4/5/2017

Resources, Services, and Interfaces

2A. OS Services, Layers and Mechanisms
2B. Service Interfcaes

2C. Standards and Stability

2D. Services and Abstract Resources

Services: Hardware Abstractions

¢ CPU/Memory abstractions

— processes, threads, virtual machines

— virtual address spaces, shared segments

— signals (as execution exceptions)
* Persistent Storage abstractions

— files and file systems, virtual LUNs

— databases, key/value stores, object stores
» other I/O abstractions

— virtual terminal sessions, windows

— sockets, pipes, VPNs, signals (as interrupts)

esources, Services, and Interfaces

Services: Higher Level Abstractions

e cooperating parallel processes
— locks, condition variables
— distributed transactions, leases
* security
— user authentication
— secure sessions, at-rest encryption
* user interface
— GUI widgetry, desktop and window management
— multi-media

Resources, Services, and Interfaces

Services: under the covers

¢ enclosure management
— hot-plug, power, fans, fault handling
¢ software updates and configuration registry
¢ dynamic resource allocation and scheduling
— CPU, memory, bus resources, disk, network
¢ networks, protocols and domain services
— USB, BlueTooth
— TCP/IP, DHCP, LDAP, SNMP
— iSCSI, CIFS, NFS

Resources, Services, and Interfaces

Software Layering

Operating System
services

middle-ware
services

Application Binary Interface

| general libraries |

_
Instruction Set Architecture

Service delivery via subroutines

* access services via direct subroutine calls

— push parameters, jump to subroutine, return
values in registers on on the stack

¢ advantages
— extremely fast (nano-seconds)
— DLLs enable run-time implementation binding
» disadvantages
—all services implemented in same address space
— limited ability to combine different languages
— limited ability to change library functionality

Resources, Services, and Interfaces

Layers: libraries

¢ convenient functions we use all the time

— reusable code makes programming easier

— a single well written/maintained copy

— encapsulates complexity ... better building blocks
¢ multiple bind-time options

— static ... include in load module at link time

—shared ... map into address space at exec time

— dynamic ... choose and load at run-time

* itis only code ... it has no special privileges

Resources, Services, and Interfaces

4/5/2017

Service delivery via system calls

« force an entry into the operating system
— parameters/returns similar to subroutine
—implementation is in shared/trusted kernel
¢ advantages
— able to allocate/use new/privileged resources
— able to share/communicate with other processes
¢ disadvantages
—all implemented on the local node
— 100x-1000x slower than subroutine calls
— evolution is very slow and expensive

Resources, Services, and Interfaces

Software Layering

Operating System
services

middle-ware
services

Application Binary Interface

Layers: the kernel

e primarily functions that require privilege
— privileged instructions (e.g. interrupts, 1/0)
— allocation of physical resources (e.g. memory)
— ensuring process privacy and containment
— ensuring the integrity of critical resources
* some operations may be out-sourced
— system daemons, server processes
* some plug-ins may be less-trusted
— device drivers, file systems, network protocols

Resources, Services, and Interfaces

Kernel Structure (artists conception)

[
flenamespace | | authorzation fletio processthread -um mm
model model model model mws mws

= | configuratior H H = higher level
oscer | | “servees | | mona e s g

[| [oene | [] [|

virtual
==l execution
! engine

s
seheduing)

eman

[Lama | [z | [ammt | [oncbosiun]

|| uH mmmmmm Hp ;;;;; ||Dmmv| Huml
alocation frevey exceptions intalzation debugger Poetraction

==

Service delivery via messages

¢ exchange messages with a server (via syscalls)
— parameters in request, returns in response
* advantages:
— server can be anywhere on earth
— service can be highly scalable and available
— service can be implemented in user-mode code
¢ disadvantages:
— 1,000x-100,000x slower than subroutine
— limited ability to operate on process resources

Resources, Services, and Interfaces

Software Layering

Operating System
services

middle-ware
services

Application Binary Interface

| general libraries |

_
Instruction Set Architecture

4/5/2017

Layers: system services

* not all trusted code must be in the kernel
— it may not need to access kernel data structures
— it may not need to execute privileged instructions
* some are actually privileged processes
—login can create/set user credentials
— some can directly execute 1/0 operations
¢ some are merely trusted
— sendmail is trusted to properly label messages

— NFS server is trusted to honor access control data

Services, and Interfaces

Layers: middle-ware

¢ Software that is a key part of the application
or service platform, but not part of the OS
— database, pub/sub messaging system
— Apache, Nginx
— Hadoop, Zookeeper, Beowulf, OpenStack
— Cassandra, RAMCloud, Ceph, Gluster

* Kernel code is very expensive and dangerous
— user-mode code is easier to build, test and debug
— user-mode code is much more portable
— user-mode code can crash and be restarted

Resources, Services, and Interfaces

Where to implement a service

¢ How many different applications use it?

