
4/3/2017

1

Introduction to Operating Systems

1A. Administrative introduction to course

1B. Why is OS a required course?

1C. What is an Operating System?

1D. Operating Systems Principles

1E. A (very) Brief History of Operating Systems

1Course Introduction

Instructor

• Background (non-academic)

– professional engineer w/over 40 years in OS

• commercial Unix/Linux, SMP and distributed

• development, leadership, staff and executive roles

– I am here because I love teaching and I love OS

• Getting in touch with me (in order)

– email: mark.kampe@gmail.com

– GoogleTalk: mark.kampe@gmail.com

– office: BH 4531M, TR 1-1:50, 4-4:50

Course Introduction 2

This Course

• This is a revised curriculum with new goals:

– understanding and exploiting OS services

– foundation concepts and principles

– common problems that have been solved in OS

– evolving directions in system architecture

• This is not a course in how to build an OS

– you will not read or write any kernel-mode code

– you will not study or build any parts of a toy OS

Course Introduction 3

Learning Objectives

• We started with a list of learning objectives

– over 300 concepts, issues, approaches and skills

• All activities in this course are based on them

– the reading has been chosen introduce them

– the lectures are designed to reinforce them

– the projects have been chosen to exercise them

– the exams will test your mastery of them

• Study this list to understand the course goals

• Use this list to guide your pre-exam review

Course Introduction 4

Course Web Site(s)

http://web.cs.ucla.edu/classes/spring17/cs111

• course syllabus

• reading, lecture and exam schedule

• copies of lecture slides

• supplementary reading and study materials

https://ccle.ucla.edu/course/view/17S-COMSCI111-1

• announcements

• (per lecture) on-line quizzes

• projects descriptions and submission

• discussion forum (and lecture topic requests)

Course Introduction 5

Reading and Quizzes

• Reading

– Remzi Arpaci-Dusseau OS in Three Easy Pieces

– numerous monographs to fill in gaps

– average 40pp/day, but there is one 84 page day

• Quizzes

– 4-8 short questions on the assigned reading

– online (CCLE), due before start of each lecture

– purpose: to ensure that you do the reading

Course Introduction 6

4/3/2017

2

Lectures

• Lectures will not

– re-teach material well-covered by the reading

• Lectures will be used to

– clarify and elaborate on the reading

– explore implications and applications

– discuss material not covered by the reading

– discuss questions raised by students

• All lecture slides will be posted on-line

– to aid you in your note-taking and review

Course Introduction 7

Projects
• Format:

– individual programming projects w/questions

– written in C to be run on Linux systems

– one will require you to buy an Intel Edison kit

• Goals:

– Develop ability to exploit OS features

– Reinforce principles from reading and lectures

– Develop programming/problem solving ability

– Practice software project skills

8Course Introduction

Projects

• Subjects

P0 – a warm-up to confirm your readiness

P1 – processes, I/O and IPC (2 parts)

P2 – synchronization (2 parts)

P3 – file systems (2 parts)

P4 – Embedded Systems/Internet of Things (3 parts)

• broken into ~weekly deliverables

– start each project as soon as you finish previous

– be ready to discuss problems on Friday

– finish the project over the weekend

Course Introduction 9

Instructor/TA Responsibilities

• Instructor: lectures, readings, and tests

– ask me about issues related to these

– TA’s do not follow the reading and lectures

• TA’s: projects

– they will do all assistance and grading

– all questions on projects should go to them

10Course Introduction

Course Grading

• Basis for grading:

– quizzes 10%

– projects 45% (P0 5%, all others 10%)

– midterm 15%

– final exam part-1 15%

– final exam part-2 15%

• I do not grade on a curve

– I do look at score distribution to set break points

11Course Introduction

Late Assignments & Make-ups
• Quizzes

– no late quizzes accepted, no make-ups

– but I usually drop the lowest score

• Labs

– each student gets FIVE slip days (usable on any project)

– after that score drops by 10% per late day

• Exams

– alternate times or make-ups may be schedulable (with

advanced notice)

