Performance Measurement and Analysis

- 9A. Introduction to performance and metrics
- 9B. Load characteristics and generation
- 9C. Performance Measurement
- 9D. Performance Analysis
- 9E. Performance Presentation

Performance measurement and analysis

Performance Analysis Goals

- Quantify the system performance
 - for competitive positioning
 - to assess the efficacy of previous work
 - to identify future opportunities for improvement
- Understand the system performance
 - what factors are limiting our current performance
 - what choices make us subject to these limitations
- Predict system performance
 - how would proposed changes affect performance
- We seek <u>WISDOM</u> ... not numbers!

Performance measurement and analysis

Performance measurement and analysis

Principles

- The Pareto Principle
 - 80% of cycles are spent in 20% of the code
- "Data trumps opinions"
 - intuition often turns out to be wrong
 - we can't optimize what we don't measure
- · "Rust never sleeps"
 - continuous measurement and comparison
 - if we aren't getting faster, we're getting slower
- Performance is mostly about design
 - code optimization is only occasionally useful

Performance measurement and analysi

Why performance is so hard

- components operate in a complex system
 - many steps/components in every process
 - ongoing competition for all resources
 - difficulty of making clear/simple assertions
 - systems too large to replicate in laboratory
- lack of clear/rigorous requirements
 - performance is highly dependent on specifics
 - what we measure, how we measure it
 - ask the wrong question, get the wrong answer

Performance measurement and analysis

Design for Performance

- Establish solid performance requirements
 - justified by technology or competition
 - apportion them to major system components
- Anticipate bottlenecks
 - frequent operations (interrupts, copies, updates)
 - limiting resources (network/disk bandwidth)
 - traffic concentration points (resource locks)
- Design to minimize problems
 - eliminate, reduce use, add resources

Performance measurement and analysis

Design For Performance Measurement

- Performance is often key to success
 - successful systems generally perform well
 - their performance is constantly improving
- · External performance is of limited value
 - $-\operatorname{it}$ can tell us if performance is good or bad
 - it cannot tell us why we are so performing
- · Good measurability must be designed in
 - understand the key diagnostic metrics
 - ensure that each is readily measurable

Performance measurement and analysis

Performance: what to measure

- competitive performance metrics
 - used to compare competing products
 - nominal response time for simple query
 - standard transactions per second
- engineering performance metrics
 - used to spec components
 - used to analyze performance problems
 - time to perform a particular sub-operation
 - channel utilization, idle time, cycles per operation
- be clear on what your goals are

Performance measurement and analysis

7

Metric

a standard unit

- metric must be quantifiable
 - time/rate, size/capacity, effectiveness/reliability ...

for measurement or evaluation

- metric must be measurable (or computable)

of something.

- an interesting/valuable quality/characteristic
- metric must be well-correlated with that quality

Performance measurement and analysis

.

Choosing Your Metrics

- Core question in any performance study
 - finding the right metrics is half the game
- Pick metrics based on:
 - Completeness: do these metrics span "goodness"?
 - Redundancy: each metric provides new info?
 - Variability: how consistent is it likely to be?
 - Feasibility: can I accurately measure this metric?
 - Diagnostic/Predictive value: yields valuable insight

Performance measurement and analysis

9

Common Types of System Metrics

- Duration/ response time
 - Mean latency for a benchmark request?
- · Processing rate
 - How many web requests handled per second?
- Resource consumption
 - How much disk is currently used?
- Reliability
 - How many messages delivered without error?
 - Mean Time Between Failure

Performance measurement and analysis

10

Sources of Variation in Results

- inconsistent test conditions
 - varying platforms, operations, injection rates
 - $\boldsymbol{-}$ background activity on test platform
 - start-up, accumulation, cache effects
- flawed measurement choices/techniques
 - measurement artifact, sampling errors
 - measuring indirect/aggregate effects
- non-deterministic factors
 - queuing of processes, network and disk I/O
 - where (on disk) files are allocated

Performance measurement and analysi

11

Capturing Variation

- Generally requires repetition of the same experiment
- Ideally, sufficient repetitions to capture all likely outcomes
 - How do you know how many repetitions that is?
 - You don't
- Design your performance measurements bearing this in mind

Performance measurement and analysis

An Example

- 11 pings from UCLA to MIT in one night
- Each took a different amount of time (expressed in msec):

149.1 28.1 28.1 28.5 28.6 28.2 28.4 187.8 74.3 46.1 155.8

 How do we understand what this says about how long a packet takes to get from LA to Boston and back?

