
5/24/2017

1

Security and Privacy

12A. Operating Systems and Security

12B. Authentication

12C. Authorization

12D. Trust

13G. Encryption

12E. At-Rest Encryption

Security 1

Why Security is Difficult

• complexity of our software and systems

– millions of lines of code, thousands of developers

– rich and powerful protocols and APIs

– numerous interactions with other software

– constantly changing features and technology

– absence of comprehensive validation tools

• determined and persistent adversaries

– commercial information theft/black-mail

– national security, sabotage

Security 2

Common Terms used in Security

• security

– policies regarding who can access what, when and how

• protection

– mechanisms that implement/enforce security policies

• attacker

– an actor who seeks to bypass access control policies

• vulnerability

– a protection weakness that enables a potential attack

• exploit

– a successful use of a vulnerability to bypass protection

– also refers to the code or methodology that was used

• trust
– confidence in the reliability (invulnerability) of a mechanism

– confidence about the future behavior of an actor

Security 3

Trust

• An extremely important security concept

• You do certain things for those you trust

• You don’t do them for those you don’t

• Seems simple, but . . .

– How do you express trust?

– Why do you trust something?

– How can you be sure who you’re dealing with?

– What if trust is situational?

– What if trust changes?

4Security

Trust and the Operating System

• We have to trust our operating system

– it controls the CPU and memory

– it controls how your processes are handled

– it controls all the I/O devices

• The OS is the foundation for all software

– all higher level security is based on a reliable OS

• If the OS is out to get you, you are gotten

– which makes compromising an OS a big deal

– which makes securing the OS a big deal

5Security

Operating System Security – Goals

• privacy
– keep other people from seeing your private data

• integrity
– keep other people from changing your protected data

• trust
– programs you run cannot compromise your data

– remote parties are who they claim to be

– binding commitments and authoritative records

• controlled sharing
– you can grant other people access to your data

– but they can only access it in ways you specify

6Security

5/24/2017

2

Terms w/very special meanings

• principals

– (e.g. users) own, control, and use protected objects

• agents

– (e.g. programs) act on behalf of principals

• authentication

– confirming the identity of requesting principal

– confirming the integrity of a request

• credentials

– information that confirms identity of requesting principal

• authorization
– determining if a particular request is allowed

• mediated access
– agents must access objects through control points

Security 7

Security – Key Elements

• reliable authentication

– we must be sure who is requesting every operation

– we must prevent masquerading of people/processes

• trusted policy data

– policy data accurately describes desired access rules

• reliable enforcement mechanisms

– all operations on protected objects must be checked

– it must be impossible to circumvent these checks

• audit trails

– reliable records of who did what, when

8Security

Authentication

• security policy says who is allowed to do what

• enforcement presumes we know who is asking

• Authentication problems

– how to authenticate an actor’s claimed identity?

– how can we trust authentication secrets?

– how can we trust authentication dialogs?

Security 9

Internal (process) Authentication

• OS associates credentials with each process

– stored, within the OS, in the process descriptor

– automatically inherited by all child processes

– identify the agent on whose behalf requests are made

• they are the basis for access control decisions

– they are consulted when accessing protected data

– they are reported in audit logs of who did what

• how do we ensure their correctness

– commands are coming from the indicated principal

– not from some would-be attacker/impostor

10Security

UNIX Credential Establishment

Security 11

virtual

terminal
login

agent

encrypted

passwords

user

registry

name, password

lookup(name)

encrypted password

verify

lookup(name)

UID, GID

setGid/setUid

exec(shell)

shell prompt

External (user) Authentication

• authentication done by trusted "login" agent
– typically based on passwords and/or identity tokens

– movement towards biometric authentication

• ensuring secure passwords
– they must not be guess-able or brute-force-able

– they must not be steal-able

• ensuring secure authentication dialogs
– protection from crackers: humanity checkers

– protection from snoopers: challenge/response

– protection from fraudulent servers: certificates

• evolving encryption technology can assist us here

12Security

5/24/2017

3

Cryptographic Hash Functions

• “one-way encryption” function: H(M)

