Distributed File Systems

14B. Remote Data: Security

14C. Remote Data: Reliability & Robustness
14D. Remote Data: Performance

14E. Remote Data: Consistency

14F. Distributes Systems: Scalability

Distributed Data - Performance, Robustness, Consistenc

6/6/2017

Security: Anonymous access

all files available to all users

— no authentication required

— may be limited to read-only access

— examples: anonymous FTP, HTTP
advantages

— simple implementation
disadvantages

—incapable of providing information privacy
— write access often managed by other means

tributed Data - Performance, Robustness, Consistenc

Peer-to-Peer Security

client-side authentication/authorization

— all users are known to all systems

— all systems are trusted to enforce access control
— example: basic NFS

advantages

— simple implementation

limitations

— assumes all client systems can be trusted

— assumes all users are known to all systems
* UID mapping between heterogeneous OSs
« efficiency /scalability of universal user registries

Distributed Data - P ance, Robustness, Consistenc

Server Authenticated Sessions

client agent authenticates to each server

— session authorization based on those credentials
— example: CIFS, authenticated HTTPS sessions
advantages

— simple implementation

disadvantages

— may not work in heterogeneous OS environment
— universal user registry is not scalable

— no automatic fail-over if server dies

ted Data - P ance, Robustness, Consistenc

Domain Authentication Service

¢ independent authentication of client & server
— each authenticates with authentication service
— each knows/trusts only the authentication service
¢ authentication service issues signed “tickets”
— assuring each of the others’ identity and rights
— may be revocable or have a limited life-time
* may establish secure two-way session
— privacy — nobody else can snoop on conversation

— integrity — nobody can generate fake messages

Distributed Data - Performance, Robustness, Consistenc

example: KERBEROS

establishes secure client/server sessions

based on digital signatures

— every agent has a secret (symmetric) key

— keys are known only to agent, and KERBEROS
request to KERBEROS encrypted w/client key
— KERBEROS can decrypt it, authenticating requester
KERBEROS response is two-part work ticket

— part 1: encrypted with client's key

¢ a symmetric session key

* part 2 (to be forward, by client, to server)
— part 2: encrypted with server's key

« client ID, ticket duration,

* symmetric session key

uted Data - Performance, Robustness, Consistenc

KERBEROS Work Tickets
Client Autf;entication Server

request

clientID |—————— generate session key
server ID
xpiration tim

C-ticket S-ticket
session key |[sessionkey
server D ient |D
Expiration timeexg on tim

encrypt w/server key

decrypt w/client key encrypt w/client key

decrypt w/server key

subsequent communication encrypted w/symmetric session keys

Distributed Data - Performance, Robustness, Consistenc

6/6/2017

Distributed Authorization

* Authentication service returns credentials
— which server checks against Access Control List
— advantage: auth service doesn’t know about ACLs
¢ Authentication service returns Capabilities
— which server can verify (by signature)
—advantage: servers do not know about clients
¢ Both approaches are commonly used
— credentials: if subsequent authorization required
— capabilities: if access can be granted all-at-once
— either may have an expiration time

Distributed Data - Performance, Robustness, Consistenc

Robustness: Embracing Failure

e Failures are inevitable

— more components have more failures

— complex systems have more modes of failure

— we cannot build perfect components or systems
* We must build robust systems

— additional capacity to survive failures

— automatic failure detection

— dynamically adapt to the new reality

— continue service, despite component failures

Distributed Data - P ance, Robustness, Consistenc

Reliability and Availability

¢ Reliability ... probability of not losing data
— disk/server failures to not result in data loss
¢ RAID (mirroring, parity, erasure coding)
¢ copies on multiple servers

— automatic recovery (of redundancy) after failure
¢ Availability ... fraction of time service available

— disk/server failures do not impact data availability
¢ backup servers with automatic fail-over

— automatic recovery (back up to date) after rejoin

Problems and Solutions

* Network Errors — support client retries
— RFS protocol uses idempotent requests
— RFS protocol supports all-or-none transactions

e Client Failures — support server-side recovery
— automatic back-out of uncommitted transactions
— automatic expiration of timed out lock leases