Performance measurement and analysis

13

Statistical Measures of Samples

- tendency
 - mean ... the average of all samples
 - median ... the value of the middle sample
 - mode ... the most commonly occurring value
- dispersion
 - range ... between the highest and lowest samples
 - standard deviation (σ) ... range for 2/3 of samples
 - confidence interval ... Prob(x is within range)
 - coefficient of variance ... standard deviation/mean

Performance measurement and analysis

Applied to Our Example Ping Data

• Mean: 71.2

Median: 28.6 149.1 28.1 28.1 28.5 28.6 28.2
 Mode: 28.1
 Mode: 28.1

- Which of these best expresses the delay we saw?
 - Depends on what you care about

Performance measurement and analysis

15

Applied to Our Ping Data Example

• Range: 28.1,188

Standard deviation: 62.0Coefficient of variation: .87

149.1 28.1 28.1 28.5 28.6 28.2 28.4 187.8 74.3 46.1 155.8

Performance measurement and analysis

Performance Testing: Factors

"Controlled variations, to enable comparison"

- We do experiments to answer questions
 - trials should be probative of those questions
- · Usually we are exploring alternatives
 - what we increased the available memory?
 - what if requests were faster or different?
 - what if we used a different file system?
- Choose factors to explore our questions

Performance measurement and analys

17

Performance Testing: Levels

- A range of values/choices for each factor
- Some factors are boolean:
 - with and without synchronous mirroring
- Some factors have numerical ranges:
 - number of web requests applied per second
 - amount of memory devoted to I/O buffers
- Some factors have categorical levels:
 - Btrfs vs. Ext3 vs. XFS

Performance measurement and analysis

Choosing Factors and Levels

- Your experiment should look at all key factors
 each factor tested at each interesting level
- #tests = \prod levels(factor i)
 - this is a minimum if we want to capture variation
 - full range testing may be impractical
- We must choose factors and levels carefully
 - omit some levels of some factors in some tests
 - cover interesting values, but not all combinations

Performance measurement and analysis

19

Operations, rates, mixes

- performance is operation-dependent
 - reads, writes, creates, deletes, lookups ...
 - sequential, random, large, small
- it is also operation mix/order-dependent
 - synergistic (e.g. cache) effects
 - adverse (e.g. resource contention) effects
- what mix of operations should we measure
 - what best approximates expected usage?
 - what will best expose strengths and weaknesses

Performance measurement and analysis

Simulated Work Loads

- · Artificial load generation
 - on-demand generation of a specified load
 - controllable operation rates, parameters, mixes
 - scalable to produce arbitrarily large loads
 - can collect excellent performance data
- Weaknesses
 - random traffic is not a usage scenario
 - wrong parameter choices yield unrealistic loads

Performance measurement and analysis

21

Captured Sessions

- Captured operations from real systems
 - represent real usage scenarios
 - can be analyzed and replayed over and over
- Weakness
 - each represents only one usage scenario
 - multiple instances not equivalent to more users
 - danger of optimizing the wrong things
 - limited ability to exercise little-used features
 - they are kept around forever, and become stale

Performance measurement and analysis

22

Testing under Live Loads

- Instrumented systems serving clients
 - real combinations of real scenarios
 - measured against realistic background loads
 - enables collection of data on real usage
- Weakness
 - demands good performance and reliability
 - potetially limited testing opportunities
 - load cannot be repeated/scaled on demand

Performance measurement and analysis

23

Standard Benchmarks

- Carefully crafted/reviewed simulators
 - heavily reviewed by developers and customers
 - believed to be representative of real usage
 - standardized and widely available
 - well maintained (bugs, currency, improvements)
 - comparison of competing products
 - guide optimizations (of benchmark performance)
- Weakness
 - inertia, used where they are not applicable

Performance measurement and analysis

Meaningful Measurements

- · measure under controlled conditions
 - on a specified platform
 - under a controlled and calibrated load
- measure the right things
 - direct measurements of key characteristics
- ensure quality of results
 - competing measurements we can cross-compare
 - measure/correct for artifacts
 - quantify repeatability/variability of results

