Security and Privacy

12A. Operating Systems and Security
12B. Authentication

12C. Authorization

12D. Trust

13G. Encryption

12E. At-Rest Encryption

5/24/2017

Why Security is Difficult

¢ complexity of our software and systems
— millions of lines of code, thousands of developers
— rich and powerful protocols and APIs
— numerous interactions with other software
— constantly changing features and technology
— absence of comprehensive validation tools
* determined and persistent adversaries
— commercial information theft/black-mail
— national security, sabotage

Common Terms used in Security

e security
— policies regarding who can access what, when and how
* protection
— mechanisms that implement/enforce security policies
* attacker
— an actor who seeks to bypass access control policies
vulnerability
— a protection weakness that enables a potential attack
e exploit
— asuccessful use of a vulnerability to bypass protection
— also refers to the code or methodology that was used
* trust
— confidence in the reliability (invulnerability) of a mechanism
— confidence about the future behavior of an actor

Trust

¢ An extremely important security concept
* You do certain things for those you trust
¢ You don’t do them for those you don’t
e Seemssimple, but. ..
— How do you express trust?
— Why do you trust something?
— How can you be sure who you’re dealing with?
— What if trust is situational?
— What if trust changes?

Trust and the Operating System

* We have to trust our operating system
— it controls the CPU and memory
— it controls how your processes are handled
— it controls all the 1/0 devices
¢ The OS is the foundation for all software
—all higher level security is based on a reliable OS
¢ If the OS is out to get you, you are gotten
— which makes compromising an OS a big deal

— which makes securing the OS a big deal

ecurity

Operating System Security — Goals

* privacy

— keep other people from seeing your private data
* integrity

— keep other people from changing your protected data
* trust

— programs you run cannot compromise your data

— remote parties are who they claim to be

— binding commitments and authoritative records
e controlled sharing

— you can grant other people access to your data

— but they can only access it in ways you specify

5/24/2017

Terms w/very special meanings

principals

— (e.g. users) own, control, and use protected objects
agents

— (e.g. programs) act on behalf of principals
authentication

— confirming the identity of requesting principal

— confirming the integrity of a request

credentials

— information that confirms identity of requesting principal
authorization

— determining if a particular request is allowed
mediated access

— agents must access objects through control points

Security — Key Elements

reliable authentication

— we must be sure who is requesting every operation
— we must prevent masquerading of people/processes
trusted policy data

— policy data accurately describes desired access rules
reliable enforcement mechanisms

— all operations on protected objects must be checked
— it must be impossible to circumvent these checks
audit trails

— reliable records of who did what, when

Authentication

e security policy says who is allowed to do what

¢ enforcement presumes we know who is asking

* Authentication problems

— how to authenticate an actor’s claimed identity?
—how can we trust authentication secrets?
— how can we trust authentication dialogs?

Internal (process) Authentication

OS associates credentials with each process

— stored, within the OS, in the process descriptor

— automatically inherited by all child processes

— identify the agent on whose behalf requests are made
they are the basis for access control decisions

— they are consulted when accessing protected data

— they are reported in audit logs of who did what

how do we ensure their correctness

— commands are coming from the indicated principal

— not from some would-be attacker/impostor

UNIX Credential Establishment

<
encrypted
[EWI

lookup(name;

_encrypted password

\ lookup(name)

setGid/setUid

exec(shell)

virtual

terminal

name, password N

uID, GID

shell prompt

External (user) Authentication

authentication done by trusted "login" agent

— typically based on passwords and/or identity tokens
— movement towards biometric authentication
ensuring secure passwords

— they must not be guess-able or brute-force-able

— they must not be steal-able

ensuring secure authentication dialogs

— protection from crackers: humanity checkers

— protection from snoopers: challenge/response

— protection from fraudulent servers: certificates
evolving encryption technology can assist us here

Cryptographic Hash Functions

¢ “one-way encryption” function: H(M)
— H(M) is much shorter than M
— it is inexpensive to compute H(M)
— it is infeasible to compute M(H)
—itis infeasible to find an M’: H(M’) = H(M)
® uses
— store passwords as H(pw)
« verify by testing H(entered) = stored H(pw)
— secure integrity assurance
« deliver H(msg) over a separate channel

5/24/2017

Secure Passwords

* one-way hashes protect stored passwords
¢ unless they are easily guessed, because