– H(M) is much shorter than M

– it is inexpensive to compute H(M)

– it is infeasible to compute M(H)

– it is infeasible to find an M’: H(M’) = H(M)

• uses

– store passwords as H(pw)

• verify by testing H(entered) = stored H(pw)

– secure integrity assurance

• deliver H(msg) over a separate channel

Security 13

Secure Passwords

• one-way hashes protect stored passwords

• unless they are easily guessed, because

… they are short enough to brute-force

… they are obvious enough to guess

… they are words in a dictionary

… they have been shared with others

… they were written where others found them

… they are seldom changed

• password guidelines try to prevent these

14Security

challenge/response authentication

• untrusted authentication
– client/server distrust one-another & connecting wire

– both claim to know the secret password

– neither is willing to send it over the network

• client and server agree on a complex function
– response = F(challenge,password)

– F may be well known, but is very difficult to invert

• server issues random challenge string to client
– server & client both compute F(challenge,password)

– client sends response to server, server validates it

• man-in-middle cannot snoop, spoof, or replay

15Security

Goals for Access Control

• Complete mediation
– all protected object access is subject to control

• Cost and usability
– mediation does not impose performance penalties

– mediation does not greatly complicate use

• Useful in a networked environment
– where all resources not controlled by a single OS

• Scalability
– large numbers of computers, agents, and objects

16Security

Complete Mediation?

• protected resources must be inaccessible

– hardware protection must be used to ensure this

– only the OS can make them accessible to a process

• to get access, issue request to resource manager

– resource manager consults access control policy data

• access may be granted directly

– resource manager maps resource into process

• access may be granted indirectly

– resource manager returns a “capability” to process

– capability can be used in subsequent requests

17Security

Access Mediation

• Per-Operation Mediation (e.g. file)

– all operations are via requests

– we can check access on every operation

– revocation is simple (cancel the capability)

– access is relatively expensive (system call/request)

• Open-Time Mediation (e.g. shared segment)

– one-time access check at open time

– if permitted, resources is mapped in to process

– subsequent access is direct (very efficient)

– revocation may be difficult or awkward

Security 18

5/24/2017

4

Capabilities and ACLs

• Capabilities – per agent access control

– record, for each principal, what it can access

– each granted access is called a "capability"

– a capability is required to access any system object

• Access Control Lists – per object access control

– record, for each object, which principals have access

– each protected object has an Access Control List

– OS consults ACL when granting access to any object

• Either must be protected & enforced by the OS

19Security

Access Control Lists vs. Capabilities

• Access Control Lists

– short to store and easy to administer

• Capabilities make very convenient handles

– if you have the capability, you can do the operation

– without one, you can't even ask for operations

• many operating systems actually use both

– ACLs describe what accesses are allowed

– when access is granted, a Capability is issued

– capability is used as handle for subsequent operations

20Security

Unix files – access control lists

• Subject Credentials:

– user and group ID, established by password login

• Supported operations:

– read, write, execute, chown, chgrp, chmod

• Representation of ACL information:

– rules (owner:rwx, group:rwx, others:rwx)

– owner privileges apply to the file's owner

– group privileges apply to the file's owning group

– others privileges apply to all other users

– only owner can chown/chgrp/chmod

21Security

Unix File Access – example

given a file with:

user ID: 100

group ID: 15

file protection:

UID/GID read write execute chmod

yes yes yes yes

yes no yes no

yes no no no

yes yes yes yes

* In UNIX, a process with UID=0 (super user) can do anything

r w x r - x r - -

100/001

001/015

001/001

000/###*

22Security

Unix files also have capabilities

• if a process wants to read or write a file

– it must open the file, requesting read or write access

– open will check permissions before granting access

– if operation permitted, OS returns a file descriptor

• the user file descriptor is a capability

– it is an unforgable token conferring access to the file

– it confers a specific access (r/w) to a specific file

– a required argument to the read/write system calls

– without a file descriptor reads/writes are impossible

23Security

Truly Unforgeable Capabilities

• real capabilities come from a trusted source (OS)

