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Introduction to Operating Systems

1A. Administrative introduction to course

1B. Why is OS a required course?

1C. What is an Operating System?

1D. Operating Systems Principles

1E. A (very) Brief History of Operating Systems
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Instructor

• Background (non-academic)

– professional engineer w/over 40 years in OS

• commercial Unix/Linux, SMP and distributed

• development, leadership, staff and executive roles

– I am here because I love teaching and I love OS

• Getting in touch with me (in order)

– email: mark.kampe@gmail.com

– GoogleTalk: mark.kampe@gmail.com

– office: BH 4531M, TR 1-1:50, 4-4:50
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This Course

• This is a revised curriculum with new goals:

– understanding and exploiting OS services

– foundation concepts and principles

– common problems that have been solved in OS

– evolving directions in system architecture

• This is not a course in how to build an OS

– you will not read or write any kernel-mode code

– you will not study or build any parts of a toy OS
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Learning Objectives

• We started with a list of learning objectives

– over 300 concepts, issues, approaches and skills

• All activities in this course are based on them

– the reading has been chosen introduce them

– the lectures are designed to reinforce them

– the projects have been chosen to exercise them

– the exams will test your mastery of them

• Study this list to understand the course goals

• Use this list to guide your pre-exam review
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Course Web Site(s)

http://web.cs.ucla.edu/classes/spring17/cs111

• course syllabus

• reading, lecture and exam schedule

• copies of lecture slides

• supplementary reading and study materials

https://ccle.ucla.edu/course/view/17S-COMSCI111-1

• announcements

• (per lecture) on-line quizzes

• projects descriptions and submission

• discussion forum (and lecture topic requests)
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Reading and Quizzes

• Reading

– Remzi Arpaci-Dusseau OS in Three Easy Pieces

– numerous monographs to fill in gaps

– average 40pp/day, but there is one 84 page day

• Quizzes

– 4-8 short questions on the assigned reading

– online (CCLE), due before start of each lecture

– purpose: to ensure that you do the reading
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Lectures

• Lectures will not

– re-teach material well-covered by the reading

• Lectures will be used to

– clarify and elaborate on the reading

– explore implications and applications

– discuss material not covered by the reading

– discuss questions raised by students

• All lecture slides will be posted on-line

– to aid you in your note-taking and review
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Projects
• Format:

– individual programming projects w/questions

– written in C to be run on Linux systems

– one will require you to buy an Intel Edison kit

• Goals:

– Develop ability to exploit OS features

– Reinforce principles from reading and lectures

– Develop programming/problem solving ability

– Practice software project skills
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Projects

• Subjects

P0 – a warm-up to confirm your readiness

P1 – processes, I/O and IPC (2 parts)

P2 – synchronization (2 parts)

P3 – file systems (2 parts)

P4 – Embedded Systems/Internet of Things (3 parts)

• broken into ~weekly deliverables

– start each project as soon as you finish previous

– be ready to discuss problems on Friday

– finish the project over the weekend
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Instructor/TA Responsibilities

• Instructor: lectures, readings, and tests

– ask me about issues related to these

– TA’s do not follow the reading and lectures

• TA’s: projects

– they will do all assistance and grading

– all questions on projects should go to them
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Course Grading

• Basis for grading:

– quizzes 10%

– projects 45% (P0 5%, all others 10%)

– midterm 15%

– final exam part-1 15%

– final exam part-2 15%

• I do not grade on a curve

– I do look at score distribution to set break points
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Late Assignments & Make-ups
• Quizzes

– no late quizzes accepted, no make-ups

– but I usually drop the lowest score

• Labs

– each student gets FIVE slip days (usable on any project)

– after that score drops by 10% per late day

• Exams

– alternate times or make-ups may be schedulable (with 

advanced notice)
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Course Load

• Reputation: THE hardest undergrad CS class

– Fast pace through much non-trivial material

• Expectations you should have

– lectures 4-6 hours/week

– reading 3-6 hours/week

– projects 3-20 hours/week

– exam study 5-15 hours (twice)

• Keeping up (week by week) is critical

– Catching up is extremely difficult
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Academic Honesty

• Acceptable:

– study and discuss problems/approaches w/friends

– independent research on problems/approaches

• Unacceptable:

– submitting work you did not independently create 

(or failing to cite your sources)

– sharing code or answers with class-mates

– using reference materials in closed-book exams

• Detailed rules are in the course syllabus
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Academic Honesty – Projects

• Do your own projects

– If you need additional help, ask the instructor

• You must design and write all your own code

– Do not ask others how they solved the problem

– Do not copy solutions from the web, files or listings

– Cite any research sources you use

• Protect yourself

– Do not show other people your solutions

– Be careful with old listings

15Course Introduction

Why is OS a required course?