Performance measurement and analysis

25

Common Performance Problems

- non-scalable solutions
 - cost per operation becomes prohibitive at scale
 - worse-than-linear overheads and algorithms
 - queuing delays associated w/high utilization
- bottlenecks
 - one component that limits system throughput
- accumulated costs
 - layers of calls, data copies, message exchanges
 - redundant or unnecessary work

Performance measurement and analysis

Dealing w/Performance Problems

- is a lot like finding and fixing a bug
 - formulate a hypothesis
 - gather data to verify your hypothesis
 - be sure you understand underlying problem
 - review proposed solutions
 - for effectiveness
 - for potential side effects
 - make simple changes, one at a time
 - re-measure to confirm effectiveness of each
- only harder

Performance measurement and analy

27

End-to-End Testing

- client-side throughput/latency measurements
 - elapsed time for X operations of type Y
 - instrumented clients to collect detailed timings
- advantages
 - easy tests to run, easy data to analyze
 - results reflect client experienced performance
- disadvantages
 - no information about why it took that long
 - no information about resources consumed

Performance measurement and analysis

28

Common Measurement Mistakes

- measuring time but not utilization
 - everything is fast on a lightly loaded system
- capturing averages rather than distributions
- ignoring start-up, accumulation, cache effects
 - not measuring what we thought

outliers are usually interesting

- ignoring instrumentation artifact
 - it may greatly distort both times and loads

Performance measurement and analysis

29

System Resource Utilization

real	0m0.178s							
user 0m0.00)3s							
sys	0m0.005							
% mpstat								
07:44:18 CF	U %user	%nice	%system	%iowait	%irq	%soft	%idle	intr/s
07:44:18 all	3.01	57.31	0.36	0.13	0.01	0.00	39.19	1063.46
07:44:18 0	5.87	69.47	0.44	0.05	0.01	0.01	24.16	262.11
07:44:18 1	1.79	48.59	0.36	0.23	0.00	0.00	49.02	268.92
07:44:18 2	2.19	42.63	0.28	0.16	0.01	0.00	54.73	260.96
07:44:18 3	2.17	68.56	0.34	0.06	0.03	0.00	28.83	271.47
% iostat -d								
Device:	tps	read/s	wrtn/s	read		wrtn		
sda	194.72	1096.66	1598.70	271906870	4	396382734	1	
sda11	78.20	773.45	1329.09	191768679	4	329535488	3	
sda2	16.51	323.19	269.61	801326686	668472456			
sdb	371.31	945.97	1073.33	234545236	5	266120640	3	
sdb1	371.31	945.95	1073.33	234539690	1	266120640	3	
sdc	408.03	207.05	972.42	513364213	2411023092	2		
sdc1	408.03	207.03	972.42	513308749	2411023092	2		

Cache, Accumulation Start-up Effects

- cached results may accelerate some runs
 - random requests that are unlikely to be in cache
 - overwhelm cache w/new data between tests
 - disable or bypass cache entirely
- start-up costs distort total cost of computation
 - do all forks/opens prior to starting actual test
 - long test runs to amortize start-up effects down
 - measure and subtract start-up costs
- system performance may degrade with age
 - reestablish base condition for each test

Performance measurement and analysis

22

Measurement Artifact

- costs of instrumentation code
 - additional calls, instructions, cache misses
 - additional memory consumption and paging
- costs of logging results
 - may dwarf the costs of instrumentation
 - increased disk load/latency may slow everything
- make it run-time controllable option
- minimize file/network writes
 - in-memory circular buffer, reduce before writing

Performance measurement and analysi

33

Execution Profiling

- · automated measurement tools
 - compiler options for routine call counting
 - one counter per routine, incremented on entry
 - statistical execution sampling
 - timer interrupts execution at regular intervals
 - increment a counter in table based on PC value
 - may have configurable time/space granularity
 - tools to extract data and prepare reports
 - number of calls, time per call, percentage of time
- very useful in identifying the bottlenecks

Performance measurement and analysis

34

Execution Profiling

Simple execution profiling

 %time
 seconds
 cum %
 cum sec
 procedure (file)

 42.9
 0.0029
 42.9
 0.00
 printit (profsample.c)

 42.9
 0.0029
 85.7
 0.01
 add_vector (profsample.c)

 14.3
 0.0010
 100.0
 0.01
 mult_by_scalar (profsample.c)

