
5/17/2017

1

Distributed Systems

13A. Distributed Systems: Goals & Challenges

13B. Distributed Systems: Communication

13H. Public Key Encryption

Distributed Systems: Issues and Approaches 1

Goals of Distributed Systems

• scalability and performance

– apps require more resources than one computer has

– grow system capacity /bandwidth to meet demand

• improved reliability and availability

– 24x7 service despite disk/computer/software failures

• ease of use, with reduced operating expenses

– centralized management of all services and systems

– buy (better) services rather than computer equipment

• enable new collaboration and business models

– collaborations that span system (or national) boundaries

– a global free market for a wide range of new services
2Distributed Systems: Issues and Approaches

the end of self-contained systems

• authentication

– Active Directory, LDAP, Kerberos, …

• configuration and control

– Active Directory, LDAP, DHCP, CIM/WBEM, SNMP, …

• external data services

– CIFS, NFS, Andrew, Amazon S3, …

• remote devices

– X11, web user interfaces, network printers

• even power management, bootstrap, installation

– vPro, PXE boot, bootp, live CDs, automatic s/w updates

3Distributed Systems: Issues and Approaches

Peter Deutsch's

"Seven Falacies of Network Computing"

1. network is reliable

2. no latency (instant response time)

3. available bandwidth is infinite

4. network is secure

5. network topology & membership are stable

6. network admin is complete & consistent

7. cost of transporting additional data is zero

Bottom Line: true transparency is not achievable

4Distributed Systems: Issues and Approaches

Heterogenous Interoperability

• heterogenous clients

– different instruction set architectures

– different operating systems and versions

• heterogenous servers

– different implementations

– offered by competing service providers

• heterogenous networks

– public and private

– managed by different orgs in different countries

Distributed Systems: Issues and Approaches 5

Fundmental Building Blocks Change

• the old model

– programs run in processes

– programs use APIs to access system resources

– API services implemented by OS and libraries

• the new model

– clients and servers run on nodes

– clients use APIs to access services

– API services are exchanged via protocols

• local is a (very important) special case

6Distributed Systems: Issues and Approaches



5/17/2017

2

Performance, Scalability, Availability

• old model – better components (4-40%/yr)

– find and optimize all avoidable overhead

– get the OS to be as reliable as possible

– run on the fastest and newest hardware

• new better – better systems (1000x)

– add more $150 blades and a bigger switch 

– spreading the work over many nodes is a huge win

• performance – linear with/number of blades

• availability – service continues despite node failures

7Distributed Systems: Issues and Approaches

Changing Paradigms

• network connectivity becomes "a given"

– new applications assume/exploit connectivity

– new distributed programming paradigms emerge

– new functionality depends on network services

• applications demand new kinds of services:

– location independent operations

– rendezvous between cooperating processes

– WAN scale communication, synchronization

8Distributed Systems: Issues and Approaches

General Paradigm – RPC

• procedure calls – a fundamental paradigm

– primary unit of computation in most languages

– unit of information hiding in most methodologies

– primary level of interface specification

• a natural boundary between client and server

– turn procedure calls into message send/receives

• a few limitations

– no implicit parameters/returns (e.g. global variables)

– no call-by-reference parameters

– much slower than procedure calls (TANSTAAFL)

9Distributed Systems: Issues and Approaches

Remote Procedure Call Concepts

• Interface Specification

– methods, parameter types, return types

• eXternal Data Representation

– language/ISA independent data representations

– may be abstract (e.g. XML) or efficient (binary)

• client stub

– client-side proxy for a method in the API

• server stub (or skeleton)

– server-side recipient for API invocations

Distributed Systems: Issues and Approaches 10

Remote Procedure Calls – Data Flow

Distributed Systems: Issues and Approaches 11

client application

client stub server skeleton

server application

Client System Sever System

messages

call
call

Remote Procedure Calls – Tool Chain

RPC
interface

specification

RPC
generation

tool

Client RPC
stubs

server
RPC

skeleton

External Data
Representation
access fucntions

client
application

code

server
implementation

code

client
server

12Distributed Systems: Issues and Approaches



5/17/2017

3

(RPC – Key Features)

• client application links against local procedures

– calls local procedures, gets results

• all rpc implementation is inside those procedures

• client application does not know about RPC

– does not know about formats of messages

– does not worry about sends, timeouts, resents

– does not know about external data representation

• all of this is generated automatically by RPC tools

• the key to the tools is the interface specification

13Distributed Systems: Issues and Approaches

The Interoperability Challenge

• S/W, APIs and protocols evolve

– to embrace new requirements, functionality

• A single node is running a single OS release

– all s/w can be upgraded at same time as OS

• A distributed system is unlikely homogenous

– rolling upgrades do one server at a time

– newly added servers may be up/down-rev

– we may have no control over client s/w versions

• we must ensure they all “play well” together

Distributed Systems: Issues and Approaches 14

Ensuring Interoperability

1. restricted  evolution

– all changes must be upwards compatible

2. compensation (run-time restriction)