• Most CS discussions involve OS concepts

• Many hard problems have been solved in OS

– synchronization, security, scalability, distributed 
computing, dynamic resource management, …

– the same solutions apply in other areas

• Few will ever build an OS, but most of us will:

– set-up, configure, and manage computer systems

– write programs that exploit OS features

– work w/complex distributed/parallel software

– build abstracted services and resources

– troubleshoot problems in complex systems
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Relation to Other Courses

• Build on concepts and skills from other courses

– data structures, algorithms, computer architecture

– programming languages, assembly language programming

• Provide you with valuable foundation concepts

– processes, threads, virtual address space, files

– capabilities, synchronization, leases, deadlock, granularity

• Prepare you to work with more advanced subjects

– data bases, file systems, and distributed computing

– security, fault-tolerance, high availability

– computer system modelling, queuing theory, ...
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Why do I build Operating Systems?

• They (and their problems) are extremely complex

• They are held to high pragmatic standards:
– performance, correctness, robustness, scalability, 

availability, maintainability, extensibility

– they demand meticulous attention to detail

• They must also meet high aesthetic standards
– general, powerful, and elegant (these characteristics 

make  the complexity manageable)

• The requirements are ever changing
– exploit the capabilities of ever-evolving hardware

– enable new classes of systems and applications

• Worthy adversaries attract interesting people
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What does Operating System do?

• manages the hardware

– fairly allocate hardware among the applications

– ensure privacy and enable controlled sharing

– oversee program execution and handle errors

• abstract the bare hardware

– make it easier to use

– make the applications platform-independent

• new abstractions to enable applications

– powerful features beyond the bare hardware
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What makes the OS special?

• It is always in control of the hardware

– first software loaded when the machine boots

– continues running while apps come and go

• Parts of it have complete access to hardware

– privileged instructions, all memory and devices

– mediates application access to the hardware

• It is trusted

– to store, manage, and protect critical data

– to perform all requested operations in good faith
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Privileged Instructions

• most CPU instructions can be used by anyone

– e.g. arithmetic, logical, data movement, flow control

• some instructions are privileged

– e.g. operations associated with I/O, interrupts, virtual 

address spaces, and processor mode.

– these could compromise data privacy or integrity

– they can only be executed when in privileged modes

– otherwise they are illegal operations (cause exception)

• the operating system runs in privileged modes

– giving it full control of the computer
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What does an OS look like?

• applications see objects and operations

– CPU supports data types and operations

• bytes, shorts, longs, floats, pointers …

• add, multiply, copy, compare, indirection, branch …

– OS supports richer objects, higher operations

• files, processes, threads, segments, ports, …

• create, destroy, read, write, signal, …

• much of what OS does is behind-the-scenes

– plug & play, power management, fault-handling, 

domain services, upgrade management, …
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Software Layering
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privileged 

instruction set
general instruction set

Operating System kernel

general libraries

Operating System 

services

middle-ware 

services

(user and system) applications

devices

Application Binary Interface

Instruction Set Architecture

drivers

What functionality is in the OS

• as much as necessary, as little as possible

– OS code is very expensive to develop and maintain

– it is important to distinguish OS from kernel

• functionality must be in the OS if it …

– requires the use of privileged instructions

– requires the manipulation of OS data structures

– required for security, trust, or resource integrity

• other simple functions can be in libraries

• complex functionality provided by services
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Internal Structure (artists conception)
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Complexity Management 

• Layered/Hierarchical Structure
– can be understood progressively, piece-at-a-time

• Modularity and Functional Encapsulation
– hiding complexity and simplifying interfaces

• Generalizing and Unifying Abstractions
– high level organizing concepts

– reusable solution paradigms

• Indirection, Federation and Deferred Binding
– TBD plug-ins for TBD problems

• Appropriate Abstraction
– functionality well-suited for intended uses
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S/W Principles from this course

• Mechanism/Policy Separation

– to meet a wide range of evolving needs

• Interfaces as contracts

– implementations are not interfaces

• Dynamic Equilibrium

– robust adaptive resource allocation

• Fundamental role of data structures

– find the right data structures, the code is easy

• Iterative Solutions/Progressive Refinement

– incremental improvements to working approaches
Course Introduction 27

Life lessons from Operating Systems

• There Ain’t No Such Thing As A Free Lunch
– everything has a cost, there are always trade-offs to make

• Keep it Simple, Stupid!
– avoid overly complex/clever solutions

• The Devil is in the Details
– precious few things are as simple as they initially seem

• Correctness and Expedience are often at odds
– correct solutions are often complex and/or expensive

• Be very clear about what your goals are
– make the right trade-offs, focus on the right problems

– don’t over-constrain your problems

• Responsible and sustainable living
– take responsibility for our actions/consequences

– nothing is lost, everything is eventually recycled
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A Brief History of Operating Systems

• 1950s … OS? We don’t need no stinking OS!

