
6/6/2017

1

Distributed File Systems

14B. Remote Data: Security

14C. Remote Data: Reliability & Robustness

14D. Remote Data: Performance

14E. Remote Data: Consistency

14F. Distributes Systems: Scalability

Distributed Data - Performance, Robustness, Consistency 1

Security: Anonymous access

• all files available to all users

– no authentication required

– may be limited to read-only access

– examples: anonymous FTP, HTTP

• advantages

– simple implementation

• disadvantages

– incapable of providing information privacy

– write access often managed by other means

Distributed Data - Performance, Robustness, Consistency 2

Peer-to-Peer Security

• client-side authentication/authorization

– all users are known to all systems

– all systems are trusted to enforce access control

– example: basic NFS

• advantages

– simple implementation

• limitations

– assumes all client systems can be trusted

– assumes all users are known to all systems

• UID mapping between heterogeneous OSs

• efficiency /scalability of universal user registries

Distributed Data - Performance, Robustness, Consistency 3

Server Authenticated Sessions

• client agent authenticates to each server

– session authorization based on those credentials

– example: CIFS, authenticated HTTPS sessions

• advantages

– simple implementation

• disadvantages

– may not work in heterogeneous OS environment

– universal user registry is not scalable

– no automatic fail-over if server dies

Distributed Data - Performance, Robustness, Consistency 4

Domain Authentication Service

• independent authentication of client & server

– each authenticates with authentication service

– each knows/trusts only the authentication service

• authentication service issues signed “tickets”

– assuring each of the others’ identity and rights

– may be revocable or have a limited life-time

• may establish secure two-way session

– privacy – nobody else can snoop on conversation

– integrity – nobody can generate fake messages

5Distributed Data - Performance, Robustness, Consistency

example: KERBEROS
• establishes secure client/server sessions

• based on digital signatures
– every agent has a secret (symmetric) key

– keys are known only to agent, and KERBEROS

• request to KERBEROS encrypted w/client key
– KERBEROS can decrypt it, authenticating requester

• KERBEROS response is two-part work ticket
– part 1: encrypted with client's key

• a symmetric session key
• part 2 (to be forward, by client, to server)

– part 2: encrypted with server's key
• client ID, ticket duration,
• symmetric session key

6Distributed Data - Performance, Robustness, Consistency

6/6/2017

2

KERBEROS Work Tickets

request
client ID
server ID

expiration time

Client Authentication

Service
Server

C-ticket
session key

server ID
expiration time

S-ticket
session key

client ID
expiration time

generate session key

encrypt w/server key

encrypt w/client keydecrypt w/client key decrypt w/server key

subsequent communication encrypted w/symmetric session keys

7Distributed Data - Performance, Robustness, Consistency

Distributed Authorization

• Authentication service returns credentials

– which server checks against Access Control List

– advantage: auth service doesn’t know about ACLs

• Authentication service returns Capabilities

– which server can verify (by signature)

– advantage: servers do not know about clients

• Both approaches are commonly used

– credentials: if subsequent authorization required

– capabilities: if access can be granted all-at-once

– either may have an expiration time

Distributed Data - Performance, Robustness, Consistency 8

Robustness: Embracing Failure

• Failures are inevitable

– more components have more failures

– complex systems have more modes of failure

– we cannot build perfect components or systems

• We must build robust systems

– additional capacity to survive failures

– automatic failure detection

– dynamically adapt to the new reality

– continue service, despite component failures

Distributed Data - Performance, Robustness, Consistency 9

Reliability and Availability

• Reliability … probability of not losing data

– disk/server failures to not result in data loss

• RAID (mirroring, parity, erasure coding)

• copies on multiple servers

– automatic recovery (of redundancy) after failure

• Availability … fraction of time service available

– disk/server failures do not impact data availability

• backup servers with automatic fail-over

– automatic recovery (back up to date) after rejoin

Distributed Data - Performance, Robustness, Consistency 10

Problems and Solutions

• Network Errors – support client retries

– RFS protocol uses idempotent requests

– RFS protocol supports all-or-none transactions

• Client Failures – support server-side recovery

– automatic back-out of uncommitted transactions

– automatic expiration of timed out lock leases

• Server Failures – support server fail-over

– replicated (parallel or back-up) servers

– stateless RFS protocols

– automatic client-server rebinding

11Distributed Data - Performance, Robustness, Consistency

Availability: Fail-Over

• data must be mirrored to secondary server

• failure of primary server must be detected

• client must be failed-over to secondary

• session state must be reestablished

– client authentication/credentials

– session parameters (e.g. working directory, offset)

