Distributed Systems

13C. Security for Distributed Systems
13l. Secure Sessions

13D. Distributed Synchronization

13J. Distributed Transactions

14A. Remote Data Access Architectures

Distributed Systems - Synchronization and Securit

5/27/2017

How does the OS ensure security?

* all key resources are kept inside of the OS
— protected by hardware (mode, memory management)
— processes cannot access them directly
* all users are authenticated to the OS
— by a trusted agent that is (essentially) part of the OS
« all access control decisions are made by the OS
— the only way to access resources is through the OS
— we trust the OS to ensure privacy and proper sharing

* what if key resources could not be kept in OS?

Distributed Systems - Synchronization and Securit

Network Security — things get worse

¢ the OS cannot guarantee privacy and integrity
— network transactions happen outside of the OS
¢ authentication
— all possible agents may not be in local password file
* "man-in-the-middle" attacks
— wire connecting the user to the system is insecure
e systems are open to vandalism and espionage
— many systems are purposely open to the public
— even supposedly private systems may be on internet

Man-in-the-Middle Attacks

¢ assume someone watching all network traffic
— your traffic is being routed through many machines
— most internet traffic is not encrypted
— snooping utilities are widely available
— passwords may be sent in clear text

® assume someone can forge messages from you
— your traffic is being routed through many machines
— some of them may be owned by bad people
— they can hijack connection after you log in
— they can replay previous messages, forge new ones

Distributed Systems - Synchronization and Securit

Goals of Network Security

* secure conversations
— privacy: only you and your partner know what is said
— integrity: nobody can tamper with your messages
* positive identification of both parties
— authentication of the identity of message sender
— assurance that a message is not a replay or forgery
— non-repudiation: he cannot claim "I didn't say that"
¢ they must be assured in an insecure environment
— messages are exchanged over public networks
— messages are filtered through private computers

Distributed Systems - Synchronization and Securit

Elements of Network Security

¢ simple symmetric encryption

— can be used to ensure both privacy and integrity
e cryptographic hashes

— powerful tamper detection
¢ public key encryption

— basis for modern digital privacy and authentication
« digital signatures and public key certificates

— powerful tools to authenticate a message's sender
¢ delegated authority

— enabling us to trust a stranger's credentials

Distributed Systems - Synchronization and Securit

A Principle of Key Use

* Both symmetric and PK crypto require secret keys
— if key gets out, we lose both privacy and authentication
¢ The more you use a key, the less secure it becomes
— the key stays around in various places longer
— there are more opportunities for an attacker to get it
— there is more incentive for attacker to get it
— given enough time, any key can be brute forced
* Therefore:
— use a given key as little as possible , change them often
— the longer you keep it, the less you should use it

Distributed Systems - Synchronization and Securit

5/27/2017

Practical Public Key Encryption

e Public Key Encryption algorithms are expensive
— 10x to 100x as expensive as symmetric ones
— key distribution is also complex and expensive
¢ We should use PKE as little as possible
— forinitial authentication/validation
— to negotiate/exchange symmetric session keys
¢ Communication should use symmetric encryption
— use short-lived, disposable, session keys
— much less expensive to encrypt/decrypt

Distributed Systems - Synchronization and Securit

Symmetric and Asymmetric Encryption

¢ Use asymmetric to start the session
— e.g. RSA or other Public Key mechanism
— authenticate the parties
— securely establish initial session key
¢ Use symmetric encryption for the session
—e.g. DES or AES
— very efficient algorithm based on negotiated key
* Periodically move to new session key
— e.g. sequence based on initial session key
—e.g. “switch to new key” message

Distributed Systems - Synchronization and Securit

example: Secure Socket Layer

¢ establishes secure two-way communication
— privacy — nobody can snoop on conversation
— integrity — nobody can generate fake messages
* certificate based authentication of server
— client knows what server he is talking to
* optional certificate based authentication of client
— if server requires authentication and non-repudiation
¢ uses PK to negotiate symmetric session keys
— safety of public key, efficiency of symmetric

SSL session establishment

CLIENT SERVER

algorithm selection, and random string A
B . ing B

erver’s Public Key certificate

validate server’s certificate
generate random string C

t C with servers public k
encrvpt - with server & fervpfed dring ¢

compute F(A,B,C) decrypt C with server’s Private key

use result to generate session keys compute F(A,B,C)

use result to generate session keys
subsequent communication encrypted w/symmetric session keys

X

Distributed Systems - Synchronization and Securit

Distributed Synchronization

* spatial separation
— different processes run on different systems
— no shared memory for (atomic instruction) locks
— they are controlled by different operating systems
¢ temporal separation
— can’t “totally order” spatially separated events
— before/simultaneous/after lose their meaning
¢ independent modes of failure

— one partner can die, while others continue

Distributed Systems - Synchronization and Securit

Distributed Temporal Separation

Reader Writer Server Server Writer Reader

—_— Different clients see
different values at the
same time

2 Different clients see
— successive values in
x3 - different orders

1. The system does not have a scalar state. State is a vector.
2. There is no total ordering; There are only partial orderings.