... they are short enough to brute-force

... they are obvious enough to guess

... they are words in a dictionary

... they have been shared with others

... they were written where others found them

... they are seldom changed

¢ password guidelines try to prevent these

challenge/response authentication

* untrusted authentication
— client/server distrust one-another & connecting wire
— both claim to know the secret password
— neither is willing to send it over the network

¢ client and server agree on a complex function
— response = F(challenge,password)
— F may be well known, but is very difficult to invert

* server issues random challenge string to client
— server & client both compute F(challenge,password)
— client sends response to server, server validates it

* man-in-middle cannot snoop, spoof, or replay

Goals for Access Control

¢ Complete mediation
— all protected object access is subject to control
¢ Cost and usability
— mediation does not impose performance penalties
— mediation does not greatly complicate use
¢ Useful in a networked environment
— where all resources not controlled by a single OS
e Scalability

— large numbers of computers, agents, and objects

Complete Mediation?

protected resources must be inaccessible
— hardware protection must be used to ensure this
— only the OS can make them accessible to a process
* to get access, issue request to resource manager
— resource manager consults access control policy data
e access may be granted directly
— resource manager maps resource into process
¢ access may be granted indirectly
— resource manager returns a “capability” to process
— capability can be used in subsequent requests

Access Mediation

¢ Per-Operation Mediation (e.g. file)
— all operations are via requests
— we can check access on every operation
—revocation is simple (cancel the capability)
— access is relatively expensive (system call/request)
¢ Open-Time Mediation (e.g. shared segment)
— one-time access check at open time
— if permitted, resources is mapped in to process
— subsequent access is direct (very efficient)
— revocation may be difficult or awkward

curity

Capabilities and ACLs

Capabilities — per agent access control

— record, for each principal, what it can access

— each granted access is called a "capability"

— a capability is required to access any system object
* Access Control Lists — per object access control
— record, for each object, which principals have access
— each protected object has an Access Control List

— OS consults ACL when granting access to any object

¢ Either must be protected & enforced by the OS

5/24/2017

Access Control Lists vs. Capabilities

* Access Control Lists
— short to store and easy to administer
¢ Capabilities make very convenient handles
— if you have the capability, you can do the operation
— without one, you can't even ask for operations
¢ many operating systems actually use both
— ACLs describe what accesses are allowed
— when access is granted, a Capability is issued
— capability is used as handle for subsequent operations

Unix files — access control lists

¢ Subject Credentials:
— user and group ID, established by password login
e Supported operations:
—read, write, execute, chown, chgrp, chmod
¢ Representation of ACL information:
—rules (owner:rwx, group:rwx, others:rwx)
— owner privileges apply to the file's owner
— group privileges apply to the file's owning group
— others privileges apply to all other users
—only owner can chown/chgrp/chmod

Unix File Access —example

given a file with:
user ID: 100

group ID: 15

file protection: EX -]
UID/GID read write execute chmod
100/001 yes yes yes yes
001/015 yes no yes no
001/001 yes no no no
000/###* yes yes yes yes

* In UNIX, a process with UID=0 (super user) can do anything

Unix files also have capabilities

* if a process wants to read or write a file
— it must open the file, requesting read or write access
— open will check permissions before granting access
— if operation permitted, OS returns a file descriptor

* the user file descriptor is a capability
— itis an unforgable token conferring access to the file
— it confers a specific access (r/w) to a specific file
— arequired argument to the read/write system calls
— without a file descriptor reads/writes are impossible

Truly Unforgeable Capabilities

* real capabilities come from a trusted source (OS)
— who checks access permissions before granting them
— having a capability conveys access to the resource
* resource references must be unforgeable
— otherwise people could forge references for anything
¢ ensure this by keeping them inside the OS
— give the user an index into a per-process table

* e.g. user file descriptors are index into a per-process array
— process can only refer to capabilities by index number

a system call can pass capabilities to others
— because only the OS can create the table entries

curity

Very Hard-to-forge Capabilities

random cookies from sparse name spaces

— they can be verified, but are very difficult to forge
— this is easily achieved with encryption techology
resource mgr decrypts cookie on each request
— determine which object is to be used

— ensure requester has adequate access for operation
this is also a very common approach

— product activation codes (product, version)

— heavily exploited in distributed systems
such cookies are easily exchanged in messages

5/24/2017

Trusted Computing Base

All protection information stored in OS

— applications cannot directly access/modify it
OS creates and maintains process state

— OS can associate a principal w/each process
OS implements file, process, IPC operations
— OS can mediate all access to these objects

— no way to access without going through OS
This is a foundation on which apps run

— apps can depend on processes and files

— higher level services can depend on these

Principle of Least Privilege

operate with minimum possible privileges

— surrender privileges when no longer needed

— operate in the most restricted possible context
allow minimum possible access to resources
— apply multiple levels of protection
trust, but verify

— sanity check requests before performing them
minimize amount of privileged software

— minimize the attack surface

— minimize amount of code to be audited

Quis Custodiet ipsos Custodes?