– who checks access permissions before granting them

– having a capability conveys access to the resource

• resource references must be unforgeable

– otherwise people could forge references for anything

• ensure this by keeping them inside the OS

– give the user an index into a per-process table

• e.g. user file descriptors are index into a per-process array

– process can only refer to capabilities by index number

• a system call can pass capabilities to others

– because only the OS can create the table entries
24Security

5/24/2017

5

Very Hard-to-forge Capabilities

• random cookies from sparse name spaces

– they can be verified, but are very difficult to forge

– this is easily achieved with encryption techology

• resource mgr decrypts cookie on each request

– determine which object is to be used

– ensure requester has adequate access for operation

• this is also a very common approach

– product activation codes (product, version)

– heavily exploited in distributed systems

• such cookies are easily exchanged in messages

25Security

Trusted Computing Base

• All protection information stored in OS

– applications cannot directly access/modify it

• OS creates and maintains process state

– OS can associate a principal w/each process

• OS implements file, process, IPC operations

– OS can mediate all access to these objects

– no way to access without going through OS

• This is a foundation on which apps run

– apps can depend on processes and files

– higher level services can depend on these

Security 26

Principle of Least Privilege

• operate with minimum possible privileges

– surrender privileges when no longer needed

– operate in the most restricted possible context

• allow minimum possible access to resources

– apply multiple levels of protection

• trust, but verify

– sanity check requests before performing them

• minimize amount of privileged software

– minimize the attack surface

– minimize amount of code to be audited

Security 27

Quis Custodiet ipsos Custodes?

• OS can do a very good job of enforcement

– if reasonably designed, reviewed, and implemented

• What does the OS enforce?

– all access is according to access control database

• Enforcement is only as good as the policy data

– human beings set up the authorization policy data

– they may misunderstand our intentions

– they may make errors in entering the rules

– they may deliberately violate our intentions

• These are problems the OS cannot solve

28Security

Privileged Users – the big hole

• OS Maintenance requires extraordinary privileges

– installing and configuring system software

– backing up and restoring file systems

• many systems have privileged users

– authorized to update system files

– authorized to perform privileged operations

– often there is a Super-User, who can do anything

• users with these passwords are dangerous

– they can make mistakes or do mischief

– they can leak the passwords to others

29Security

Finer Granularity Authorization

• “super users” are dangerous

– they are permitted to do anything

• not merely a single particular privileged operation

– accidentally mistyped commands can be disastrous

• ordinary file protections do not prevent them

• finer granularities of privilege

– backups, file system allocation, user creation, etc.

• finer granularities of operations

– privilege granted for only one operation at a time

– confirmation dialogs in system management tools

30Security

5/24/2017

6

Role Based Access Control (RBAC)

• system management is not “a person”

– it is a role that some people, sometimes, perform

• don’t predicate authorization decisions on identity

– users are authorized to perform roles

– they must declare that they are operating in a role

• checks their authorization to function in the role

• creates credentials to authorize role based operations

– privileged operations check role credentials

• specifically check for role-specific privileges

• superior authorization control

– fine grained operation control for limited periods

– audit records record the “real person” who took the actions

31Security

Trust Worthy Software

• very carefully developed

– designed with security as a primary goal

– stringent design and code review processes

– extensive testing

– open source helps, but is a two-edged sword

• obtained from a trusted source

– who can certify its authenticity

– who has a high stake in its correctness

– who maintains and updates it well

32Security

Trusted Applications

• Not all trusted code is in the OS kernel

– file system management and back-up

– login and user-account management

– network services (remote file systems, email)

• These applications have special privileges

– they can execute privileged system calls

– they can access files that belong to multiple users

– they can access otherwise protected devices

– they can compromise system security

Security 33

Special Application Privileges

• privileged daemons ... started by the OS

– many system daemons run as the super user

– others are run as the owner of key resources

• privileged commands ... run by users

– UNIX SetUID/SetGID load modules

– run with the credentials of the program’s owner

– may be able to create/set their own credentials

• e.g. login, sudo

– these must be very carefully designed/reviewed

34Security

Can we trust trusted applications?