Profiling with call counting

 % cumulative
 self
 total

 time
 seconds
 self
 ms/call
 name

 42.9
 0.0029
 0.0029
 2200
 0.0013
 printit

 42.9
 0.0058
 0.0002
 20
 0.1450
 0.1450
 add_vector

 0
 0.0058
 0.0000
 1
 main

 14.3
 0.0068
 0.0010
 2
 0.5000
 1.2225
 mult_by_scalar

5/8/2017

Performance measurement and analysis

Time Stamped Event Logs

- application instrumentation technique
- create a log buffer and routine
 - call log routine for all interesting events
 - routine stores time and event in a buffer
 - requires a cheap, very high resolution timer
- extract buffer, archive, mine the data
 - time required for particular operations
 - frequency of operations
 - combinations of operations
 - also useful for post-mortem analysis

Performance measurement and analysis

Performance Analysis

- Can you characterize latency and throughput?
 of the system, of each major component
- Can you account for all the end-to-end time?
 processing, transmission, queuing delays
- Can you explain how these vary with load?
- Are there any significant unexplained results?
- Can you predict the performance of a system?
 - as a function of its configuration/parameters

Performance measurement and analysis

...

(why throughput falls off)

- dispatching processes is not free
 - it takes time to dispatch a process (overhead)
 - more dispatches means more overhead (lost time)
 - less time (per second) is available to run processes
- how to minimize the performance gap
 - reduce the overhead per dispatch
 - minimize the number of dispatches (per second)
 - allow longer time slices per task
 - increase the number of servers (e.g. CPUs)
- this phenomenon will be seen in many areas

Performance measurement and analysis

40

(why response time grows w/o limit)

- response time is function of server & load
 - how long it takes to complete one request
 - how long the waiting line is
- length of the line is function of server & load
 - how long it takes to complete one request
 - the average inter-request arrival interval
- if requests arrive faster than they are serviced
 - the length of the waiting list grows
 - and the response time grows with it

Performance measurement and analysis

Understanding the Delays

Operation	mean measured queue time	measured CPU % (ρ)	mean measured svc time (1/λ)	λρ²/(1-ρ)
4K read	4.1µs	90%	478ns	4.3μs
4K write	2.0μs	88%	267ns	1.9µs

The measured queuing delays within iSER processing very nearly match the values predicted for an M/M/1 system with the measured service times and CPU utilization.

Performance measurement and analysis

Performance Model Notation

• commonly used concepts/symbols

 $\begin{array}{ll} -\,\lambda & \text{request arrival rate (e.g. 200/s)} \\ -\,\mu & \text{request service rate (e.g. 400/s)} \\ -\,\rho & \text{load factor } (\lambda/\mu,\,\text{e.g. 50\%}) \end{array}$

• when $(\lambda > \mu)$ or $(\rho > 1)$

- requests arriving faster than they can be serviced

- the system is overloaded

Performance measurement and analysis

QT1A: Throughput vs. Latency

M/M/1 Queuing System

• Poisson arrivals, FIFO service, one server

• mean queue length: $(1-\rho)/\rho$ • mean waiting time: $\rho/(\mu-\lambda)$

This is a fundamental result

Performance measurement and analysi

All Presentations

- 1. To whom am I speaking?
 - what they do, and do not know
 - what they are, and are not prepared to absorb
- 2. Why are they listening to me?
 - how might this help them achieve their goals
 - how might this address their concerns
- 3. What do I want them to leave with?
 - what conclusions do I want them to draw
 - what actions do I want them to take

Performance measurement and analysis

Performance Presentation

- highlight the key results
 - answers to the basic questions
 - identified problems, risks and opportunities
- why should they believe these results
 - methodology employed, relation to other results
 - back-up details (may not plan on presenting)
- not just numbers, but explanations
 - how do we now better understand the system
 - how does this affect our plans and intentions

Performance measurement and analysis

49

Assignments

- Projects
 - finish Project 1B (contention)
- Reading (55pp)
 - AD 33-33.6 (events)
 - AD 35 (introduction to storage)
 - AD 36 (devices)
 - AD 37 (disks)
 - AD 38 (RAID)
 - Device Drivers, Classes, and Services
 - Dynamically Loadable Drivers

Performance measurement and analysis

Charles Dickens on System Performance

"Annual income, twenty pounds;

annual expenditure, nineteen, nineteen, six; Result ... happiness. Annual income, twenty pounds; annual expenditure, twenty pounds ought & six; Result ... misery!"

Wilkins Micawber, David Copperfield

Performance measurement and analysis