OS can do a very good job of enforcement

— if reasonably designed, reviewed, and implemented
What does the OS enforce?

— all access is according to access control database
Enforcement is only as good as the policy data
— human beings set up the authorization policy data
— they may misunderstand our intentions

— they may make errors in entering the rules

— they may deliberately violate our intentions

e These are problems the OS cannot solve

Privileged Users — the big hole

OS Maintenance requires extraordinary privileges
— installing and configuring system software

— backing up and restoring file systems

many systems have privileged users

— authorized to update system files

— authorized to perform privileged operations

— often there is a Super-User, who can do anything
users with these passwords are dangerous

— they can make mistakes or do mischief

— they can leak the passwords to others

ecurity

Finer Granularity Authorization

e “super users” are dangerous

— they are permitted to do anything
* not merely a single particular privileged operation

— accidentally mistyped commands can be disastrous
« ordinary file protections do not prevent them

 finer granularities of privilege

— backups, file system allocation, user creation, etc.

 finer granularities of operations

— privilege granted for only one operation at a time
— confirmation dialogs in system management tools

curity

Role Based Access Control (RBAC)

system management is not “a person”

— itis a role that some people, sometimes, perform
don’t predicate authorization decisions on identity
— users are authorized to perform roles

— they must declare that they are operating in a role
« checks their authorization to function in the role
« creates credentials to authorize role based operations

— privileged operations check role credentials
« specifically check for role-specific privileges
¢ superior authorization control
— fine grained operation control for limited periods
— audit records record the “real person” who took the actions

5/24/2017

Trust Worthy Software

« very carefully developed

— designed with security as a primary goal

— stringent design and code review processes

— extensive testing

— open source helps, but is a two-edged sword
¢ obtained from a trusted source

— who can certify its authenticity

— who has a high stake in its correctness

— who maintains and updates it well

Trusted Applications

¢ Not all trusted code is in the OS kernel
— file system management and back-up
— login and user-account management
— network services (remote file systems, email)

* These applications have special privileges
—they can execute privileged system calls
—they can access files that belong to multiple users
—they can access otherwise protected devices
—they can compromise system security

Special Application Privileges

e privileged daemons ... started by the OS
— many system daemons run as the super user
— others are run as the owner of key resources
e privileged commands ... run by users
— UNIX SetUID/SetGID load modules
—run with the credentials of the program’s owner

— may be able to create/set their own credentials
* e.g. login, sudo

— these must be very carefully designed/reviewed

Can we trust trusted applications?

* most complex programs have many bugs
— unfortunately even the best code is imperfect
— some bugs just make the program fail
— some bugs make the programs do the wrong thing

* real example: login buffer overflow bug
— login program checks entered passwd w/correct one
— buffer for real passwd is after buffer for entered one
— entering a very long password overwrites real one

¢ determined hackers will find & exploit such bugs

the login buffer overflow bug

char inbuf[80]; /* buffer for user entered password */
char pwbuf[80]; /* buffer for real password (encrypted) */
getpwent(uname, pwbuf); /* get real (encrypted) password */
stty(0, no_echo); /* no echo, character at a time input */
write(1,”password: “, 9); /* prompt user for password */
p = inbuf;
do {read(0, p, 1); /* read password entered by user */
}while (*p++) 1="\n"); /* until a newline character is entered */
pwencrypt(inbuf); /* encrypt what the user entered */
if (strncmp(inbuf, pwbuf, 8) == 0) /* see if it matches real password */

...he'sin

5/24/2017

Trojan Horses

¢ accidental bugs in trusted software create holes
— what if the software was designed with evil intent?
¢ the original "Trojan Horse" and the fall of Troy
— the Greeks built it, left it, and departed
— the Trojans thought it was a tribute to their valor
— the Trojans brought it into the city and had a party
— that night, soldiers came out and destroyed Troy
¢ modern “Trojan Horses” (pfishing)
— pretend to be the login program
— pretend to be financial institution web-page

Security

Ken Thompson's 3-part Trojan Horse

Trojan horse #1 ... in the login program

recognizes a special (hard-coded) password and will
allow anyone who knows it to log on as any user.