5/27/2017

Distributed Locking - Leases

¢ Synchronization must be centralized

—a single server is responsible for issuing locks

— traditional mechanisms can ensure atomicity

—locks should be managed with message exchanges
* Authorization must be distributed

— lock servers issue signed “cookies”

— servers verify cookies before performing requests
¢ Client failures must be recoverable

— locks automatically expire after lease time

— automatic preemption prevents deadlock

Distributed Systems - Synchronization and Securit

Leases and Enforcement

all requests are exchanged via messages
— in general, all resources are on other nodes
— client does not have direct access to resources
¢ each request includes a lease “cookie”

— from resource manager (possibly signed)

— identifies client, resource, and lease period

— lease automatically expires at end of period
* validate cookies before performing operation
— requests with stale cookies should be rejected
handles a wide range of failures
— process, client node, server node, network

Lock Breaking and Recovery

¢ revoking an expired lease is fairly easy

K

— lease cookie includes a “good until” time
— any operation involving a “stale cookie” fails

* this makes it safe to issue a new lease
— old lease-holder can no longer access object
— was object left in a “reasonable” state?

¢ object must be restored to last “good” state
—roll back to state prior to the aborted lease
—implement all-or-none transactions

Distributed Systems - Synchronization and Securit

Atomic Transactions

e guaranteed uninterrupted, all-or-none execution

¢ solves multiple-update race conditions
— all updates are made part of a transaction
* updates are journaled, but not actually made
— after all updates are made, transaction is committed
— otherwise the transaction is aborted
* e.g. if client, server, or network fails before the commit
* resource manager guarantees “all-or-none”
— even if it crashes in the middle of the updates
— journal can be replayed during recovery

Distributed Systems - Synchronization and Securit

Successful Atomic Transaction

client
[ssnd updateOne] | updateOne |
[send updateTwo l | updateTwo |
| send updateThree 1 | updateThree |
(send comme)

Aborted Atomic Transaction

T ? server

client

|

(or timeout)

5/27/2017

Distributed Atomic Transactions

single node transactions are simple: all or none
— we ack after journaling the commit
— if it is in the journal, it happened
— if it is not in the journal, it did not happen
* single node transactions are not durable
— disk or node failure can lose previously saved data
— we need to persist transactions to multiple nodes
* multi-node transactions have new failure modes
— one node saw the commit, another node did not
— after recovery different journals may not agree
— we need more powerful commitment protocols

Distributed Systems - Synchronization and Security

Two Phase Commit

Coordinator @

@) Cohort

no

Voting Phase

send Commit

Completion Phase

Oistribute Systems - Synchrorization and Securi *

Two Phase Commit — Limitations

¢ It achieves consensus

—transaction only succeeds if cohort agrees
e It achieves all or none atomicity

— all resources locked from proposal to commit
e Itis subject to unbounded delays

— cohort is blocked if coord fails after they ack
* locks are held until commit or abort

— coord cannot recover w/o entire cohort present
« failed member might have been only one to commit

e N A

abort

timeout abort

receive startCommit

send ack

receive Commit

send ack

Three Phase Commit

e First phase is only a proposal
— any cohort member can reject this proposal
— if it times out, transaction is aborted
¢ Second phase is preparation to commit
— all cohort has already agreed to proposal
— startCommit announces intention to go forward
— if it times out, cohort will go forward w/commit
¢ Third phase is the actual commit & confirmation
— it can still be aborted by the coordinator
— but the default (e.g. on timeout) is to commit
— confirm from coordinator means all cohort agree

Distributed Systems - Synchronization and Security

Three Phase Commit — Limitations

* It achieves consensus

—transaction only succeeds if cohort agrees
* It achieves all or none atomicity

—all resources locked from proposal to commit
* Itis non-blocking

— automatically commit or abort after timeout
* |t can tolerate node failures

— but it cannot tolerate network partitioning

Distributed Systems - Synchronization and Securit

5/27/2017

Typical Consensus Algorithm

Each interested member broadcasts his nomination.

All parties evaluate the received proposals according to a
fixed and well known rule.

After allowing a reasonable time for proposals, each
voter acknowledges the best proposal it has seen.

If a proposal has a majority of the votes, the proposing
member broadcasts a claim that the question has been
resolved.

Each party that agrees with the winner’s claim
acknowledges the announced resolution.

Election is over when a quorum acknowledges the result.

