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un-dispatching a running process

• somehow we enter the operating system

– e.g. via a yield system call or a clock interrupt

• state of the process has already been preserved

– user mode PC, PS and registers are already saved on 
stack

– supervisor mode registers are also saved on (the 
supervisor mode) stack

– descriptions of address space. and pointers to 
code, data and stack segments, and all other 
resources are already stored in the process descriptor

• yield CPU – call scheduler to select next process
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(re-)dispatching a process

• decision to switch is made in supv mode

– after state of current process has been saved

– the scheduler has been called to yield the CPU

• select the next process to be run

– get pointer to its process descriptor(s)

• locate and restore its saved state

– restore code, data, stack segments

– restore saved registers, PS, and finally the PC

• and we are now executing in a new process
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Blocking and Unblocking Processes

• Process needs an unavailable resource

– data that has not yet been read in from disk

– a message that has not yet been sent

– a lock that has not yet been released

• Must be blocked until resource is available

– change process state to blocked

• Un-block when resource becomes available

– change process state to ready
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Blocking and unblocking processes

• blocked/unblocked are merely notes to scheduler

– blocked processes are not eligible to be dispatched

• anyone can set them, anyone can change them

• this usually happens in a resource manager

– when process needs an unavailable resource

• change process's scheduling state to "blocked"

• call the scheduler and yield the CPU

– when the required resource becomes available

• change process's scheduling state to "ready"

• notify scheduler that a change has occurred 
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Primary and Secondary Storage

• primary = main (executable) memory

– primary storage is expensive and very limited

– only processes in primary storage can be run

• secondary = non-executable (e.g. Disk)

– blocked processes can be moved to secondary storage

– swap out code, data, stack and non-resident context

– make room in primary for other "ready" processes

• returning to primary memory

– process is copied back when it becomes unblocked
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Why we swap

• Make the best use of limited memory

– a process can only execute if it is in memory

– max # of processes limited by memory size

– if it isn't READY, it doesn't need to be in memory

• Improve CPU utilization

– when there are no READY processes, CPU is idle

– idle CPU time is wasted, reduced throughput

– we need READY processes in memory

• Swapping takes time and consumes I/O

– so we want to do it as little as possible
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Swapping Out

• Process’ state is in main memory

– code and data segments

– non-resident process descriptor

• Copy them out to secondary storage

– if we are lucky, some may still be there

• Update resident process descriptor

– process is no longer in memory

– pointer to location on 2ndary storage device

• Freed memory available for other processes
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Swapping Back In

• Re-Allocate memory to contain process

– code and data segments, non-resident process descriptor

• Read that data back from secondary storage

• Change process state back to Ready

• What about the state of the computations

– saved registers are on the stack

– user-mode stack is in the saved data segments

– supervisor-mode stack is in non-resident descriptor

• This involves a lot of time and I/O
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What is CPU Scheduling?

• Choosing which ready process to run next

• Goals:

– keeping the CPU productively occupied

– meeting the user’s performance expectations
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Goals and Metrics

• goals should be quantitative and measurable

– if something is important, it must be measurable

– if we want "goodness" we must be able to quantify it

– you cannot optimize what you do not measure

• metrics ... the way & units in which we measure

– choose a characteristic to be measured

• it must correlate well with goodness/badness of service

• it must be a characteristic we can measure or compute

– find a unit to quantify that characteristic

– define a process for measuring the characteristic

Scheduling Algorithms, Mechanisms, and Performance 12



4/14/2017

3

CPU Scheduling: Proposed Metrics
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• candidate metric: time to completion (seconds)

– different processes require different run times

• candidate metric: throughput (procs/second)

– same problem, not different processes

• candidate metric: response time (milliseconds)

– some delays are not the scheduler’s fault

• time to complete a service request, wait for a resource

• candidate metric: fairness (standard deviation)

– per user, per process, are all equally important

Rectified Scheduling Metrics

• mean time to completion (seconds)

– for a particular job mix (benchmark)

• throughput (operations per second)

– for a particular activity or job mix (benchmark)

• mean response time (milliseconds)

– time spent on the ready queue

• overall “goodness”

– requires a customer specific weighting function

– often stated in Service Level Agreements
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Different Kinds of Systems have 

Different Scheduling Goals
• Time sharing

– Fast response time to interactive programs

– Each user gets an equal share of the CPU

– Execution favors higher priority processes

• Batch

– Maximize total system throughput

– Delays of individual processes are unimportant

• Real-time

– Critical operations must happen on time

– Non-critical operations may not happen at all
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Non-Preepmtive Scheduling