Trojan horse #2 ... in the C compiler

recognizes the password checking code in the login
program, and automatically inserts Trojan horse #1
into the compiled code.

Trojan horse #3 ... in the C compiler

recognizes the code generator in the C compiler,
and automatically inserts both Trojan horses (#2
and #3) into the compiled code. None of these can be found by reading
the code of either the login program or

compiler.

Plaintext and Ciphertext

e Plaintext is the original | Transfer $100 to
form of the message my savings
(often referred to as P) |account

* Ciphertext is the Sqzmredq #099
encrypted form of the [sn Ix rzuhmfr
message (often referred |zbbntms

toas ()

Symmetric Cryptosystems

e C=E(KP)
— cipher text is encrypted using key and plain text
e P=D(K,C)

— plain text is decrypted using key and cipher text
* P=D(K, E(K,P))

— decryption is the inverse of encryption

— E() and D() may be different functions

Privacy: difficult to infer P from C without K
Authenticity: difficult to forge P’ without K

Simple Symmetric Encryption

sender’s system insecure network receiver’s system

message message
- encrypted transmission

shared secret | | 1
(e.g. password)

Some Popular Symmetric Ciphers

The Data Encryption Standard (DES)
— the old US encryption standard (56-bit keys)
— still fairly widely used, due to legacy
— weak by modern standards
The Advanced Encryption Standard (AES)
— the current US encryption standard (128-256 bit keys)
— probably the most widely used cipher
Blowfish
— popular, general purpose, public domain
— relatively strong (32-448 bit keys)
there are many others

Symmetric Encryption

¢ Advantages
— privacy and authentication in one operation
— relatively efficient/inexpensive algorithms
— no central authentication services required
¢ Disadvantages
— scalability ... establishing keys w/many partners
— authentication ... doesn’t work w/new partners
— privacy ... shared secret is known by one-too-many
— weakness ... short keys are subject to brute force

5/24/2017

Tamper Detection: Cryptographic Hashes

¢ check-sums often used to detect data corruption
— add up all bytes in a block, send sum along with data
— recipient adds up all the received bytes
— if check-sums agree, the data is probably OK
— check-sum (parity, CRC, ECC) algorithms are weak

* cryptographic hashes are very strong check-sums

— unique —two messages won’t produce same hash
— one way — cannot infer original input from output
— well distributed — any change to input changes output

* much less expensive than encryption

Security

Cryptographic Hash Authentication

insecure ission

message message

secure transmission

(Using Cryptographic Hashes)

start with a message you want to protect
compute a cryptographic hash for that message
— e.g. using the Message Digest 5 (MD5) algorithm
transmit the hash over a separate channel
recipient computes hash of received text

— if both hash results agree, the message is intact

— else message has been corrupted/compromised
hash must be delivered over a secure channel

— encrypted, or otherwise separate and trusted

— or else bad guy could just forge the validation hash

Bypassing Mediation

OS can enforce authorization policy

— control the operations processes can perform
OS enforcement has exceptions and limits

— privileged users can override file protection

— passwords can be observed/stolen/guessed

— bugs may enable malware to gain privileges

— backups can be accessed w/o the OS

— file systems can be accessed w/o 0OS

— data stored in the cloud is beyond our protection

At-Rest Encryption

added data protection, beyond file protection
Disk (or file system) level

— password must be given at boot or mount time

— driver or file system does encrypt/decrypt

— protects computer against unauthorized access
File level

— password must be given when file is opened

— application (or library) does encrypt/decrypt

— protects file against unauthorized access

ecurity

Assignments

¢ Reading (34pp)
— AD 47 Distributed Systems
— Goals and Challenges of Distributed Systems
— Reiher: Distributed Systems Security
— RESTful interfaces

5/24/2017

Supplementary Slides

Authentication and Authorization

¢ In many security situations, we need to know
who wants to do something

— We allow trusted parties to do it
— We don’t allow others to do it

¢ That means we need to know who’s asking
— Determining that is authentication

* Then we need to check if that party should be
allowed to do it

— Determining that is authorization
— Authorization usually requires authentication

Why Should we Trust the OS

¢ Can we trust the supplier’s intentions?
— do they have the right business incentives?
— will their customers keep them honest?