Server Failures — support server fail-over
— replicated (parallel or back-up) servers

— stateless RFS protocols

— automatic client-server rebinding

Distributed Data - Performance, Robustness, Consistenc

Availability: Fail-Over

* data must be mirrored to secondary server
e failure of primary server must be detected
e client must be failed-over to secondary

* session state must be reestablished

— client authentication/credentials
— session parameters (e.g. working directory, offset)

* in-progress operations must be retransmitted

— client must expect timeouts, retransmit requests
— client responsible for writes until server ACKs

istributed Data - Performance, Robustness, Consistenc

Reliability: Data Mirroring

client I ’I primary I

Front-side Mirroring

| client

Distributed Data - Performance, Robustness, Consistenc

6/6/2017

Availability: Failure Detect/Rebind

¢ client driven recovery
— client detects server failure (connection error)
— client reconnects to (successor) server
— client reestablishes session
e transparent failure recovery
— system detects server failure (health monitoring)
— successor assumes primary’s IP address
— state reestablishment

 successor recovers last primary state check-point
* stateless protocol

Distributed Data - Performance, Robustness, Consistenc

Availability: Stateless Protocols

« a statefull protocol (e.g. TCP)
— operations occur within a context
— each operation depends on previous operations
— successor server must remember session state

* a stateless protocol (e.g. HTTP)
— client supplies necessary context w/each request
— each operation is complete and unambiguous
— successor server has no memory of past events

* stateless protocols make fail-over easy

Availability: Idempotent Operations

¢ can be repeated many times with same effect
—read block 100 of file X
— write block 100 of file X with contents Y
— delete file X version 3
— non-idempotent operations
 read next block of current file
* append contents Y to end of file X
« if client gets no response, resend request
— if server gets multiple requests, no harm done

— works for server failure, lost request, lost response
¢ but no ACK does not mean operation did not happen

Distributed Data - P ance, Robustness, Consistenc

(nearly) Stateless Protocols

* client can maintain the session state
—e.g. file handles and current offsets

* write operations can be made idempotent
— e.g. associate a client XID with each write

¢ idempotence doesn’t solve multi-writer races
— competing writers must serialize their updates
— clients cannot be trusted to maintain lock state

¢ we need a state-full Distributed Lock Manager
— for whom failure recovery is extremely complex

Distributed Data - Performance, Robustness, Consistenc

Performance Challenges

¢ single client response-time
— remote requests involve messages and delays
— error detection/recovery further reduces efficiency
e aggregate bandwidth®
— each client puts message processing load on server
— each client puts disk throughput load on server
— each message loads server NIC and network
* WAN scale operatione
— where bandwidth is limited and latency is high
* aggregate capacity
— how to transparently grow existing file systems

Distributed Data - Performance, Robustness, Consistenc

Performance: Bandwidth

client a single server has limited throughput

client

@ striping files across

multiple servers

client @ provides scalable
throughput
=

b

Distributed Data - Perform

6/6/2017

Performance: Minimize Messaging

* Protocol features
— as few messages as possible
— client-side caching to eliminate read requests
— aggregation for fewer/larger write requests
e Work Partitioning
— do as much as possible on the client
— do as much as possible on a single server
— eliminate multi-node coordination
— eliminate multi-node request forwarding

Distributed Data - Performance, Robustness, Consistenc

Performance: Read Requests

e client-side caching
— eliminate waits for remote read requests
—reduces network traffic
—reduces per-client load on server
¢ whole file (vs. block) caching
— higher network latency justifies whole file pulls
— stored in local (cache-only) file system
— satisfy early reads before entire file arrives
— risk: may read data we won’t actually use

Distributed Data - P ance, Robustness, Consistenc

Performance: Write Requests

e write-back cache
— create the illusion of fast writes
— combine small writes into larger writes
— fewer, larger network and disk writes
— enable local read-after-write consistency
¢ whole-file updates
— wait until close(2) or fsync(2)
— reduce many successive updates to final result
— possible file will be deleted before it is written
— enable atomic updates, close-to-open consistency