12Course Introduction

4/3/2017

3

Course Load

• Reputation: THE hardest undergrad CS class

– Fast pace through much non-trivial material

• Expectations you should have

– lectures 4-6 hours/week

– reading 3-6 hours/week

– projects 3-20 hours/week

– exam study 5-15 hours (twice)

• Keeping up (week by week) is critical

– Catching up is extremely difficult

13Course Introduction

Academic Honesty

• Acceptable:

– study and discuss problems/approaches w/friends

– independent research on problems/approaches

• Unacceptable:

– submitting work you did not independently create

(or failing to cite your sources)

– sharing code or answers with class-mates

– using reference materials in closed-book exams

• Detailed rules are in the course syllabus

Course Introduction 14

Academic Honesty – Projects

• Do your own projects

– If you need additional help, ask the instructor

• You must design and write all your own code

– Do not ask others how they solved the problem

– Do not copy solutions from the web, files or listings

– Cite any research sources you use

• Protect yourself

– Do not show other people your solutions

– Be careful with old listings

15Course Introduction

Why is OS a required course?

• Most CS discussions involve OS concepts

• Many hard problems have been solved in OS

– synchronization, security, scalability, distributed
computing, dynamic resource management, …

– the same solutions apply in other areas

• Few will ever build an OS, but most of us will:

– set-up, configure, and manage computer systems

– write programs that exploit OS features

– work w/complex distributed/parallel software

– build abstracted services and resources

– troubleshoot problems in complex systems

Course Introduction 16

Relation to Other Courses

• Build on concepts and skills from other courses

– data structures, algorithms, computer architecture

– programming languages, assembly language programming

• Provide you with valuable foundation concepts

– processes, threads, virtual address space, files

– capabilities, synchronization, leases, deadlock, granularity

• Prepare you to work with more advanced subjects

– data bases, file systems, and distributed computing

– security, fault-tolerance, high availability

– computer system modelling, queuing theory, ...

17Course Introduction

Why do I build Operating Systems?

• They (and their problems) are extremely complex

• They are held to high pragmatic standards:
– performance, correctness, robustness, scalability,

availability, maintainability, extensibility

– they demand meticulous attention to detail

• They must also meet high aesthetic standards
– general, powerful, and elegant (these characteristics

make the complexity manageable)

• The requirements are ever changing
– exploit the capabilities of ever-evolving hardware

– enable new classes of systems and applications

• Worthy adversaries attract interesting people

Course Introduction 18

4/3/2017

4

What does Operating System do?

• manages the hardware

– fairly allocate hardware among the applications

– ensure privacy and enable controlled sharing

– oversee program execution and handle errors

• abstract the bare hardware

– make it easier to use

– make the applications platform-independent

• new abstractions to enable applications

– powerful features beyond the bare hardware

Course Introduction 19

What makes the OS special?

• It is always in control of the hardware

– first software loaded when the machine boots

– continues running while apps come and go

• Parts of it have complete access to hardware

– privileged instructions, all memory and devices

– mediates application access to the hardware

• It is trusted

– to store, manage, and protect critical data

– to perform all requested operations in good faith

Course Introduction 20

Privileged Instructions

• most CPU instructions can be used by anyone

– e.g. arithmetic, logical, data movement, flow control

• some instructions are privileged

– e.g. operations associated with I/O, interrupts, virtual

address spaces, and processor mode.

– these could compromise data privacy or integrity

– they can only be executed when in privileged modes

– otherwise they are illegal operations (cause exception)

• the operating system runs in privileged modes

– giving it full control of the computer

21Course Introduction

What does an OS look like?

