to take over partner’s work in case of failure.

State replication to a back-up site is handled by external mechanisms.

Advanced Architectures 17

Structure of a Modern OS

interrupts traps
processor

mode

memory

mapping

atomic

updates

processor

exceptions

configuration

analysis

timers
cache

mgmt
interrupts

I/O

operations
traps

processor

mode

memory

mapping

atomic

updates

context

switching

DMA

bus drivers

timers
cache

mgmt

network

class driver

serial

class driver

display

class driver

storage

class driver

stream

services

block I/O

services

processor

initialization

hot-plug

services

enclosure

management
processor

abstraction

I/O

abstraction

memory

allocation

memory

segments

thread

dispatching

processes

(resource containers)

process/thread

scheduling

thread

synchronization

memory

scheduling
pagingswapping

fault

handling

I/O resource

allocation

DMA

services

virtual

execution

engine

transport

protocols
file systems

synchronization

model

exception

model

IPC

model

file

model

file I/O

model

process/thread

model

file namespace

model

system call interfaces user visible OS

model

asynchronous

eventsdevice drivers device drivers

volume

management

run-time

loader

configuration

services

kernel

debugger

logging

& tracing

higher level

services

authorization

model

boot

strap

fault

management

quality

of service
…

Advanced Architectures 18

5/29/2016

4

OS design for SSI clustering

• all nodes agree on the state of all OS resources

– file systems, processes, devices, locks IPC ports

– any process can operate on any object, transparently

• they achieve this by exchanging messages

– advising one-another of all changes to resources

• each OS's internal state mirrors the global state

– request execution of node-specific requests

• node-specific requests are forwarded to owning node

• implementation is large, complex, difficult

• the exchange of messages can be very expensive

Advanced Architectures 19

SSI Clustered Performance

• clever implementation can minimize overhead

– 10-20% overall is not uncommon, can be much worse

• complete transparency

– even very complex applications "just work"

– they do not have to be made "network aware"

• good robustness

– when one node fails, others notice and take-over

– often, applications won't even notice the failure

• nice for application developers and customers

– but they are complex, and not particularly scalable

Advanced Architectures 20

Lessons Learned

• consensus protocols are expensive

– they converge slowly and scale poorly

• systems have a great many resources

– resource change notifications are expensive

• location transparency encouraged non-locality

– remote resource use is much more expensive

• a greatly complicated operating system

– distributed objects are more complex to manage

– complex optimizations to reduce the added overheads

– new modes of failure w/complex recovery procedures

Advanced Architectures 21

Loosely Coupled Systems

• Characterization:

– a parallel group of independent computers

– serving similar but independent requests

– minimal coordination and cooperation required

• Motivation:

– scalability and price performance

– availability – if protocol permits stateless servers

– ease of management, reconfigurable capacity

• Examples:

– web servers, Google search farm, Hadoop

Advanced Architectures 22

Horizontal Scalability w/HA

load balancing switch

w/fail-over

web

server

web

server

web

server

web

server

web

server

app

server

app

server

app

server

app

server

app

server

content

distribution

server

HA

database

server

WAN to clients

…… D1

D2

Advanced Architectures 23

(elements of architecture)

• farm of independent servers

– servers run same software, serve different requests

– may share a common back-end database

• front-ending switch

– distributes incoming requests among available servers

– can do both load balancing and fail-over

• service protocol

– stateless servers and idempotent operations

– successive requests may be sent to different servers

Advanced Architectures 24

5/29/2016

5

Horizontally scaled performance

• individual servers are very inexpensive

– blade servers may be only $100-$200 each

• scalability is excellent

– 100 servers deliver approximately 100x performance

• service availability is excellent

– front-end automatically bypasses failed servers

– stateless servers and client retries fail-over easily

• the challenge is managing thousands of servers

– automated installation, global configuration services

– self monitoring, self-healing systems

Advanced Architectures 25

Limited Transparency Clusters

• Single System Image Clusters had problems

– all nodes had to agree on state of all objects

– lots of messages, lots of complexity, poor scalability

• What if they only had to agree on a few objects

– like cluster membership and global locks

– fewer objects, fewer operations, much less traffic

– objects could be designed for distributed use

• leases, commitment transactions, dynamic server binding

• Simpler, better performance, better scalability

– combines best features of SSI and Horizontally scaled

Advanced Architectures 26

Limited LocationTransparency

• what things look the same as local?

– remote file systems

– remote terminal sessions, X sessions

– remote procedure calls

• what things don't look the same as local?

– primitive synchronization (e.g. mutexes)

– basic Inter-Process Communication (e.g. signals)

– process create, destroy, status, authorization

– Accessing devices (e.g. tape drives)

Advanced Architectures 27

Loosely Coupled Scalability
(Beowulf High Performance Computing Cluster)

task

coordination NFS

server

MPI

Beowulf Head Node

MPI

Beowulf Slave Node

sub-task

MPI

Beowulf Slave Node

sub-task

MPI

Beowulf Slave Node

sub-task

MPI

Beowulf Slave Node

sub-task …

Message Passing Interface

exchanging information between sub-tasks

NFS

programs and data

There is no effort at transparency here. Applications are specifically written for a parallel execution

platform and use a Message Passing Interface to mediate exchanges between cooperating computations.