Distributed Data - P ance, Robustness, Consistenc

Performance: Cost of Mirroring

¢ multi-host vs multi-disk mirroring
— protects against host and disk failures
— creates much additional network traffic
e mirroring by primary
— primary becomes throughput bottleneck
— replication traffic on back-side network
e mirroring by client
— data flows directly from client to storage servers
— replication traffic goes through client NIC
— parity/erasure code computation on client CPU

Distributed Data - Performance, Robustness, Consistenc

Performance: Direct Data Path

s s s g

server |

server | server |

server |

T 1 T T

all data flows through primary

data direct to storage nodes

server | | primary |

| server |

server |

— = = =

Distributed Data - Performance

server |

(benefits of direct data path)

* architecture
— primary tells clients where which data resides
— client communicates directly w/storage servers
¢ throughput
— data is striped across multiple storage servers
* latency
— no intermediate relay through primary server
scalability
— fewer messages on network
— much less data flowing through primary servers

Distributed Data - Performance, Robustness, Consistency

6/6/2017

Performance: Partitioning the Work

open file instances, offsets clearly on
client side
data packing and unpacking

authentication/authorization

i : either side
€]
directory searching (or both)
block caching
logical to physical block mapping
on-disk data representation
device driver integration layer clearly on
server side

device driver

Performance: Recovery Time

Availability = MTTF we can try to maximize MTTF
MTTF + MTTR we can try to minimize MTTR

Mean Time To Failure.
h/w, s/w, external

Mean Time To Repair
1. detect failure
2. promote 2"-ary
degraged 3. journal recovery
service 4. clients re-bind
5. reestablish session state

(improving MTTR)

e MTTR (time before service can be restored)
— primary failure detected (minimize)
— secondary promoted to primary role (minimize)
— recent/in-progress operations recovered
— clients learn of change and re-bind
— session state (if any) has been reestablished
¢ Degraded service may persist longer
— restoring lost redundancy may take a while
— heavily loading servers, disks, and network

Distributed Data - P ance, Robustness, Consistenc

Performance: Cost of Consistency

* caching is essential in distributed systems
— for both performance and scalability

* caching is easy in a single-writer system
— force all writes to go through the cache

e multi-writer distributed caching is hard
—Time To Live is a cute idea that doesn’t work
— constant validity checks defeat the purpose
— one-writer-at-a-time is too restrictive for most FS
— change notifications are a reasonable alternative

Distributed Data - Performance, Robustness, Consistency

Andrew File System

* scalability, performance
— large numbers of clients and very few servers
— performance of local file systems
—very low per-client load imposed on servers
— no administration or back-up for client disks
* master files reside on a file server
— local file system is used as a local cache
— local reads satisfied from cache whenever possible
— files are only read from server if not in cache
* simple synchronization of updates

Distributed Data - Performance, Robustness, Consistency

Andrew File System Architecture

client server

Andrew cache
mangaer

Andrew Agent

fefox maspuy

block 110

6/6/2017

(Andrew File System — Replication)

¢ check for local copies in cache at open time
—if no local copy exists, fetch it from server
—if local copy exists, see if it is still up-to-date
* compare file size and modification time with server
— optimizations reduce overhead of checking
« subscribe/broadcast change notifications
* time-to-live on cached file attributes and contents
¢ send updates to server when file is closed
— wait for all changes to be completed
— file may be deleted before it is closed

Distributed Data - Performance, Robustness, Consistency

Dis

Andrew File System — Reconciliation

updates sent to server when local copy closed
server notifies all clients of change

— warns them to invalidate their local copy

— warns them of potential write conflicts

server supports only advisory file locking

— distributed file locking is extremely complex
clients are expected to handle conflicts