• in-progress operations must be retransmitted

– client must expect timeouts, retransmit requests

– client responsible for writes until server ACKs

Distributed Data - Performance, Robustness, Consistency 12

6/6/2017

3

Reliability: Data Mirroring

Distributed Data - Performance, Robustness, Consistency 13

client primary

secondary

Back-side Mirroring

client primary

secondary

secondary

Front-side Mirroring

secondary

Availability: Failure Detect/Rebind

• client driven recovery

– client detects server failure (connection error)

– client reconnects to (successor) server

– client reestablishes session

• transparent failure recovery

– system detects server failure (health monitoring)

– successor assumes primary’s IP address

– state reestablishment

• successor recovers last primary state check-point

• stateless protocol

Distributed Data - Performance, Robustness, Consistency 14

Availability: Stateless Protocols

• a statefull protocol (e.g. TCP)

– operations occur within a context

– each operation depends on previous operations

– successor server must remember session state

• a stateless protocol (e.g. HTTP)

– client supplies necessary context w/each request

– each operation is complete and unambiguous

– successor server has no memory of past events

• stateless protocols make fail-over easy

15Distributed Data - Performance, Robustness, Consistency

Availability: Idempotent Operations

• can be repeated many times with same effect

– read block 100 of file X

– write block 100 of file X with contents Y

– delete file X version 3

– non-idempotent operations
• read next block of current file

• append contents Y to end of file X

• if client gets no response, resend request

– if server gets multiple requests, no harm done

– works for server failure, lost request, lost response
• but no ACK does not mean operation did not happen

16Distributed Data - Performance, Robustness, Consistency

(nearly) Stateless Protocols

• client can maintain the session state

– e.g. file handles and current offsets

• write operations can be made idempotent

– e.g. associate a client XID with each write

• idempotence doesn’t solve multi-writer races

– competing writers must serialize their updates

– clients cannot be trusted to maintain lock state

• we need a state-full Distributed Lock Manager

– for whom failure recovery is extremely complex

Distributed Data - Performance, Robustness, Consistency 17

Performance Challenges

• single client response-time
– remote requests involve messages and delays
– error detection/recovery further reduces efficiency

• aggregate bandwidth
– each client puts message processing load on server
– each client puts disk throughput load on server

– each message loads server NIC and network

• WAN scale operation
– where bandwidth is limited and latency is high

• aggregate capacity
– how to transparently grow existing file systems

A3

A4

18Distributed Data - Performance, Robustness, Consistency

6/6/2017

4

Performance: Bandwidth

Distributed Data - Performance, Robustness, Consistency 19

client primary

client

client

a single server has limited throughput

client primary

primary

primary

striping files across

multiple servers

provides scalable

throughput

Performance: Minimize Messaging

• Protocol features

– as few messages as possible

– client-side caching to eliminate read requests

– aggregation for fewer/larger write requests

• Work Partitioning

– do as much as possible on the client

– do as much as possible on a single server

– eliminate multi-node coordination

– eliminate multi-node request forwarding

Distributed Data - Performance, Robustness, Consistency 20

Performance: Read Requests

• client-side caching

– eliminate waits for remote read requests

– reduces network traffic

– reduces per-client load on server

• whole file (vs. block) caching

– higher network latency justifies whole file pulls

– stored in local (cache-only) file system

– satisfy early reads before entire file arrives

– risk: may read data we won’t actually use

Distributed Data - Performance, Robustness, Consistency 21

Performance: Write Requests

• write-back cache

– create the illusion of fast writes

– combine small writes into larger writes

– fewer, larger network and disk writes

– enable local read-after-write consistency

• whole-file updates

– wait until close(2) or fsync(2)