¢ Can we trust the supplier’s processes?
— design and code review processes
— testing processes (including penetration)
— security bug fixes and patches
— security bug frequency and severity

¢ Open Source ... a two edged sword

Direct Access to Resources

e resource is mapped into process address space
— process manipulates resource w/normal instructions
— examples: shared data segment or video frame buffer

advantages
— access check is performed only once, at grant time
— very efficient, process can access resource directly

disadvantages

— process may be able to corrupt the resource
— access revocation may be awkward

Indirect Access to Resources

resource is not directly mapped into process

— process must issue service requests to use resource
— examples: network and IPC connections
advantages

— only resource manager actually touches resource

— resource manager can ensure integrity of resource
— access can be checked, blocked, revoked at any time
disadvantages

— overhead of system call every time resource is used

5/24/2017

Real World Authentication

¢ |dentification by recognition

— 1| see your face and know who you are
* |dentification by credentials

—You show me your driver’s license
¢ |dentification by knowledge

—You tell me something only you know
* |dentification by location

—You're behind the counter at the DMV
¢ These all have cyber analogs

Authentication With a Computer

Not as smart as a human

—Steps to prove identity must be well defined
Can’t do certain things as well

—E.g., face recognition

But lightning fast on computations and less
prone to simple errors

—Mathematical methods are acceptable

Often must authenticate non-human entities
— Like processes or machines

Identities in Operating Systems

¢ We usually rely primarily on a user ID
— Which uniquely identifies some user

— Processes run on his behalf, so they inherit his ID

* E.g., aforked process has the same user associated as
the parent did

¢ Implies a model where any process belonging
to a user has all his privileges
— Which has its drawbacks
— But that’s what we use

Bootstrapping OS Authentication

Processes inherit their user IDs

But somewhere along the line we have to
create a process belonging to a new user
— Typically on login to a system

We can’t just inherit that identity

How can we tell who this newly arrived user
is?

“Passwords |

¢ Authenticate the user by what he knows
— A secret word he supplies to the system on login
* System must be able to check that the
password was correct
— Either by storing it
— Or storing a hash of it
¢ That’s a much better option
* |f correct, tie user ID to a new command shell
or window management process

Problems With Passwords

They have to be unguessable
— Yet easy for people to remember

If networks connect remote devices to
computers, susceptible to password sniffers

— Programs which read data from the network,
extracting passwords when they see them

Unless quite long, brute force attacks often
work on them

Widely regarded as an outdated technology
But extremely widely used

curity

10

- Challenge/Response Systems |

Authentication by what questions you can
answer correctly

— Again, by what you know

The system asks the user to provide some
information

If it’s provided correctly, the user is
authenticated

Safest if it’s a different question every time
— Not very practical

5/24/2017

Hardware-Based Challenge/Response

¢ The challenge is sent to a hardware device belonging
to the appropriate user
— Authentication based on what you have

Sometimes mere possession of device is enough

— E.g., text challenges sent to a smart phone to be typed into
web request

* Sometimes the device performs a secret function on
the challenge
— E.g., smart cards

Problems With Challenge/Response

If based on what you know, usually too few
unique and secret challenge/response pairs

If based on what you have, fails if you don’t
have it

— And whoever does have it might pose as you
Some forms susceptible to network sniffing
— Much like password sniffing

— Smart card versions usually not susceptible

- Biometric Authentication |

¢ Authentication based on what you are
¢ Measure some physical attribute of the user

— Things like fingerprints, voice patterns, retinal
patterns, etc.

* Convert it into a binary representation

* Check the representation against a stored
value for that attribute

e Ifit’s a close match, authenticate the user

Problems With Biometric
Authentication

Requires very special hardware
—With some minor exceptions

Many physical characteristics vary too
much for practical use

Generally not helpful for authenticating
programs or roles

Requires special care when done across a
network

Errors in Biometric Authentication

¢ False positives
— You identified Bill Smith as Peter Reiher

— Probably because your biometric system was too
generous in making matches

— Bill Smith can pretend to be me
¢ False negatives
— You didn’t identify Peter Reiher as Peter Reiher

— Probably because your biometric system was too
stingy in making matches

— | can’t log in to my own account

11

Biometrics and Remote Authentication

* The biometric reading is just a bit pattern
« If attacker can obtain a copy, he can send the
pattern over the network
— Without actually performing a biometric reading
¢ Requires high confidence in security of path

between biometric reader and checking
device

— Usually OK when both are on the same machine
— Problematic when the Internet is between them

5/24/2017

Direct Access to Resources

e resource is mapped into process address space
— process manipulates resource w/normal instructions
— examples: shared data segment or video frame buffer
¢ advantages
— access check is performed only once, at grant time
— very efficient, process can access resource directly
¢ disadvantages
— process may be able to corrupt the resource
— access revocation may be awkward

Indirect Access to Resources

e resource is not directly mapped into process
— process must issue service requests to use resource
— examples: network and IPC connections
¢ advantages
— only resource manager actually touches resource
— resource manager can ensure integrity of resource
— access can be checked, blocked, revoked at any time
* disadvantages

— overhead of system call every time resource is used

How does the OS ensure security?