• most complex programs have many bugs

– unfortunately even the best code is imperfect

– some bugs just make the program fail

– some bugs make the programs do the wrong thing

• real example: login buffer overflow bug

– login program checks entered passwd w/correct one

– buffer for real passwd is after buffer for entered one

– entering a very long password overwrites real one

• determined hackers will find & exploit such bugs

35Security

the login buffer overflow bug

char inbuf[80]; /* buffer for user entered password */

char pwbuf[80]; /* buffer for real password (encrypted) */

....

getpwent(uname, pwbuf); /* get real (encrypted) password */

stty(0, no_echo); /* no echo, character at a time input */

write(1,”password: “, 9); /* prompt user for password */

p = inbuf;

do { read(0, p, 1); /* read password entered by user */

} while (*p++) != '\n'); /* until a newline character is entered */

pwencrypt(inbuf); /* encrypt what the user entered */

if (strncmp(inbuf, pwbuf, 8) == 0) /* see if it matches real password */

... he's in

36Security

5/24/2017

7

Trojan Horses

• accidental bugs in trusted software create holes

– what if the software was designed with evil intent?

• the original "Trojan Horse" and the fall of Troy

– the Greeks built it, left it, and departed

– the Trojans thought it was a tribute to their valor

– the Trojans brought it into the city and had a party

– that night, soldiers came out and destroyed Troy

• modern “Trojan Horses” (pfishing)

– pretend to be the login program

– pretend to be financial institution web-page

37Security

Ken Thompson's 3-part Trojan Horse

login program

Trojan horse #1

C compiler

Trojan horse #2

Trojan horse #3

Trojan horse #1 … in the login program

recognizes a special (hard-coded) password and will

allow anyone who knows it to log on as any user.

Trojan horse #2 … in the C compiler

recognizes the password checking code in the login

program, and automatically inserts Trojan horse #1

into the compiled code.

Trojan horse #3 … in the C compiler

recognizes the code generator in the C compiler,

and automatically inserts both Trojan horses (#2

and #3) into the compiled code. None of these can be found by reading

the code of either the login program or

compiler.

38Security

Plaintext and Ciphertext

• Plaintext is the original

form of the message

(often referred to as P)

Transfer $100 to

my savings

account

• Ciphertext is the

encrypted form of the

message (often referred

to as C)

Sqzmredq #099

sn lx rzuhmfr

zbbntms

39Security

Symmetric Cryptosystems

• C = E(K,P)

– cipher text is encrypted using key and plain text

• P = D(K,C)

– plain text is decrypted using key and cipher text

• P = D(K, E(K,P))

– decryption is the inverse of encryption

– E() and D() may be different functions

• Privacy: difficult to infer P from C without K

• Authenticity: difficult to forge P’ without K
40Security

Simple Symmetric Encryption

symmetric

encryption

shared secret

(e.g. password)

message

symmetric

encryption

message

sender’s system receiver’s systeminsecure network

encrypted transmission

41Security

Some Popular Symmetric Ciphers

• The Data Encryption Standard (DES)
– the old US encryption standard (56-bit keys)

– still fairly widely used, due to legacy

– weak by modern standards

• The Advanced Encryption Standard (AES)
– the current US encryption standard (128-256 bit keys)

– probably the most widely used cipher

• Blowfish
– popular, general purpose, public domain

– relatively strong (32-448 bit keys)