¢ How frequently is it used?

¢ How performance critical are the operations?
e How stable/standard is the functionality?

¢ How complex is the implementation?

¢ Are there issues of privilege or trust?

¢ Is the service to be local or distributed?

* Are there to be competing implementations?

Resources, Services, and Interfaces

Is it faster if it is in the OS?

¢ OSis no faster than a user-mode process
— CPU, instruction set, cache are the same
* some services involve expensive operations
— servicing interrupts ... faster in the kernel
— making system calls ... unnecessary in kernel
— process switches ... faster/less often in kernel
¢ but kernel code is very expensive
— difficult to build and test
— long delivery schedules, difficult to change

ces, and Interfaces

Why Do Interfaces Matter?

e primary value of OS is the apps it can run
— it must provide all services those apps need
—via the interfaces those apps expect
* correct application behavior depends on
— OS correctly implements all required services
— application uses services only in supported ways
¢ there are numerous apps and OS platforms
—itis not possible to test all combinations
— rather, we specify and test interface compliance

ces, and Interfaces

Application Programming Interfaces

¢ asource level interface, specifying
—include files
— data types, data structures, constants
— macros, routines, parameters, return values
* a basis for software portability
— recompile program for the desired ISA
— linkage edit with OS-specific libraries
— resulting binary runs on that ISA and OS
* they are (by definition) language specific
— but an API can be offered in many languages

d Interfaces

4/5/2017

Application Binary Interfaces

¢ a binary interface, specifying
— load module, object module, library formats
* what makes a blob of ones and zeroes a program
— data formats (types, sizes, alignment, byte order)
— calling sequences, linkage conventions
« itis independent of particular routine semantics
¢ a basis for binary compatibility
— one binary will run on any ABI compliant system
« e.g. all x86 Linux/BSD/0Sx/Solaris/...

* may even run on windows platforms

d Interfaces

Other interoperability interfaces

¢ Data formats and information encodings
— multi-media content (e.g. MP3, JPG)
—archival (e.g. tar, gzip)
— file systems (e.g. DOS/FAT, I1SO 9660)

* Protocols
— networking (e.g. ethernet, WLAN, TCP/IP)
— domain services (e.g. IMAP, LPD)
— system management (e.g. DHCP, SNMP, LDAP)
— remote data access (e.g. FTP, HTTP, CIFS, S3)

hd Int

Other interoperability interfaces

¢ Data formats and information encodings
— multi-media content (e.g. MP3, JPG)
—archival (e.g. tar, gzip)
— file systems (e.g. DOS/FAT, I1SO 9660)

* Protocols
— networking (e.g. ethernet, WLAN, TCP/IP)
— domain services (e.g. IMAP, LPD)
— system management (e.g. DHCP, SNMP, LDAP)
— remote data access (e.g. FTP, HTTP, CIFS, S3)

hd Int

Interoperability requires Completeness

* Interface specification must be complete
—all input parameters
—all output values
— all input/output behaviors
— all internal state or side-effects
¢ All specifications should be explicit
—no undocumented features

— not defined by an implementation’s behavior

d Interfaces

Interoperability requires compliance

* Complete interoperability testing impossible
— cannot test all applications on all platforms
— cannot test interoperability of all implementations
— new apps and platforms are added continuously

e Rather, we focus on the interfaces

— interfaces are completely and rigorously specified
— standards bodies manage the interface definitions
— compliance suites validate the implementations

¢ and hope that sampled testing will suffice

d Interfaces

Interoperability requires stability

* no program is an island
— programs use system calls
— programs call library routines
— programs operate on external files
— programs exchange messages with other software
¢ APl requirements are frozen at compile time
— execution platform must support those interfaces
— all partners/services must support those protocols
— all future upgrades must support older interfaces

sources, Services, and Interfaces

4/5/2017

Compatibility Taxonomy

upwards compatible (with ...)

— new version still supports previous interfaces
backwards compatible (with ...)