« all key resources are kept inside of the OS
— protected by hardware (mode, memory management)
— processes cannot access them directly
* all users are authenticated to the OS
— by a trusted agent that is (essentially) part of the OS
* all access control decisions are made by the OS
— the only way to access resources is through the OS
— we trust the OS to ensure privacy and proper sharing
what if key resources could not be kept in OS?

Generalized Capabilities

* user file descriptors are per-process capabilities
— they are associated with a particular process
— they are stored in the process descriptor
— they are intrinsically unforgeable
— they are not transferrable
* generalized capabilities are transferrable
— they can be delegated to others
— they can be sent in messages
— anyone who has the capability can use the resource

Issues with Generalized Capabilities

¢ capability containment
— | give you a capability for my file, you give it to my enemy
— | want to prevent this, or revoke your access later
¢ capability forgery
— if they can be passed in messages, can they be forged?
* make passing of capabilities a protected operation
— capabilities can be stored in the OS, passing controlled
* make capabilities very difficult to forge
— not like OS DSCBs, like Digital Signatures

12

5/24/2017

Why Should we Trust the OS

¢ Can we trust the supplier’s intentions?
— do they have the right business incentives?
— will their customers keep them honest?

¢ Can we trust the supplier’s processes?
— design and code review processes
— testing processes (including penetration)
— security bug fixes and patches
— security bug frequency and severity

* Open Source ... a two edged sword

ecurity

Can we trust the OS?

* trusted software is developed with great care

— itis very carefully designed, reviewed, and tested
— it may be audited/certified by a respected third party

¢ but we obtain software from insecure places

— e.g. down-loading drivers, applications and plug-ins

¢ how can we know new software is good?

— is it authentic, or a cleverly crafted Trojan horse?
— has an originally good program been infected?

* we need tamper-proof certificates of authenticity

Computer Viruses

* abiological virus is the simplest form of life
— so simple that people argue about whether it is alive
* abiological virus can only do three things:
— penetrate cells and get to the nucleus
— force the cell to replicate many more copies of itself
— copies spread to other cells, the process continues
* acomputer virus is completely analogous

— enter computer, copy itself, spread to other
computers

— enters system through e-mail or infected software
— some merely reproduce, others are destructive

[Cryptography]

¢ Much of computer security is about keeping
secrets

¢ One method of doing so is to make it hard for
others to read the secrets

¢ While (usually) making it simple for authorized
parties to read them

¢ That’s what cryptography is all about

— Transforming bit patterns in controlled ways to
obtain security advantages

Cryptography Terminology

¢ Typically described in terms of sending a message
— Though it’s used for many other purposes

* Thesenderis S

* The receiveris R

e Encryption is the process of making message
unreadable/unalterable byanyone but R

* Decryption is the process of making the encrypted
message readable by R

* A system performing these transformations is a
cryptosystem
— Rules for transformation sometimes called a cipher

Cryptographic Keys

* Most cryptographic algorithms use a key
— often referred to as K
* The key is a secret
— without the key, decryption is hard
— with the key, decryption is easy
* One secret key can encrypt many messages
— but there’s still a secret
—ifitis compromised, all the messages are as well

13

5/24/2017

More Terminology

¢ The encryption algorithm is referred to as
E()

e C=E(K,P)

¢ The decryption algorithm is referred to as
D()

¢ The decryption algorithm also has a key

¢ The combination of the two algorithms
are often called a cryptosystem

Disadvantages of Symmetric
Cryptosystems
— Encryption and authentication performed in a
single operation
¢ Makes signature more difficult
— Non-repudiation hard without servers
— Key distribution can be a problem
— Scaling
— Especially for Internet use

Symmetric Ciphers and Brute Force

ac
¢ If your symmetric cipher has no flaws, how can
attackers crack it?

e Brute force — try every possible key until one works

The cost of brute force attacks depends on key length

— For N possible keys, attack must try N/2 keys, on average,
before finding the right one

DES uses 56 bit keys
— Too short for modern brute force attacks

AES uses 128 or 256 bit keys
— Long enough

14