– reduce many successive updates to final result

– possible file will be deleted before it is written

– enable atomic updates, close-to-open consistency

Distributed Data - Performance, Robustness, Consistency 22

Performance: Cost of Mirroring

• multi-host vs multi-disk mirroring

– protects against host and disk failures

– creates much additional network traffic

• mirroring by primary

– primary becomes throughput bottleneck

– replication traffic on back-side network

• mirroring by client

– data flows directly from client to storage servers

– replication traffic goes through client NIC

– parity/erasure code computation on client CPU

Distributed Data - Performance, Robustness, Consistency 23

Performance: Direct Data Path

Distributed Data - Performance, Robustness, Consistency 24

client

server server primary server server

server server

primary

server server

all data flows through primary

data direct to storage nodes

6/6/2017

5

(benefits of direct data path)

• architecture

– primary tells clients where which data resides

– client communicates directly w/storage servers

• throughput

– data is striped across multiple storage servers

• latency

– no intermediate relay through primary server

• scalability

– fewer messages on network

– much less data flowing through primary servers

Distributed Data - Performance, Robustness, Consistency 25

Performance: Partitioning the Work

open file instances, offsets

device driver

device driver integration layer

block caching

data packing and unpacking

logical to physical block mapping

directory searching

clearly on
server side

clearly on
client side

either side
(or both)

authentication/authorization

on-disk data representation

C3

26
Distributed Data - Performance,

Robustness, Consistency

Performance: Recovery Time

Distributed Data - Performance, Robustness, Consistency 27

full

service

no

service

Mean Time To Failure

h/w, s/w, external

Mean Time To Repair

1. detect failure

2. promote 2nd-ary

3. journal recovery

4. clients re-bind

5. reestablish session state

re-replication

Availability = MTTF

MTTF + MTTR

degraded

service

we can try to maximize MTTF

we can try to minimize MTTR

(improving MTTR)

• MTTR (time before service can be restored)

– primary failure detected (minimize)

– secondary promoted to primary role (minimize)

– recent/in-progress operations recovered

– clients learn of change and re-bind

– session state (if any) has been reestablished

• Degraded service may persist longer

– restoring lost redundancy may take a while

– heavily loading servers, disks, and network

Distributed Data - Performance, Robustness, Consistency 28

Performance: Cost of Consistency

• caching is essential in distributed systems

– for both performance and scalability

• caching is easy in a single-writer system

– force all writes to go through the cache

• multi-writer distributed caching is hard

– Time To Live is a cute idea that doesn’t work

– constant validity checks defeat the purpose

– one-writer-at-a-time is too restrictive for most FS

– change notifications are a reasonable alternative

Distributed Data - Performance, Robustness, Consistency 29

Andrew File System

• scalability, performance

– large numbers of clients and very few servers

– performance of local file systems

– very low per-client load imposed on servers

– no administration or back-up for client disks

• master files reside on a file server

– local file system is used as a local cache

– local reads satisfied from cache whenever possible

– files are only read from server if not in cache

• simple synchronization of updates

30Distributed Data - Performance, Robustness, Consistency

6/6/2017

6

Andrew File System Architecture

E
X

T3 F
S

block I/O

A
ndrew

 R
elay

socket
I/O

disk
driver

NIC
driver

UDP

IP

MAC
driver

remote server
file system

client server

TCP

block I/O

E
X

T3 F
S

socket
I/O

disk
driver

NIC
driver

UDP

IP

MAC
driver

TCP

Andrew Agent

local FS
(cache only)

Andrew cache
mangaer

31
Distributed Data - Performance,

Robustness, Consistency

(Andrew File System – Replication)

• check for local copies in cache at open time

– if no local copy exists, fetch it from server

– if local copy exists, see if it is still up-to-date

• compare file size and modification time with server

– optimizations reduce overhead of checking

• subscribe/broadcast change notifications

• time-to-live on cached file attributes and contents

• send updates to server when file is closed

– wait for all changes to be completed

– file may be deleted before it is closed
D9

32Distributed Data - Performance, Robustness, Consistency

Andrew File System – Reconciliation

• updates sent to server when local copy closed

• server notifies all clients of change

– warns them to invalidate their local copy

– warns them of potential write conflicts

• server supports only advisory file locking

– distributed file locking is extremely complex

• clients are expected to handle conflicts

– noticing updates to files open for write access

– notification/reconciliation strategy is unspecified

33Distributed Data - Performance, Robustness, Consistency

Rating Andrew File System

• Performance and Scalability

– all file access by user/applications is local

– update checking (with call-backs) is relatively cheap

– both fetch and update propagation are very efficient

– minimal per-client server load (once cache filled)