• there are many others

42Security

5/24/2017

8

Symmetric Encryption

• Advantages

– privacy and authentication in one operation

– relatively efficient/inexpensive algorithms

– no central authentication services required

• Disadvantages

– scalability … establishing keys w/many partners

– authentication … doesn’t work w/new partners

– privacy … shared secret is known by one-too-many

– weakness … short keys are subject to brute force

Security 43

Tamper Detection: Cryptographic Hashes

• check-sums often used to detect data corruption

– add up all bytes in a block, send sum along with data

– recipient adds up all the received bytes

– if check-sums agree, the data is probably OK

– check-sum (parity, CRC, ECC) algorithms are weak

• cryptographic hashes are very strong check-sums

– unique –two messages won’t produce same hash

– one way – cannot infer original input from output

– well distributed – any change to input changes output

• much less expensive than encryption

44Security

Cryptographic Hash Authentication

cryptographic

hash

message

cryptographic

hash

message

secure transmission

insecure transmission

summary

summary’

compare

45Security

(Using Cryptographic Hashes)

• start with a message you want to protect

• compute a cryptographic hash for that message

– e.g. using the Message Digest 5 (MD5) algorithm

• transmit the hash over a separate channel

• recipient computes hash of received text

– if both hash results agree, the message is intact

– else message has been corrupted/compromised

• hash must be delivered over a secure channel

– encrypted, or otherwise separate and trusted

– or else bad guy could just forge the validation hash

46Security

Bypassing Mediation

• OS can enforce authorization policy

– control the operations processes can perform

• OS enforcement has exceptions and limits

– privileged users can override file protection

– passwords can be observed/stolen/guessed

– bugs may enable malware to gain privileges

– backups can be accessed w/o the OS

– file systems can be accessed w/o OS

– data stored in the cloud is beyond our protection

Security 47

At-Rest Encryption

• added data protection, beyond file protection

• Disk (or file system) level

– password must be given at boot or mount time

– driver or file system does encrypt/decrypt

– protects computer against unauthorized access

• File level

– password must be given when file is opened

– application (or library) does encrypt/decrypt

– protects file against unauthorized access

Security 48

5/24/2017

9

Assignments

• Reading (34pp)

– AD 47 Distributed Systems

– Goals and Challenges of Distributed Systems

– Reiher: Distributed Systems Security

– RESTful interfaces

Security 49

Supplementary Slides

50Security

Authentication and Authorization

• In many security situations, we need to know
who wants to do something

– We allow trusted parties to do it

– We don’t allow others to do it

• That means we need to know who’s asking

– Determining that is authentication

• Then we need to check if that party should be
allowed to do it

– Determining that is authorization

– Authorization usually requires authentication

51Security

Why Should we Trust the OS

• Can we trust the supplier’s intentions?

– do they have the right business incentives?

– will their customers keep them honest?

• Can we trust the supplier’s processes?

– design and code review processes

– testing processes (including penetration)

– security bug fixes and patches

– security bug frequency and severity

• Open Source … a two edged sword

Security 52

Direct Access to Resources

• resource is mapped into process address space

– process manipulates resource w/normal instructions

– examples: shared data segment or video frame buffer

• advantages

– access check is performed only once, at grant time

– very efficient, process can access resource directly

• disadvantages

– process may be able to corrupt the resource

– access revocation may be awkward
C2

53Security

Indirect Access to Resources

• resource is not directly mapped into process

– process must issue service requests to use resource

– examples: network and IPC connections

• advantages

– only resource manager actually touches resource

– resource manager can ensure integrity of resource

– access can be checked, blocked, revoked at any time

• disadvantages

– overhead of system call every time resource is used

C3

54Security

5/24/2017

10

Real World Authentication

• Identification by recognition

– I see your face and know who you are

• Identification by credentials

– You show me your driver’s license

• Identification by knowledge

– You tell me something only you know

• Identification by location

– You’re behind the counter at the DMV

• These all have cyber analogs

55Security

Authentication With a Computer

• Not as smart as a human

– Steps to prove identity must be well defined

• Can’t do certain things as well

– E.g., face recognition

• But lightning fast on computations and less
prone to simple errors

– Mathematical methods are acceptable

• Often must authenticate non-human entities

– Like processes or machines

56Security

Identities in Operating Systems

• We usually rely primarily on a user ID

– Which uniquely identifies some user

– Processes run on his behalf, so they inherit his ID

• E.g., a forked process has the same user associated as

the parent did

• Implies a model where any process belonging

to a user has all his privileges

– Which has its drawbacks

– But that’s what we use

57Security

Bootstrapping OS Authentication

• Processes inherit their user IDs

• But somewhere along the line we have to

create a process belonging to a new user

– Typically on login to a system

• We can’t just inherit that identity

• How can we tell who this newly arrived user

is?