— noticing updates to files open for write access

— notification/reconciliation strategy is unspecified

tributed Data - Performance, Robustness, Consistenc

Rating Andrew File System

¢ Performance and Scalability
— all file access by user/applications is local
— update checking (with call-backs) is relatively cheap
— both fetch and update propagation are very efficient
— minimal per-client server load (once cache filled)
* Robustness
— no server fail-over, but have local copies of most files
¢ Transparency
— mostly perfect - all file access operations are local
— pray that we don't have any update conflicts

Distributed Data - Performance, Robustness, Consistenc

Andrew File System vs. NFS

design centers

— both designed for continuous connection client/server
— NFS supports diskless clients w/o local file systems
performance

— AFS generates much less network traffic, server load
— they yield similar client response times

ease of use

— NFS provides for better transparency

— NFS has enforced locking and limited fail-over

NFS requires more support in operating system

Distributed Data - Performance, Robustness, Consistency

Complication: Failure & Rejoin

* afile server goes down
— no problem another server handles his clients
 then he comes back up and reports for work
— he needs to get all the updates he missed
¢ How do we know what updates he missed?

— we could compare all of his files with all of ours
¢ that could take a very long time

— we can keep a log of all recent updates
* but we have to know which ones he already has
* maybe files are versioned, or updates are numbered

Distributed Data - Performance, Robustness, Consistency

Complication: Split-Brain

e suppose we had a network failure

— that partitioned our file servers

—and each half tried to take over for the other

— and each half processed different write operations
¢ How could we reconcile the changes

— we could merge updated versions of different files

— what about files that were changed in both halves?
e Quorum rules can prevent “dueling servers”

— servers that can’t make quorum are read-only

Distributed Data - Performance, Robustness, Consistenc

6/6/2017

Complication: Disconnected Operation

 Consider a notebook and a file server
— I synchronize my notebook with the file server
— | go away on a trip and update many files
— others may change the same files on the server
¢ How can we identify all of the changes?
— Intercept & log all changes (e.g. Windows Briefcase)

— Differential Analysis vs. a baseline (e.g. rsync) ®
e How can we correctly reconcile conflicts?
— perhaps some can be handled automatically ®

— some may require manual (human) resolution

Distributed Data - Performance, Robustness, Consistenc

Scalability — Traffic

¢ network messages are expensive
— NIC and network capacity to carry them
— server CPU cycles to process them
— client delays awaiting responses
¢ minimize messages/client/second
— cache results to eliminate requests entirely
— enable complex operations w/single request
— buffer up large writes in write-back cache
— pre-fetch large reads into local cache

Distributed Data - P ance, Robustness, Consistenc

Scalability - Bottlenecks

¢ avoid a single control points
— partition responsibility over many nodes
¢ separated data- and control-planes
— control nodes choreograph the flow of data
* where data should be stored or obtained from
 ensuring coherency and correct serialization
— data flows directly from producer to consumer
« data paths are optimized for throughput/efficiency
¢ dynamic re-partitioning of responsibilities
—in response to failures and/or load changes

Distributed Data - P ance, Robustness, Consistenc

Control and Data Planes

:
control plane

,..___.___-__.

storage
server

Scalability: Cluster Protocols

* Consensus protocols do not scale well
—they only work for small numbers of nodes
¢ Minimize number of consensus operations
— elect a single master who makes decisions
— partitioned and delegated responsibility
 Avoid large-consensus/transaction groups
— partition work among numerous small groups
* Avoid high communications fan-in/fan-out
— hierarchical information gathering/distribution

Distributed Data - Performance, Robustness, Consistenc

Data Plane: small transaction clusters

oe

OX @) -
o0
L JOX N N XN

6/6/2017

Control Plane: hierarchical reporting

Assignments

* Projects
— get started on P4C

¢ SSL connections may be difficult to debug
« there are no slip days on this project

¢ Reading (31pp)
— AD C10 (SMP scheduling)
— Multi-Processors
— Clustering Concepts
— Horizontally Scaled Systems
— Eventual Consistency
— AD appx B (virtual machines)

Distributed Data - Performance, Robustness, Consistency