• Robustness

– no server fail-over, but have local copies of most files

• Transparency

– mostly perfect - all file access operations are local

– pray that we don't have any update conflicts
D10

34Distributed Data - Performance, Robustness, Consistency

Andrew File System vs. NFS

• design centers

– both designed for continuous connection client/server

– NFS supports diskless clients w/o local file systems

• performance

– AFS generates much less network traffic, server load

– they yield similar client response times

• ease of use

– NFS provides for better transparency

– NFS has enforced locking and limited fail-over

• NFS requires more support in operating system

35Distributed Data - Performance, Robustness, Consistency

Complication: Failure & Rejoin

• a file server goes down

– no problem another server handles his clients

• then he comes back up and reports for work

– he needs to get all the updates he missed

• How do we know what updates he missed?

– we could compare all of his files with all of ours

• that could take a very long time

– we can keep a log of all recent updates

• but we have to know which ones he already has

• maybe files are versioned, or updates are numbered

36Distributed Data - Performance, Robustness, Consistency

6/6/2017

7

Complication: Split-Brain

• suppose we had a network failure

– that partitioned our file servers

– and each half tried to take over for the other

– and each half processed different write operations

• How could we reconcile the changes

– we could merge updated versions of different files

– what about files that were changed in both halves?

• Quorum rules can prevent “dueling servers”

– servers that can’t make quorum are read-only

37Distributed Data - Performance, Robustness, Consistency

Complication: Disconnected Operation

• Consider a notebook and a file server

– I synchronize my notebook with the file server

– I go away on a trip and update many files

– others may change the same files on the server

• How can we identify all of the changes?
– Intercept & log all changes (e.g. Windows Briefcase)

– Differential Analysis vs. a baseline (e.g. rsync)

• How can we correctly reconcile conflicts?

– perhaps some can be handled automatically

– some may require manual (human) resolution

E2

E3

38Distributed Data - Performance, Robustness, Consistency

Scalability – Traffic

• network messages are expensive

– NIC and network capacity to carry them

– server CPU cycles to process them

– client delays awaiting responses

• minimize messages/client/second

– cache results to eliminate requests entirely

– enable complex operations w/single request

– buffer up large writes in write-back cache

– pre-fetch large reads into local cache

Distributed Data - Performance, Robustness, Consistency 39

Scalability - Bottlenecks

• avoid a single control points

– partition responsibility over many nodes

• separated data- and control-planes

– control nodes choreograph the flow of data

• where data should be stored or obtained from

• ensuring coherency and correct serialization

– data flows directly from producer to consumer

• data paths are optimized for throughput/efficiency

• dynamic re-partitioning of responsibilities

– in response to failures and/or load changes

Distributed Data - Performance, Robustness, Consistency 40

Control and Data Planes

Distributed Data - Performance, Robustness, Consistency 41

client
metadata

server

storage

server

storage

server

storage

server

control plane

data plane

Scalability: Cluster Protocols

• Consensus protocols do not scale well

– they only work for small numbers of nodes

• Minimize number of consensus operations

– elect a single master who makes decisions

– partitioned and delegated responsibility

• Avoid large-consensus/transaction groups

– partition work among numerous small groups

• Avoid high communications fan-in/fan-out

– hierarchical information gathering/distribution

Distributed Data - Performance, Robustness, Consistency 42

6/6/2017

8

Data Plane: small transaction clusters

Distributed Data - Performance, Robustness, Consistency 43

Control Plane: hierarchical reporting

Distributed Data - Performance, Robustness, Consistency 44

Assignments

• Projects

– get started on P4C

• SSL connections may be difficult to debug

• there are no slip days on this project

• Reading (31pp)

– AD C10 (SMP scheduling)

– Multi-Processors

– Clustering Concepts

– Horizontally Scaled Systems

– Eventual Consistency

– AD appx B (virtual machines)

Distributed Data - Performance, Robustness, Consistency 45