• 1960s batch processing
– job sequencing, memory allocation, I/O services

• 1970s time sharing
– multi-user, interactive service, file systems

• 1980s work stations and personal computers
– graphical user interfaces, productivity tools

• 1990s work groups and the world wide web
– shared data, standard protocols, domain services

• 2000 large scale distributed systems
– the network IS the computer
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General OS Trends

• They have grown larger and more sophisticated

• Role has changed from shepherding the h/w to:

– shielding applications from the hardware

– providing powerful platform for applications

– coordinating computation and data movement

• Best understood through services they provide

– capabilities they add

– applications they enable

– problems they eliminate
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OS Convergence

• In the 1960s, there were many OS

– one for every different computer and use

– they were (relatively) small, simple, and cheap

– software portability wasn’t even a concept

• The world is now a very different place

– OS are extremely large, complex and expensive

– software portability is critically important

– the number of surviving OS is small and shrinking

– they must serve a much wider range of platforms
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Operating Systems Goals

• Application Platform

– powerful

– standards compliant

– advanced/evolving 

– stable interfaces

– tool availability

– well supported

– wide adoption

– domain versatility

• Service Platform

– high performance

– robust and reliable

– highly available

– multi/omni-platform

– managablility

– well supported

• General

– maintainable

– extensible

– binary distribution model
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Assignments

• Project 0

– look at the project description

– get started on implementation

– encounter problems before your lab session

• Reading for next Lecture

– OS Principles

– Interface Stability

– Software Interfaces

Course Introduction 33

Supplementary Slides
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Maintainability

• operating systems have very long lives

– basic requirements will change many times

– support costs will dwarf initial development

– this makes maintainability critical

• understandability

• modularity/modifiability

• testability
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Maintainable: understandability

• code must be learnable by mortals

– it will not be maintained by the original developers

– new people must be able to come up to speed

• code must be well organized

– nobody can understand 1M lines of random code

– it must have understandable, hierarchical structure

• documentation

– high level structure, and organizing principles

– functionality, design, and rationale for modules

– how to solve common problems

A1
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Maintainable: modularity

• modules must be understandable in isolation

– modules should perform coherent functions

– well specified interfaces for each module

– implementation details hidden within module

– inter-module dependencies are few/simple/clean

• modules must be independently changeable

– lots of side effects mean lots of bugs

– changes to one module should not affect others

• Keep It Simple Stupid

– costs of complexity usually outweigh the rewards

A2
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Maintainable: testability

• thorough testing is key to reliability

– all modules must be thoroughly testable

– most modules should be testable in isolation

• testability must be designed in from the start

– observability of internal state

– triggerability of all operations and situations

– isolability of functionality

• testing must be automated

– functionality, regression, performance, 

– stress testing, error handling handling

A3

4/3/2017Course Introduction 39

Portability to multiple ISAs

• successful OS will run on many ISAs

– some customers cannot choose their ISA

– if you don’t support it, you can’t sell to them

• minimal assumptions about specific h/w

– general frameworks are h/w independent

• file systems, protocols, processes, etc.

– h/w assumptions isolated to specific modules

• context switching, I/O, memory management

– careful use of types

• word length, sign extension, byte order, alignment

B2
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Binary Distribution Model

• binary is the opposite of source

– a source distribution must be compiled

– a binary distribution is ready to run

• one binary distribution per ISA

– no need for special per-OEM OS versions

• binary model for platform support

– device drivers can be added, after-market

• can be written and distributed by 3rd parties

• same driver works with many versions of OS
B3
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Binary Configuration Model
• eliminate manual/static configuration

– enable one distribution to serve all users

– improve both ease of use and performance

• automatic hardware discovery

– self identifying busses

• PCI, USB, PCMCIA, EISA, etc. 

– automatically find and load required drivers

• automatic resource allocation

– eliminate fixed sized resource pools

– dynamically (re)allocate resources on demand

C1
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Flexibility

• different customers have different needs

• we cannot anticipate all possible needs

• we must design for flexibility/extension

– mechanism/policy separation

• allow customers to override default policies

• changing policies w/o having to change the OS

– dynamically loadable features

• allow new features to be added, after market

• file systems, protocols, load module formats, etc.

– feature independence and orthogonality

C2
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Interface Stability

• people want new releases of an OS

– new features, bug fixes, enhancements

• people also fear new releases of an OS

– OS changes can break old applications

• how can we prevent such problems?

– define well specified Application Interfaces

– apps only use committed interfaces

– OS vendors preserve upwards-compatibility
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