– all sessions begin with version negotiation

3. better tools that embrace polymorphism

– every agent speaks his own protocol version

– RPC language and tools are version-aware

• messages are un-marshaled as each client expects

• default behaviors are based on older expectations

– equally applicable to messages and at-rest data

Distributed Systems: Issues and Approaches 15

Extensible Data Representations

• Upwards compatible serialized object formats

– platform independent data representations

– client-version sensitive translation

• old clients  never see new-version fields

• new clients infer upwards compatible defaults

• Example: Google Protocol Buffers

– very efficient translation

– applicable to both protocols and persisted data

– supports many representations (e.g. binary, json)

– has adaptors for many languages (e.g. C, python)

Distributed Systems: Issues and Approaches 16

RPC is not a complete solution

• client/server binding model

– expects to be given a live connection

• threading model implementaiton

– a single thread service requests one-at-a-time

– numerous one-per-request worker threads

• failure handling

– client must arrange for timeout and recovery

• higher level abstractions

– e.g. Microsoft DCOM, Java RMI, DRb, Pyro

Distributed Systems: Issues and Approaches 17

Evolving Interaction Paradigms

• HTTP is becoming the preferred transport

– well supported, tunnels through firewalls

• Simple Object Access Protocol (SOAP)

– HTTP transport of XML encoded RPC requests

– options for other transports and encodings

– supports non-RPC interactions (e.g. transactions)

• REpresentational State Transfer (REST)

– stateless, scalable, cacheable, layerable

– operations limited to Create/Read/Update/Delete

Distributed Systems: Issues and Approaches 18



5/17/2017

4

Sample SOAP Request

<?xml version="1.0"?> 

<soap:Envelope xmlns:soap=“http://www.w3.org/2003/05/soap-envelope”>

<soap:Header>

</soap:Header>

<soap:Body>

<m:GetStockPrice xmlns:m=“http://www.example.org/stock/Surya”>

<m:StockName>IBM</m:StockName>

</m:GetStockPrice>

</soap:Body>

</soap:Envelope>

Distributed Systems: Issues and Approaches 19

Sample REST (json) Request

{

"username" : "my_username",

"password" : "my_password",

"validation-factors" : {

"validationFactors" : [

{

"name" : "remote_address",

"value" : "127.0.0.1"

}

]

}

}

Distributed Systems: Issues and Approaches 20

Asymmetric Cryptosystems

• Encryption and decryption use different keys
– C = E(KE,P)

– P = D(KD,C)

– P = D(KD , E(KE ,P))

• Often works the other way, too
– C= E(KD,P)

– P = D(KE,C)

– P = D(KD , E(KE ,P))

• Public Key (PK) encryption is such a system
– KE is called the public key, KD is called the private key

– it is very difficult to infer KD from D, E, C, P and KE

21Distributed Systems: Issues and Approaches

Asymmetric Encryption

(public key)

asymmetric

encryption

secret

K’

message

asymmetric

encryption

message

sender’s system receiver’s systeminsecure network

secret

K

encrypted transmission

complementary keys

(data encrypted 

with one must be 

decrypted with the 

other)
22Distributed Systems: Issues and Approaches

(Public Key Encryption)

• an asymmetric (two key) encryption technique

– one key is private – (not shared) only key owner knows it

– one key is public – it is advertised to the entire world

• it can be used to implement "your eyes only" privacy

– encrypt a message with the recipient's public key

– the message can only be decrypted with his private key

• it can be used to implement guaranteed signatures

– sender encrypts message with his own private key

– if it decrypts w/sender's public key, it must be from sender

• these can be combined for authentication + privacy

23Distributed Systems: Issues and Approaches

Example Public Key Ciphers

• RSA

– the most popular public key algorithm

– used on pretty much everyone’s computer

• Elliptic curve cryptography

– an alternative to RSA

– tends to have better performance

– not as widely used or studied

24Distributed Systems: Issues and Approaches



5/17/2017

5

Digital Signatures

cryptographic

hash

message

cryptographic

hash

message

compare
asymmetric

encryption

private

key

insecure 

transmission

asymmetric

encryption

public

key

digital

signature

25Distributed Systems: Issues and Approaches

(Signing a message)

• encrypting a message with private key signs it

– only you could have encrypted it, it must be from you

– it has not been tampered with since you wrote it

• encrypting everything w/private key is a bad idea

– if use a key too much, someone will eventually crack it

– asymmetric encryption is extremely slow

• no need to encrypt whole message w/private key

– compute a cryptographic hash of your message

– encrypt the cryptographic hash with your private key

– faster and safer than encrypting whole message

26Distributed Systems: Issues and Approaches

Using Digital Signatures

• much better than ink signatures or fingerprints

– uniquely identify the document signer

– uniquely identify the document that was signed

– signature cannot be copied onto another document

• we know document has not been tampered with

– we can recompute the cryptographic hash at any time

– confirm it matches message the sender signed

– sender cannot later claim not to have signed message

• digitally signed contracts can be legally binding

– several states have passed such legislation

27Distributed Systems: Issues and Approaches

Can we trust public keys? 