Distributed Systems - Synchronization and Securit

Distributed Consensus

¢ achieving simultaneous, unanimous agreement
— even in the presence of node & network failures
— required: agreement, termination, validity, integrity
— desired: bounded time

¢ consensus algorithms tend to be complex
— and may take a long time to converge

¢ they tend to be used sparingly
— e.g. use consensus to elect a leader
— who makes all subsequent decisions by fiat

Remote Data Access: Goals

Transparency
— indistinguishable from local files for all uses
— all clients see all files from anywhere

Performance
— per-client: at least as fast as local disk
— scalability:

Cost
— capital:

unaffected by the number of clients

less than local (per client) disk storage
— operational: zero, it requires no administration
Capacity: unlimited, it is never full

Availability: 100%, no failures or down-time

Remote Data Access: Challenges

* Transparency

— despite Deutch’s warnings

— creating global file name-spaces
* Security

— despite insecure networks and heterogeneous systems
* Preserving ACID semantics, Posix consistency

— despite lack of shared memory and atomic instructions
* Performance

— despite everything being done with messages
¢ Reliability and Scalability

— despite having more parts and modes of failure

Distributed Systems - Synchronization and Securit

Key Characteristics of Solutions

APIs and Transparency

— how do users and processes access remote files
— how closely do remote files mimic local files
Performance and Robustness

— are remote files as fast and reliable as local ones
Architecture

— how is solution integrated into clients and servers
Protocol and Work Partitioning

— what messages exchanged, who does what work

Distributed Systems - Synchronization and Securit

Client/Server Models

* Peer-to-Peer
— most systems have resources (e.g. disks, printers)
— they cooperate/share with one-another
* Thin Client
— few local resources (e.g. CPU, NIC, display)
— most resources on work-group or domain servers
¢ Cloud Services
— clients access services rather than resources
— clients do not see individual servers

Distributed Systems - Synchronization and Security

5/27/2017

Remote File Transfer

¢ explicit commands to copy remote files
— OS specific: scp(1), rsync(1), S3 tools
— IETF protocols: FTP, SFTP
¢ implicit remote data transfers
— browsers (transfer files with HTTP)
— email clients (move files with IMAP/POP/SMTP)

¢ advantages: efficient, requires no OS support

e disadvantages: latency, lack of transparency

Distributed Systems - Synchronization and Security

Remote Data Access

0OS makes remote files appear to be local

— remote disk access (e.g. Storage Area Network)

— remote file access (e.g. Network Attached Storage)
— distributed file systems (NAS on steroids)

advantages

— transparency, availability, throughput

— scalability, cost (capital and operational)
» disadvantages

— complexity, issues with shared access

Distributed Systems - Synchronization and Security

Remote Disk Access

¢ Goal: complete transparency
— normal file system calls work on remote files
—all programs “just work” with remote files
e Typical Architectures
— Storage Area Network (SCSI over Fibre Chanel)
« very fast, very expensive, moderately scalable
—iSCSI (SCSI over ethernet)
« client driver turns reads/writes into network requests
¢ server daemon receives/serves requests

* moderate performance, inexpensive, highly scalable

Distributed Systems - Synchronization and Security

Remote Disk Access Architecture

SAN client SAN server

Distributed Systems - Synchronization and Security

Rating Remote Disk Access

¢ Advantages:
— provides excellent transparency
— decouples client hardware from storage capacity
— performance/reliability/availability per back-end
* Disadvantages
— inefficient fixed partition space allocation

— can’t support file sharing by multiple client
systems

— message losses can cause file system errors
¢ This is THE model for Virtual Machines

Distributed Systems - Synchronization and Security

Remote File Access

* Goal: complete transparency
— normal file system calls work on remote files
— support file sharing by multiple clients
— performance, availability, reliability, scalability
¢ Typical Architecture
— Network Attached Storage Protocols: NFS, CIFS
— exploits client-side plug-in file systems
« client-side file system is a local proxy
« translates file operations into RPC requests
— server-side daemon receives/process requests
* translates them into operations on local file system

Distributed Systems - Synchronization and Security

5/27/2017

Remote File Access Architecture

NAS client NAS server

Distributed Systems - Synchronization and Secu

Rating Remote File Access

¢ Advantages
—very good application level transparency
—very good functional encapsulation
— able to support multi-client file sharing
— potential for good performance and robustness

¢ Disadvantages
— at least part of implementation must be in the OS
— client and server sides tend to be fairly complex

e This is THE model for client/server storage

Distributed Systems - Synchronization and Security

Remote Disk/File Access

Distributed File System

client

v

server |

| server |

server |

server |

server |

N s s)

Distributed Systems - Synchroniza

(Remote vs. Distributed FS)

¢ Remote File Access (e.g. NFS, CIFS)
— client talks to (per FS) primary server
— secondary server may take over if primary fails
— advantages: simplicity
e Distributed File System (e.g. Ceph, RAMCloud)
— data is spread across numerous servers
— client may talk directly to many/all of them
— advantages: performance, scalability
— disadvantages: complexity++