58Security

Passwords

• Authenticate the user by what he knows

– A secret word he supplies to the system on login

• System must be able to check that the
password was correct

– Either by storing it

– Or storing a hash of it

• That’s a much better option

• If correct, tie user ID to a new command shell
or window management process

59Security

Problems With Passwords

• They have to be unguessable

– Yet easy for people to remember

• If networks connect remote devices to
computers, susceptible to password sniffers

– Programs which read data from the network,
extracting passwords when they see them

• Unless quite long, brute force attacks often
work on them

• Widely regarded as an outdated technology

• But extremely widely used

60Security

5/24/2017

11

Challenge/Response Systems

• Authentication by what questions you can
answer correctly

– Again, by what you know

• The system asks the user to provide some
information

• If it’s provided correctly, the user is
authenticated

• Safest if it’s a different question every time

– Not very practical

61Security

Hardware-Based Challenge/Response

• The challenge is sent to a hardware device belonging

to the appropriate user

– Authentication based on what you have

• Sometimes mere possession of device is enough

– E.g., text challenges sent to a smart phone to be typed into

web request

• Sometimes the device performs a secret function on

the challenge

– E.g., smart cards

62Security

Problems With Challenge/Response

• If based on what you know, usually too few

unique and secret challenge/response pairs

• If based on what you have, fails if you don’t

have it

– And whoever does have it might pose as you

• Some forms susceptible to network sniffing

– Much like password sniffing

– Smart card versions usually not susceptible

63Security

Biometric Authentication

• Authentication based on what you are

• Measure some physical attribute of the user

– Things like fingerprints, voice patterns, retinal

patterns, etc.

• Convert it into a binary representation

• Check the representation against a stored

value for that attribute

• If it’s a close match, authenticate the user

64Security

Problems With Biometric

Authentication

• Requires very special hardware

–With some minor exceptions

• Many physical characteristics vary too
much for practical use

• Generally not helpful for authenticating
programs or roles

• Requires special care when done across a
network

65Security

Errors in Biometric Authentication

• False positives

– You identified Bill Smith as Peter Reiher

– Probably because your biometric system was too
generous in making matches

– Bill Smith can pretend to be me

• False negatives

– You didn’t identify Peter Reiher as Peter Reiher

– Probably because your biometric system was too
stingy in making matches

– I can’t log in to my own account

66Security

5/24/2017

12

Biometrics and Remote Authentication

• The biometric reading is just a bit pattern

• If attacker can obtain a copy, he can send the

pattern over the network

– Without actually performing a biometric reading

• Requires high confidence in security of path

between biometric reader and checking

device

– Usually OK when both are on the same machine

– Problematic when the Internet is between them

67Security

Direct Access to Resources

• resource is mapped into process address space

– process manipulates resource w/normal instructions

– examples: shared data segment or video frame buffer

• advantages

– access check is performed only once, at grant time

– very efficient, process can access resource directly

• disadvantages

– process may be able to corrupt the resource

– access revocation may be awkward
C2

68Security

Indirect Access to Resources

• resource is not directly mapped into process

– process must issue service requests to use resource

– examples: network and IPC connections

• advantages

– only resource manager actually touches resource

– resource manager can ensure integrity of resource

– access can be checked, blocked, revoked at any time

• disadvantages

– overhead of system call every time resource is used

C3

69Security

How does the OS ensure security?