• if I have a public key

– I can authenticate received messages

– I know they were sent by the owner of the private key

• but how do I know who that person is?

– can I be sure who a public key belongs to?

– how do I know that this is really my bank's public key?

– could some swindler have sent me his key instead?

• I would like a certificate of authenticity

– a digital Notary stamp

– certifying who the real owner of a public key is

28Distributed Systems: Issues and Approaches

Certificate:
Data: 

Version: v3; Serial Number: 3;

Issuer: OU=Ace Certificate Authority, O=Ace Industry, C=US
Validity: Not  After: Sun Oct 17 18:36:25 1999

Subject: CN=Jane Doe, OU=Finance, O=Ace Industry, C=US

Subject Public Key Info: Algorithm: PKCS #1 RSA Encryption

Public Key: Modulus:
00:ca:fa:79:98:8f:19:f8:d7:de:e4:49:80:48:e6:2a:2a:86:

...

Signature: 
Algorithm: PKCS #1 MD5 With RSA Encryption

Signature:

6d:23:af:f3:d3:b6:7a:df:90:df:cd:7e:18:6c:01:69:8e:54:65:fc:06:

...

Public Key Certificates

G1

29Distributed Systems: Issues and Approaches

(What Is a PK Certificate?)

• Essentially a data structure

– name and description of an actor

– public key belonging to that actor

– validity/expiration information

• Signed by someone I trust

– whose public key I already have

– a digital Notary Public

• Testifying that the actor owns the public key

– and (by implication) the matching private key

30Distributed Systems: Issues and Approaches



5/17/2017

6

Using Public Key Certificates

• if I know public key of the authority who signed it

– I can validate the signature is correct

– I can tell the certificate has not been tampered with

• if I trust the authority who signed the certificate

– I can trust they authenticated the certificate owner

– e.g. we trust drivers licenses and passports

• but first I must know and trust signing authority

– everybody knows and trusts RSA as an authority

– does that mean that only RSA can sign certificates?

31Distributed Systems: Issues and Approaches

Delegated Authority

• I can accept certificates from a known authority

– not practical for one authority to issue all certificates

– how to validate certificates from unknown authority

• what if he has a certificate

– that is signed by an authority I know and trust

– that authorizes him to issue certificates

• if I trust RSA, I should also trust their "delegates"

– perhaps I can also trust people they delegate

– but I would need to see the entire chain of certificates

32Distributed Systems: Issues and Approaches

Certificate Authority Hierarchy

Mark Kampe

at UCLA

UCLA

Certificate Authority

USA

Certificate Authority

Japan

Certificate Authority

UK

Certificate Authority

Root

Certificate Authority

… …

33Distributed Systems: Issues and Approaches

A Chicken and Egg Problem

• certificate is a formal introduction to a new partner

– I can trust he is who he claims to be

– if I can validate the certificate

– by following the chain of delegated trust

• How do I trust the authority at the end of the chain?

• Ultimately through some other mechanism

– OS or browser comes with an initial set of certificates

– hand delivered (as in our IOT security project)

– down-loaded, over a secure channel, from trusted site

– you decide to accept a new certificate

34Distributed Systems: Issues and Approaches

Assignments

• Reading

– A/D 48 NFS (Network File System)

– SSL (Secure Socket Layer)

– Resource Leases

– Authentication Services

Distributed Systems: Issues and Approaches 35

Supplementary Slides

36Distributed Systems: Issues and Approaches



5/17/2017

7

new view of “system architecture”

• customers pay for services

– we design and build systems to provide services

• services are built up from protocols

– service is delivered to customers via a network

– service is provided by collaborating servers

– servers are commissioned/controlled by network

• the fundamental unit of service is a node

– provides defined services over defined protocols

– language, OS, ISA are mere implementation details

37Distributed Systems: Issues and Approaches

Marshal (and un-marshal)

• English

to arrange or assemble a group into order

• usually a group of people or soldiers

• also assembling devices into a coat of arms

• Computer Science

transforming the in-memory representation of an 

object into a suitable format for storage or 

transmission

Distributed Systems: Issues and Approaches 38