• scheduled process runs until it yields CPU

– may yield specifically to another process

– may merely yield to "next" process

• works well for simple systems

– small numbers of processes

– with natural producer consumer relationships

• depends on each process to voluntarily yield

– a piggy process can starve others

– a buggy process can lock up the entire system
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Non-Preemptive: First-In-First-Out

• Algorithm:

– run first process in queue until it blocks or yields

• Advantages:

– very simple to implement

– seems intuitively fair

– all process will eventually be served

• Problems:

– highly variable response time (delays)

– a long task can force many others to wait (convoy)
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Example: First In First Out
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A B C

20 40 60 80 100 1200

20 40 60 80 100 1200

A B C

Tav = (10 +20 + 120)/3

= 50

Tav = (100 +110 + 120)/3

= 110
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Non-Preemptive: Shortest Job First

• Algorithm:

– all processes declare their expected run time

– run the shortest until it blocks or yields

• Advantages:

– likely to yield the fastest response time

• Problems:

– some processes may face unbounded wait times

• Is this fair?  Is this even “correct” scheduling?

– ability to correctly estimate required run time
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Starvation

• unbounded waiting times

– not merely a CPU scheduling issue

– it can happen with any controlled resource

• caused by case-by-case discrimination

– where it is possible to lose every time

• ways to prevent

– strict (FIFO) queuing of requests

• credit for time spent waiting is equivalent

• ensure that individual queues cannot be starved

– input metering to limit queue lengths
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Non-Preemptive: Priority

• Algorithm:

– all processes are given a priority

– run the highest priority until it blocks or yields

• Advantages:

– users control assignment of priorities

– can optimize per-customer “goodness” function

• Problems:

– still subject to (less arbitrary) starvation

– per-process may not be fine enough control
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Preemptive Scheduling

• a process can be forced to yield at any time

– if a higher priority process becomes ready

• perhaps as a result of an I/O completion interrupt

– if running process's priority is lowered

• Advantages

– enables enforced "fair share" scheduling

• Problems

– introduces gratuitous context switches

– creates potential resource sharing problems
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Forcing Processes to Yield

• need to take CPU away from process

– e.g. process makes a system call, or clock interrupt

• consult scheduler before returning to process

– if any ready process has had priority raised

– if any process has been awakened

– if current process has had priority lowered

• scheduler finds highest priority ready process

– if current process, return as usual

– if not, yield on behalf of the current process
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Preemptive: Round-Robin

• Algorithm

– processes are run in (circular) queue order

– each process is given a nominal time-slice

– timer interrupts process if time-slice expires

• Advantages

– greatly reduced time from ready to running

– intuitively fair

• Problems

– some processes will need many time-slices

– extra interrupts/context-switches add overhead
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Example: Round-Robbin
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A B C

20 40 60 80 100 1200

20 40 60 80 100 1200
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Trsp = (0 +30 + 60)/3

= 30

Trsp = (0 +11 + 22)/3

= 11

A

B C

A

B C

Costs of an extra context-switch

• entering the OS

– taking interrupt, saving registers, calling scheduler

• cycles to choose who to run

– the scheduler/dispatcher does work to choose

• moving OS context to the new process

– switch process descriptor, kernel stack

• switching process address spaces

– map-out old process, map-in new process

• losing hard-earned L1 and L2 cache contents
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Response Time/Throughput Trade-off

1000 500 200 125 80 60 40 20 12 8 4 1

Throughput

Response Time
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Time-Slice/Context Switch overhead

So which approach is best?

• preemptive has better response time

– but what should we choose for our time-slice?

• non-preemptive has lower overhead
– but how should we order our the processes?

• there is no one “best” algorithm
– performance depends on the specific job mix

– goodness is measured relative to specific goals

• a good scheduler must be adaptive
– responding automatically to changing loads

– configurable to meet different requirements
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The “Natural” Time-Slice

• CPU share = time_slice x slices/second

2% = 20ms/sec 2ms/slice x 10 slices/sec

2%  = 20ms/sec 5ms/slice x 4 slices/sec 

• context switches are far from free

– they waste otherwise useful cycles

– they introduce delay into useful computations

• natural rescheduling interval

– when a process blocks for resources or I/O

– optimal time-slice would be based on this period
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Dynamic Multi-Queue Scheduling
• natural time-slice is different for each process

– create multiple ready queues

– some with short time-slices that run more often

– some with long time-slices that run infrequently

– different queues may get different CPU shares

• Advantages:
– response time very similar to Round-Robin

– relatively few gratuitous preemptions

• Problem:

– how do we know where a process belongs
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Dynamic Equilibrium