— will correctly interact with old protocol versions
versioned interface, version negotiation

— parties negotiate a mutually acceptable version
compatibility layer

— a cross-version translator

non-disruptive upgrade

— update components one-at-a-time w/o down-time

sources, Services, and Interfaces

Services: an object-oriented view

¢ my execution platform implements objects
—they may be bytes, longs and strings
—they may be processes, files, and sessions

e an object is defined by
— its properties, methods, and their semantics

¢ what makes a particular set of objects good
—they are powerful enough to do what | need
—they don’t force me to do a lot of extra work
—they are simple enough for me to understand

1d Interfaces

Better Objects and Operations

easier to use than the original resources

— disk I/0 without DMA, interrupts and errors
compartmentalize/encapsulate complexity
— a securely authenticated/encrypted channel
eliminate behavior that is irrelevant to user
— hide the slow erase cycle of flash memory
create more convenient behavior

— highly reliable/available storage from anywhere

d Interfaces

Simplifying Abstractions

hardware is fast, but complex and limited
— using it correctly is extremely complex

— it may not support the desired functionality
—itis not a solution, but merely a building block

encapsulate implementation details

— error handling, performance optimization

— eliminate behavior that is irrelevant to the user
e more convenient or powerful behavior

— operations better suited to user needs

sources, Services, and Interfaces

Generalizing Abstractions

make many different things appear the same
— applications can all deal with a single class

— often Lowest Common Denominator + sub-classes
requires a common/unifying model

— portable document format for printed output

— SCSI/SATA/SAS standard for disks, CDs, SSDs
usually involves a federation framework

— device-specific drivers

— browser plug-ins to handle multi-media data

sources, Services, and Interfaces

Federation Frameworks

¢ A structure that allows many similar, but
somewhat different things to be treated
uniformly

¢ By creating one interface that all must meet

¢ Then plugging in implementations for the
particular things you have

¢ E.g., make all hard disk drives accept the same
commands

— Even though you have 5 different models installed

1d Interfaces

4/5/2017

Layers of Abstraction: a browser

| display driver — izing ion for video |

| Browser — simplifying abstraction for data navigation |

o

| http — simplifying abstraction for remote file access |

| ssl — simplifying abstraction for secure communication |

1d Interfaces

Building Blocks and World Views

e An OS is a general purpose platform
— it must support a wide range of applications
—including those to be designed in the future
e OS services are software building blocks
— not solutions, but pieces for building solutions
¢ OS abstractions represent a world view
— concepts that encompass all possible s/w
— interaction rules to govern their combinations
— frame (guide/constrain) all future discussions

hd Int

Virtualizing Physical Resources

serially reusable (temporal multiplexing)

— used by multiple clients, one at a time

— requires access control to ensure exclusive access
partitionable resources (spatial multiplexing)
— different clients use different parts at same time
— requires access control for containment/privacy
sharable (no apparent partitioning or turns)

— often involves mediated access

— often involves under-the-covers multiplexing

hd Int

Serially Reusable Resources

* Used by multiple clients ... one at a time
— temporal multiplexing

* Require access control to ensure exclusivity
— while A has resource, nobody else can use it

¢ Require graceful transitions between users
— B will not start until A finishes
— B receives resource in like-new condition

e Examples: printers, bathroom stalls

d Interfaces

Partitionable Resources

Divided into disjoint pieces for multiple clients
— Spatial multiplexing
Needs access control to ensure:

— Containment: you cannot access resources outside
of your partition

— Privacy: nobody else can access resources in your
partition

Examples: RAM, hotel rooms

1d Interfaces

Shareable Resources

Usable by multiple concurrent clients
— Clients do not have to “wait” for access to resource
— Clients don’t “own” a particular subset of resource

May involve (effectively) limitless resources

— Air in a room, shared by occupants

— Copy of the operating system, shared by processes

¢ May involve under-the-covers multiplexing

— Cell-phone channel (time and frequency multiplexed)
— Shared network interface (time multiplexed)

Resources, Services, and Interfaces

4/5/2017

Assignments

* Projects

— get started on Project 0

— order your Edison and Grove sensor kit
¢ Reading for next Lecture

— linking and libraries

— linkage conventions

— A-D C3 ... introduction to processes

— A-D C4 ... processes

— A-DC5 ... process APIs

— A-D C6 ... process implementation

— kill(2), signal(2) ... Unix signals/exceptions

Resources, Services, and Interfaces