Advanced Architectures 28

Distributed Systems – Summary

• different degrees of transparency

– do applications see a network or single system image

• different degrees of coupling

– making multiple computers cooperate is difficult

– doing it without shared memory is even worse

• performance vs. independence vs. robustness

– cooperating redundant nodes offer higher availability

– communication and coordination are expensive

– mutual-dependency creates more modes of failure

Advanced Architectures 29

Clouds: Applied Horizontal Scalability

• Many servers, continuous change

– dramatic fluctuations in load volume and types

– continuous node additions for increased load

– nodes and devices are failing continuously

– continuous and progressive s/w updates

• Most services delivered via switched HTTP

– clients/server communication is over WAN links

– large (whole file) transfers to optimize throughput

– switches route requests to appropriate servers

– heavy reliance on edge caching

Advanced Architectures 30

5/29/2016

6

Geographic Disaster Recovery

• Cloud reliability/availability are key

– one data center serves many (103-107) clients

• Local redundancy can only provide 4-5 nines

– fires, power and communications disruptions

– regional scale (e.g. flood, earthquake) disasters

• Data Centers in distant Availability Zones

– may be running active/active or active/stand-by

– key data is replicated to multiple data centers

– traffic can be redirected if a primary site fails

Advanced Architectures 31

WAN-Scale Replication

• WAN-scale mirroring is slow and expensive

– much slower than local RAID or network mirroring

• Synchronous Mirroring

– each write must be ACKed by remote servers

• Asynchronous Mirroring

– write locally, queue for remote replication

• Mirrored Snapshots

– writes are local, snapshots are mirrored

• Fundamental tradeoff: reliability vs. latency
Advanced Architectures 32

WAN-Scale Consistency

• CAP theorem - it is not possible to assure:

– Consistency (all readers see the same result)

– Availability (bounded response time)

– Partition Tolerance (survive node failures)

• ACID databases sacrifice partition tolerance

• BASE semantics make a different trade-off

– Basic Availability (most services most of the time)

– Soft state (there is no global consistent state)

– Eventual consistency (changes propagate, slowly)

Advanced Architectures 33

Dealing with Eventual Consistency

• distributed system has no single, global state

– state updates are not globally serialized events

– different nodes may have different opinions

• expose the inconsistencies to the applications

– ask the cloud, receive multiple answers

– let each application reconcile the inconsistencies

• BASE semantics are neither simple nor pretty

– they embrace parallelism and independence

– they reflect the complexity of distributed systems

Advanced Architectures 34

Distributed Computing Reformation

• systems must be more loosely coupled
– tight coupling is complex, slow, and error-prone

– move towards coordinated independent systems

• move away from old single system APIs
– local objects and services don’t generalize

– services are obtained through messages (or RPCs)

– in-memory objects, local calls are a special case

• embrace the brave new (distributed) world
– topology and partnerships are ever-changing

– failure-aware services (commits, leases, rebinds)

– accept distributed (e.g. BASE) semantics
Advanced Architectures 35

Changing Architectural Paradigms

• a “System” is a collection of services

– interacting via stable and standardized protocols

– implemented by app software deployed on nodes

• Operating Systems

– manage the hardware on which the apps run

– implement the services/ABIs the apps need

• The operating system is a platform

– upon which higher level software can be built

– goodness is measured by how well it does that job

Advanced Architectures 36

5/29/2016

7

What Operating Systems Do

• Originally (and at the start of this course)
– abstract heterogeneous hardware into useful services
– manage system resources for user-mode processes
– ensure resource integrity and trusted resource sharing
– provide a powerful platform for developers

• None of this has changed, but …
– notion of a self-contained system becoming obsolete
– hardware and OS heterogeneity is a given
– most important interfaces are higher level protocols

• Operating Systems continue to evolve as
– new applications demand new services
– new hardware must be integrated and exploited

Advanced Architectures 37

Final Exam (Mon 6/6)

• Location: Humanities A51

• Part 1: 11:30-13:00

– 10 questions, similar to mid-term

– covering weeks 6-10

• Part 2: 13:00-14:30

– 6 hard questions, choose any 3 to answer

• real problems: analyze, explain, propose approach

• questions not answered in reading or lecture

– covering the entire course

Advanced Architectures 40

Supplementary Slides

Advanced Architectures 41

Control and Data Planes

client
metadata

server

storage

server

storage

server

storage

server

control plane

data plane

Advanced Architectures 42

Scalability: Cluster Protocols

• Consensus protocols do not scale well

– they only work for small numbers of nodes

• Minimize number of consensus operations

– elect a single master who makes decisions

– partitioned and delegated responsibility

• Avoid large-consensus/transaction groups

– partition work among numerous small groups

• Avoid high communications fan-in/fan-out

– hierarchical information gathering/distribution

Advanced Architectures 43

Small Transaction Clusters

Advanced Architectures 44

5/29/2016

8

Hierarchical Communication Structure

Advanced Architectures 45

Paradigm – Objects

• dominant application development paradigm

• good interface/implementation separation
– all we can know about object is through its methods