• all key resources are kept inside of the OS

– protected by hardware (mode, memory management)

– processes cannot access them directly

• all users are authenticated to the OS

– by a trusted agent that is (essentially) part of the OS

• all access control decisions are made by the OS

– the only way to access resources is through the OS

– we trust the OS to ensure privacy and proper sharing

• what if key resources could not be kept in OS?

70Security

Generalized Capabilities

• user file descriptors are per-process capabilities

– they are associated with a particular process

– they are stored in the process descriptor

– they are intrinsically unforgeable

– they are not transferrable

• generalized capabilities are transferrable

– they can be delegated to others

– they can be sent in messages

– anyone who has the capability can use the resource

71Security

Issues with Generalized Capabilities

• capability containment

– I give you a capability for my file, you give it to my enemy

– I want to prevent this, or revoke your access later

• capability forgery

– if they can be passed in messages, can they be forged?

• make passing of capabilities a protected operation

– capabilities can be stored in the OS, passing controlled

• make capabilities very difficult to forge

– not like OS DSCBs, like Digital Signatures

72Security

5/24/2017

13

Why Should we Trust the OS

• Can we trust the supplier’s intentions?

– do they have the right business incentives?

– will their customers keep them honest?

• Can we trust the supplier’s processes?

– design and code review processes

– testing processes (including penetration)

– security bug fixes and patches

– security bug frequency and severity

• Open Source … a two edged sword

Security 73

Can we trust the OS?

• trusted software is developed with great care

– it is very carefully designed, reviewed, and tested

– it may be audited/certified by a respected third party

• but we obtain software from insecure places

– e.g. down-loading drivers, applications and plug-ins

• how can we know new software is good?

– is it authentic, or a cleverly crafted Trojan horse?

– has an originally good program been infected?

• we need tamper-proof certificates of authenticity

74Security

Computer Viruses

• a biological virus is the simplest form of life

– so simple that people argue about whether it is alive

• a biological virus can only do three things:

– penetrate cells and get to the nucleus

– force the cell to replicate many more copies of itself

– copies spread to other cells, the process continues

• a computer virus is completely analogous

– enter computer, copy itself, spread to other
computers

– enters system through e-mail or infected software

– some merely reproduce, others are destructive

75Security

Cryptography

• Much of computer security is about keeping

secrets

• One method of doing so is to make it hard for

others to read the secrets

• While (usually) making it simple for authorized

parties to read them

• That’s what cryptography is all about

– Transforming bit patterns in controlled ways to

obtain security advantages

76Security

Cryptography Terminology

• Typically described in terms of sending a message

– Though it’s used for many other purposes

• The sender is S

• The receiver is R

• Encryption is the process of making message
unreadable/unalterable byanyone but R

• Decryption is the process of making the encrypted
message readable by R

• A system performing these transformations is a
cryptosystem

– Rules for transformation sometimes called a cipher

77Security

Cryptographic Keys

• Most cryptographic algorithms use a key

– often referred to as K

• The key is a secret

– without the key, decryption is hard

– with the key, decryption is easy

• One secret key can encrypt many messages

– but there’s still a secret

– if it is compromised, all the messages are as well

78Security

5/24/2017

14

More Terminology

• The encryption algorithm is referred to as
E()

• C = E(K,P)

• The decryption algorithm is referred to as
D()

• The decryption algorithm also has a key

• The combination of the two algorithms
are often called a cryptosystem

79Security

Disadvantages of Symmetric

Cryptosystems

– Encryption and authentication performed in a

single operation

• Makes signature more difficult

– Non-repudiation hard without servers

– Key distribution can be a problem

– Scaling

– Especially for Internet use

80Security

Symmetric Ciphers and Brute Force

Attacks
• If your symmetric cipher has no flaws, how can

attackers crack it?

• Brute force – try every possible key until one works

• The cost of brute force attacks depends on key length

– For N possible keys, attack must try N/2 keys, on average,

before finding the right one

• DES uses 56 bit keys

– Too short for modern brute force attacks

• AES uses 128 or 256 bit keys

– Long enough

81Security