• applications see objects and operations

– CPU supports data types and operations

• bytes, shorts, longs, floats, pointers …

• add, multiply, copy, compare, indirection, branch …

– OS supports richer objects, higher operations

• files, processes, threads, segments, ports, …

• create, destroy, read, write, signal, …

• much of what OS does is behind-the-scenes

– plug & play, power management, fault-handling,

domain services, upgrade management, …

Course Introduction 22

Software Layering

Course Introduction 23

privileged

instruction set
general instruction set

Operating System kernel

general libraries

Operating System

services

middle-ware

services

(user and system) applications

devices

Application Binary Interface

Instruction Set Architecture

drivers

What functionality is in the OS

• as much as necessary, as little as possible

– OS code is very expensive to develop and maintain

– it is important to distinguish OS from kernel

• functionality must be in the OS if it …

– requires the use of privileged instructions

– requires the manipulation of OS data structures

– required for security, trust, or resource integrity

• other simple functions can be in libraries

• complex functionality provided by services

Course Introduction 24

4/3/2017

5

Internal Structure (artists conception)

Course Introduction 25

interrupts traps
processor

mode

memory

mapping

atomic

updates

processor

exceptions

configuration

analysis

timers
cache

mgmt
interrupts

I/O

operations
traps

processor

mode

memory

mapping

atomic

updates

context

switching

DMA

bus drivers

timers
cache

mgmt

network

class driver

serial

class driver

display

class driver

storage

class driver

stream

services

block I/O

services

processor

initialization

hot-plug

services

enclosure

management
processor

abstraction

I/O

abstraction

memory

allocation

memory

segments

thread

dispatching

processes

(resource containers)

process/thread

scheduling

thread

synchronization

memory

scheduling
pagingswapping

fault

handling

I/O resource

allocation

DMA

services

virtual

execution

engine

transport

protocols
file systems

synchronization

model

exception

model

IPC

model

file

model

file I/O

model

process/thread

model

file namespace

model

system call interfaces user visible OS

model

asynchronous

eventsdevice drivers device drivers

volume

management

run-time

loader

configuration

services

kernel

debugger

logging

& tracing

higher level

services

authorization

model

boot

strap

fault

management

quality

of service …

Complexity Management

• Layered/Hierarchical Structure
– can be understood progressively, piece-at-a-time

• Modularity and Functional Encapsulation
– hiding complexity and simplifying interfaces

• Generalizing and Unifying Abstractions
– high level organizing concepts

– reusable solution paradigms

• Indirection, Federation and Deferred Binding
– TBD plug-ins for TBD problems

• Appropriate Abstraction
– functionality well-suited for intended uses

26Course Introduction

S/W Principles from this course

• Mechanism/Policy Separation

– to meet a wide range of evolving needs

• Interfaces as contracts

– implementations are not interfaces

• Dynamic Equilibrium

– robust adaptive resource allocation

• Fundamental role of data structures

– find the right data structures, the code is easy

• Iterative Solutions/Progressive Refinement

– incremental improvements to working approaches
Course Introduction 27

Life lessons from Operating Systems

• There Ain’t No Such Thing As A Free Lunch
– everything has a cost, there are always trade-offs to make

• Keep it Simple, Stupid!
– avoid overly complex/clever solutions

• The Devil is in the Details
– precious few things are as simple as they initially seem

• Correctness and Expedience are often at odds
– correct solutions are often complex and/or expensive

• Be very clear about what your goals are
– make the right trade-offs, focus on the right problems

– don’t over-constrain your problems

• Responsible and sustainable living
– take responsibility for our actions/consequences

– nothing is lost, everything is eventually recycled

Course Introduction 28

A Brief History of Operating Systems

• 1950s … OS? We don’t need no stinking OS!

• 1960s batch processing
– job sequencing, memory allocation, I/O services

• 1970s time sharing
– multi-user, interactive service, file systems

• 1980s work stations and personal computers
– graphical user interfaces, productivity tools

• 1990s work groups and the world wide web
– shared data, standard protocols, domain services

• 2000 large scale distributed systems
– the network IS the computer

Course Introduction 29

General OS Trends

• They have grown larger and more sophisticated

• Role has changed from shepherding the h/w to:

– shielding applications from the hardware

– providing powerful platform for applications

– coordinating computation and data movement

• Best understood through services they provide

– capabilities they add

– applications they enable

– problems they eliminate

30Course Introduction

4/3/2017

6

OS Convergence

• In the 1960s, there were many OS

– one for every different computer and use

– they were (relatively) small, simple, and cheap

– software portability wasn’t even a concept

• The world is now a very different place

– OS are extremely large, complex and expensive

– software portability is critically important

– the number of surviving OS is small and shrinking

– they must serve a much wider range of platforms

Course Introduction 31

Operating Systems Goals

• Application Platform

– powerful

– standards compliant

– advanced/evolving

– stable interfaces

– tool availability

– well supported

– wide adoption

– domain versatility

• Service Platform

– high performance

– robust and reliable

– highly available

– multi/omni-platform

– managablility

– well supported

• General

– maintainable

– extensible

– binary distribution model

Course Introduction 32

Assignments

• Project 0

– look at the project description

– get started on implementation

– encounter problems before your lab session

• Reading for next Lecture

– OS Principles

– Interface Stability

– Software Interfaces

Course Introduction 33

Supplementary Slides

4/3/2017Course Introduction 35

Maintainability

• operating systems have very long lives

– basic requirements will change many times

– support costs will dwarf initial development

– this makes maintainability critical

• understandability

• modularity/modifiability

• testability

4/3/2017Course Introduction 36

Maintainable: understandability

• code must be learnable by mortals

– it will not be maintained by the original developers

– new people must be able to come up to speed

• code must be well organized

– nobody can understand 1M lines of random code

– it must have understandable, hierarchical structure

• documentation

– high level structure, and organizing principles

– functionality, design, and rationale for modules

– how to solve common problems

A1

4/3/2017

7

4/3/2017Course Introduction 37

Maintainable: modularity

• modules must be understandable in isolation

– modules should perform coherent functions

– well specified interfaces for each module

– implementation details hidden within module

– inter-module dependencies are few/simple/clean

• modules must be independently changeable

– lots of side effects mean lots of bugs

– changes to one module should not affect others

• Keep It Simple Stupid

– costs of complexity usually outweigh the rewards

A2

4/3/2017Course Introduction 38

Maintainable: testability

• thorough testing is key to reliability

– all modules must be thoroughly testable

– most modules should be testable in isolation

• testability must be designed in from the start

– observability of internal state

– triggerability of all operations and situations

– isolability of functionality

• testing must be automated

– functionality, regression, performance,

– stress testing, error handling handling

A3

4/3/2017Course Introduction 39

Portability to multiple ISAs

• successful OS will run on many ISAs

– some customers cannot choose their ISA

– if you don’t support it, you can’t sell to them

• minimal assumptions about specific h/w

– general frameworks are h/w independent

• file systems, protocols, processes, etc.

– h/w assumptions isolated to specific modules

• context switching, I/O, memory management

– careful use of types

• word length, sign extension, byte order, alignment

B2

4/3/2017Course Introduction 40

Binary Distribution Model

• binary is the opposite of source

– a source distribution must be compiled

– a binary distribution is ready to run

• one binary distribution per ISA

– no need for special per-OEM OS versions

• binary model for platform support

– device drivers can be added, after-market

• can be written and distributed by 3rd parties

• same driver works with many versions of OS
B3

4/3/2017Course Introduction 41

Binary Configuration Model
• eliminate manual/static configuration

– enable one distribution to serve all users

– improve both ease of use and performance

• automatic hardware discovery

– self identifying busses

• PCI, USB, PCMCIA, EISA, etc.

– automatically find and load required drivers

• automatic resource allocation

– eliminate fixed sized resource pools

– dynamically (re)allocate resources on demand

C1

4/3/2017Course Introduction 42

Flexibility

• different customers have different needs

• we cannot anticipate all possible needs

• we must design for flexibility/extension

– mechanism/policy separation

• allow customers to override default policies

• changing policies w/o having to change the OS

– dynamically loadable features

• allow new features to be added, after market

• file systems, protocols, load module formats, etc.

– feature independence and orthogonality

C2

C3

4/3/2017

8

4/3/2017Course Introduction 43

Interface Stability

• people want new releases of an OS

– new features, bug fixes, enhancements

• people also fear new releases of an OS

– OS changes can break old applications

• how can we prevent such problems?

– define well specified Application Interfaces

– apps only use committed interfaces

– OS vendors preserve upwards-compatibility

D1