– implementation and private data opquely
encapsulated

• powerful programming model
– polymorphism ... methods adapt themselves to clients

– inheritance ... build complex objects from simple ones

– instantiation ... trivial to create distinct object
instances

• objects are not intrinsically location sensitive
– you don’t reference them, you call them

Advanced Architectures 46

Simple Local Objects

object description

object
instance

data

method 1

method 2

method 3

Advanced Architectures 47

Objects – Local vs. Distributed

• local objects

– supported by compilers, inside an address space

– compiler generates code to instantiate new
objects

– compiler generates calls for method invocations

• this doesn't work in a distributed environment

– all objects are no longer in a single address space

– different machines use different binary
representations

– method invocation is done via message exchange

Advanced Architectures 48

Proxies for Distributed Objects

proxy object description

no

instance

data

real object description

real

instance

data

rpc method #1

rpc method #2

rpc method #3

real method #1

real method #2

real method #3

RPC server

RPC client

RPC

skeleton

Advanced Architectures 49

(invoking remote object methods)

• program compiles with proxy object

implementation

– defines the same interface (methods and properties)

– all method invocations go through the local proxy

• local implementation is proxy for remote server

– translate parameters into a standard representation

– send request message to remote object server

– get response and translate it to local representation

– return result to caller

• client cannot tell that object is not local

Advanced Architectures 50

5/29/2016

9

Dynamic Object Binding

• local objects are compiled into an application

– the compiler “knows” about all available objects

– there is no need to "discover" their implementations

• distributed objects are provided by servers

– the available servers change from minute to minute

– new object classes can be created in real time

• we need a run-time object "match-maker"

– tracks object servers and classes as they come and go

– matches clients' object requests with available servers

(like DLLs on steroids)

Advanced Architectures 51

Object Request Brokers (ORBs)

• a local portal to the domain of available objects

• a registry for available object implementations
– object implementers register with the broker

• meeting place for object clients and
implementers
– clients go to broker to obtain services of new objects

• a local interface to remote object components
– clients reference all remote objects through local ORB

• a router between local and remote requests
– ORBs pass messages between clients and servers

• a repository for object interface definitions

Advanced Architectures 52

ORBs and Distributed Objects

ORB

stub skeleton

client
server

(impl)

ORB

stub skeleton

client
server

(impl)

IIOP

node #1 node #2

E2

node #1

E3

Advanced Architectures 53

Distributed Applications

• Operating Systems started on single computer

– this biased the definition of system services

• Networking was added on afterwards

– some system services are still networking-naive

– new APIs were required to exploit networking

– many applications remained networking-impaired

• New programming paradigms embrace network

– focus on services and interfaces, not implementations

– goal is to make distributed applications easier to write

Advanced Architectures 54

SMP Device I/O

• all processors can access all memory/devices

– any processor can initiate an I/O operation

• initiating processor need not be one that requested the I/O

– any processor can service an I/O interrupt

• servicing processor need not be one that initiated I/O

• interrupt controller picks which CPU to interrupt

– dynamic priorities, always interrupt lowest priority

CPU

– fixed binding of some or all interrupts to one CPU

– automatic round-robin delivery

Advanced Architectures 55

Global Resource View
(heterogeneous systems &resources)

NFS

server

NFS

server

NFS

server

CIFS

server

CIFS

server

CIFS

server

print

server

Windows

client

Solaris

client

Linux

client

Apple

client

AIX

client

ORB
automount

map

DFS root

server

LDAP

server

DNS

server

other

services

other

services

Advanced Architectures 56

5/29/2016

10

Single Point of Management
(for heterogeneous systems)

client

client

client

server

server

server

network

configuration

service

configuration

user

authentication

remote

status gathering

remote

control

DHCP

LDAP

kerberos

SNMP

CIM/Wbem

management server

HTTP/HTML

Advanced Architectures 57

Loosely Coupled Availability
(Kimberlite HA Linux platforms)

primary site secondary site

service

configuration

service

manager

service instance

task

service instance

task

service instance

task

…

service

configuration

service

manager

service instance

task

service instance

task

service instance

task

…

heartbeats

manual replication

There is global resource view or synchronization of resource state. The systems are completely

Independently of one-another, but agree on the division of tasks, and are prepared to take over

the partner’s work load if he fails.

Advanced Architectures 58

Internet Inter-ORB Protocol

• different ORBs may have very different goals

– hard real time, small footprint, very fast local IPC

– huge numbers of clients, high-availability

• Common Object Request Broker Architecture

– define standard model for objects and services

• IIOP

– the common inter-ORB language

– enable different ORBs to exchange
objects/services

– machine, language, operating system independent

Advanced Architectures 59