• Natural equilibria are seldom calibrated

• Usually the net result of

– competing processes

– negative feedback

• Once set in place these processes

– are self calibrating

– automatically adapt to changing circumstances

• The tuning is in rate and feedback constants

– avoid over-correction, ensure covergence
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Dynamic Multi-Queue Scheduling
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tsmax = ∞
real time queue

#tse = ∞#yield = ∞

tsmax = 500us
short quantum queue

#tse = 10#yield = ∞

tsmax = 2ms
medium quantum queue

#tse = 50#yield = 10

tsmax = 5ms
long quantum queue

#tse = ∞#yield = 20

share
scheduler
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50%

25%
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Mechanism/Policy Separation

• simple built-in scheduler mechanisms

– always run the highest priority process

– formulae to compute priority and time slice length

• controlled by user specifiable policy

– per process (inheritable) parameters
– initial, relative, minimum, maximum priorities

– queue in which process should be started (or resumed)

– these can be set based on user ID, or program being run

– per queue parameters
– maximum time slice length and number of time slices

– priority change per unit of run time and wait time

– CPU share (absolute or relative to other queues)
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Real Time Schedulers

• Some things must happen at particular times

– if you can’t process the next sound sample in 

time, there will be a gap in the music

– if you don’t rivet the widget before the conveyer 

belt moves, you have a manufacturing error

– if you can’t adjust the spoilers quickly enough, the 

space shuttle goes out of control

• Real Time scheduling has deadlines

– they can be either soft or hard
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Hard Real Time Schedulers

• The system absolutely must meet its deadlines

• By definition, system fails if a deadline is not 

met

– e.g., controlling a nuclear power plant . . .

• How can we ensure no missed deadlines?

• Typically by careful design-time analysis

– prove no possible schedule misses a deadline

– scheduling order may be hard-coded
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Ensuring Hard Deadlines
• Requires deep understanding of all code

– we know exactly how long it will take in every case

• Avoid complex operations w/non-deterministic times

– e.g. interrupts, garbage collection

• Predictability is more important than speed

– non-preemptive, fixed execution order

– no run time decisions
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Soft Real Time Schedulers

• Highly desirable to meet your deadlines

– some (or any) can occasionally be missed

• Goal of scheduler is to avoid missing deadlines

– with the understanding that you might

– sometimes called “best effort”

• May have different classes of deadlines

– some “harder” than others

• May have more dynamic/variable traffic

– rendering up-front analysis impractical
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Soft Real Time and Preemption

• All tasks need not always run to completion

– we are allowed to miss some deadlines

• A high priority near-deadline task may arrive

– it should preempt a lower priority task

• What if we miss (or cannot make) a deadline?

– we fall behind, run it as soon as possible?

– skip this invocation, we will catch it next time?

– kill the task that missed its deadline?

This is a policy question, let the programmer decide
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Soft Real-Time Algorithms?

• Most common is Earliest Deadline First

– each job has a deadline associated with it

– keep the job queue sorted by those deadlines

– always run the first job on the queue

• Minimizes total lateness

• Possible refinements

– skip jobs that are already late

– drop low priority jobs when system is overloaded
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Example of a Soft Real Time Scheduler

• A video playing device

• Frames arrive (e.g. from disk or network)

• Each frame should be rendered “on time”

– to achieve highest user-perceived quality

• If a frame is late, skip it

– rather than fall further behind
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Graceful Degradataion

• System overloads will happen

– random fluctuations in traffic

– load bursts from unanticipated events

– additional work associated with errors

• What to do when the system is overloaded?

– offer slower service to all clients?

– allow deadlines to get later and later?

– offer on-time service to fewer clients?

• We must choose (or allow clients to do so)
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CPU Scheduling is not Enough

• CPU scheduler chooses a ready process

• memory scheduling

– a process on secondary storage is not ready

• resource allocation

– a process waiting for a resource is not ready

• I/O scheduling

– a process waiting for I/O is not ready

• cache management

– if process data is not cached, it will need more I/O
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Assignments

• Projects

– try to get P1A running, take problems to lab

• Reading

– A-D 12 (introduction to memory)

– A-D 13 (address spaces)

– A-D 14 (memory APIs)

– A-D 17 (allocation algorithms)
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Supplementary Slides

Pros and Cons of 

Non-Preemptive Scheduling

+ Low scheduling overhead

+ Tends to produce high throughput

+ Conceptually very simple

− Poor response time for processes

− Bugs can cause machine to freeze up

− If process contains infinite loop, e.g.

− Not good fairness (by most definitions)

− May make real time and priority scheduling difficult
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Hard Priorities Vs. Soft Priorities

• What does a priority mean?

• That the higher priority has absolute 

precedence over the lower?

– Hard priorities

– That’s what the example showed

• That the higher priority should get a larger 

share of the resource than the lower?

– Soft priorities
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