
At-rest data encryption

Sensitive data can be stored persistently on a disk drive, flash drive, or other medium.
One technique to preserve the privacy of such data is to store it in encrypted form, rather
than in plaintext. Of course, encrypted data cannot be used in most computations, so if
the machine where it is stored needs to perform a general computation on the data, it
must first be decrypted. If the purpose is merely to preserve a safe copy of the data,
rather than to use it, decryption may not be necessary, but that is not the common case.

The data can be encrypted in different ways, using different cryptographic algorithms
(DES, AES, Blowfish), at different granularities (records, data blocks, individual files,
entire files systems), by different system components (applications, libraries, file systems,
device drivers). One common general use of at-rest data encryption is called “full disk
encryption.” This usually means that the entire contents (or almost the entire contents) of
the storage device are encrypted. While the commonly used name suggests the approach
is intended for hard disk drives, it can actually be used on many kinds of persistent
storage media. Full disk encryption is usually provided either in hardware (built into the
storage device) or by system software (a device driver or some element of a file system).
In either case, the operating system plays a role in the protection provided. Windows
BitLocker and Apple’s FileVault are examples of software-based full disk encryption.

Generally, at boot time either the decryption key or information usable to obtain that key
(such as a passphrase) is requested from the user. If the right information is provided, the
key or keys necessary to perform the decryption become available (either to the hardware
or the operating system). As data is placed on the device, it is encrypted. As data moves
off the device, it is decrypted. The data remains decrypted as long as it is stored anywhere
in the machine’s memory, including in shared buffers or user address space. The data is
never placed on the storage device in decrypted form. After the initial request to obtain
the decryption key is performed, encryption and decryption is totally transparent to users
and applications. They never see the data in encrypted form and are not asked for the key
again, until the machine reboots.

Cryptography is a computationally expensive operation, particularly if performed in
software. There will be overhead associated with performing software-based full disk
encryption. Reports of the amount of overhead vary, but a few percent extra latency for
disk-heavy operations is common. For operations making less use of the disk, the
overhead may be imperceptible. For hardware based full disk encryption, the rated speed
of the disk drive will be achieved, which may or may not be slower than a similar model
not using full disk encryption.

What does this form of encryption protect against?

 It offers no extra protection against users trying to access data they
should not be allowed to see. Either the standard access control
mechanisms that the operating system provides work (and such
users can’t get to the data because they lack access permissions) or
they don’t (in which case such users will be given equal use of the
decryption key as anyone else).

 It does not protect against flaws in applications that divulge data.
Such flaws will permit attackers to pose as the user, so if the user
can access the unencrypted data, so can the attacker. So, for
example, it offers little protection in the face of buffer overflow or
SQL injection attacks.

 It does not protect against dishonest privileged users on the system,
such as a system administrator. If his privileges allow him to pose
as the user or to install system components that give him access to
the user’s data, he will be given decrypted copies of the data on
request.

 It does not protect against security flaws in the operating system
itself. Once the key is provided, it is available (directly in
memory, or indirectly by asking the hardware to use it) to the
operating system, whether that OS is trusted and secure or
compromised and insecure.

So what benefit does it provide? If a hardware device storing data is physically moved
from one machine to another, the operating system on the other machine is not obligated
to honor the access control information stored on the device. In fact, it need not even use
the same file system to access that device. For example, it can treat the device as merely
a source of raw data blocks, rather than an organized file system. However, if the data on
the device is encrypted via full disk encryption, the new machine will usually be unable
to obtain the encryption key. It can access the raw blocks, but they are encrypted and
cannot be decrypted without the key. This benefit would be useful if the hardware in
question was stolen and moved to another machine, for example.

For other forms of encryption of data at rest, the system must still address the issues of
how much is encrypted, how to obtain the key, and when to encrypt and decrypt the data
differently, with different types of protection resulting. There are relatively few
circumstances where such protection is of value. One example is archiving data that
might need to be copied and must be preserved, but need not be used. In this case, the
data can be encrypted at the time of its creation, and perhaps never decrypted, or only
decrypted under special circumstances under the control of the data’s owner. Another
unusual case involves a special form of encryption called homomorphic cryptography.
Unlike traditional types of cryptography, homomorphic cryptography allows at least
some operations (typically simple data transformations like adding one to a specific field
in the encrypted data) without decrypting the data. In such cases, an individual file or
record might be encrypted this way, with the intention of allowing some parties to alter it
without decrypting it.

One important special case for encrypting selected data at rest is a password vault (also
known as a key ring). Typical users interact with many remote sites that require them to
provide passwords. The best security is achieved if one uses a different password for
each site, but doing so places a burden on the human user, who generally has a hard time
remembering many passwords. A solution is to encrypt all the different passwords and
store them on the machine, indexed by the site they are used for. When one of the
passwords is required, it is decrypted and provided to the site that requires it.

For password vaults and all such special cases, the system must have some way of
obtaining the key whenever data needs to be encrypted or decrypted. If an attacker can
obtain the key, the cryptography becomes useless, so safe storage of the key becomes
critical. Typically, if the key is stored in unencrypted form anywhere on the computer in
question, the encrypted data is at risk, so well designed encryption systems tend not to do
so. For example, in the case of password vaults, the key used to decrypt the passwords is
not stored in the machine’s stable storage. It is obtained by asking the user for it when
required, or asking him for a passphrase used to derive the key. The key is then used to
decrypt the needed password. Maximum security would suggest destroying the key as
soon as this decryption was performed, but doing so would imply that the user would
have to re-enter the key each time he needed a password. A compromise between
usability and security is reached, in most cases, by remembering the key after first entry
for a significant period of time, but only keeping it in RAM. When the user logs out, or
the system shuts down, or the application that handles the password vault (such as a web
browser) exits, the key is “forgotten.” This approach is reminiscent of single sign-on
systems, where a user is asked for his password when he first accesses the system, but is
not required to re-authenticate himself again until he logs out.