Distributed Systems - Synchronization and Security

Distributed Systems - Synchronization and Secu

Assignments

Reading (17pp)

— A-D 49 (Andrew File System)
— Authentication Services

— ACID Semantics

Supplementary Slides

Distributed Systems - Synchronization and Securit

5/27/2017

Evolution of Remote File Access

¢ explicit file copying (one time transfers)
— commands like ftp, secure ftp, rcp, rsh, rsync
¢ explicit remote access (special case)
— remote data access methods (special code)
— remote data access tools (special programs)
¢ implicit remote access (all files appear local)
—remote disk access
—remote file access
— distributed file systems vs. remote file access

Distributed Systems - Synchronization and Securit

Rating Explicit File Copying

¢ Advantages
— user-mode client/server implementations
— efficient transfers (fast and with little overhead)
— user directly controls what is transferred when
¢ Disadvantages
— human interfaces, awkward for programs to use
— local and remote files are totally different
— manual transfers are tedious and error prone
* Contemporary Usage

— a last resort, special applications (like remote
boot)

Distributed Systems - Synchronization and Securit

Remote Access Methods

 Distinct APIs for accessing remote files
— standard open/close/read/write are “locals only”
— use different routines to access remote files

¢ Distinct user interface for accessing all files
— use a browser instead of a shell or finder

¢ User-mode implementation
— client remote access library, browser command
— protocols and servers similar to rcp/FTP

¢ New file naming schemes (e.g. URLs)

Distributed Systems - Synchronization and Securit

Rating Remote Access Methods

¢ Advantages

— user-mode client/server implementations

— services well suited to modes of file use

— services encapsulate location of actual data
* Disadvantages

— only works for a few programs (e.g. browser)

—all other programs (e.g. editors) remain “locals
only”

* Contemporary Usage
— many key applications: browsers, e-mail, SQL

Distributed Systems - Synchronization and Securit

Remote File Systems

¢ Provide files to local user that are stored on
remote machine

¢ Using the same or similar model as file access
¢ Not the only case for remote data access
— Remote storage devices
* Accessed by low level device operations over network

— Remote databases

¢ Accessed by database queries on remote nodes

Distributed Systems - Synchronization and Securit

Storage Area Networks

* Goals
— flexibility of local area networking
* any client can talk to any storage device
— performance of dedicated disk interfaces
* Typical Architecture
— giga-bit fibre channel network
* arbitrated access, very large packet sizes
* clients access network via an FC SCSI HBA
* lower cost ethernet (iSCSI) is also becoming popular
— intelligent non-blocking switches & controllers
* volume management, caching, mirroring, striping

Distributed Systems - Synchronization and Securit

5/27/2017

Rating SANs

¢ Advantages:
— decouples client hardware from storage capacity
— outstanding performance
* Disadvantages
— very expensive
— they are still a remote disk solution

 poorly abstracted for remote file access
« inefficient allocation, doesn’t provide multi-client sharing

Contemporary Usage

— they have revolutionized block storage

Distributed Systems - Synchronization and Securit

Network Attached Storage

enabled by standard file access protocols
— CIFS, NFS, HTTP, FTP

¢ a “Storage Appliance”

—you plug it in, and you start using it

may provide advanced functionality

— mirroring (or RAID-5) with automatic recovery

— snap-shots

does not expose details of its implementation
— CPU, OS5, file systems, disks

tributed Systems - Synchronization and Securit

(Client-side VFS implementation)

¢ plug-in interface for file system
implementations
— each implements a set of basic methods

create, delete, open, close, getblock, putblock, link,
unlink, read directory, etc.

— translates logical operations into disk operations

* Remote File Systems can also be implemented

— translate each standard method into messages
— forward those requests to a remote file server
— RFS client only knows the RFS protocol
it does not know the underlying on-disk implementation

Distributed Systems - Synchronization and Securit

Server Side Implementation

RFS Server Daemon

—receives and decodes messages

— does requested operations on local file system
may be implemented in user- or kernel-mode
— kernel daemon may offer better performance

— user-mode is much easier to implement
one daemon may serve all incoming requests
— higher performance, fewer context switches
could be many per-user-session daemons

— simpler, and probably more secure

Distributed Systems - Synchronization and Securit

Degrees of Distribution

Remote File Access

— one server owns disks and implements file
systems

— clients access files via remote access protocols
Clustered File Servers

— multiple servers, each owns disks and file systems
— cooperate to provide a single virtual NAS service
Distributed File Systems

— N servers and M disks

— multiple servers can concurrently use same disk
— “Don’t try this one at home, kids”

distributed Systems - Synchronization and Security

