
4/14/2017

1

IPC, Threads, Races, Critical Sections

7A. Inter-Process Communication

3T. Threads

7B. The Critical Section Problem

1IPC, Threads, Races and Critical Sections

Inter-Process Communication

• the exchange of data between processes

• Goals

– simplicity

– convenience

– generality

– efficiency

– security/privacy

– robustness and reliability

• some of these turn out to be contradictory

IPC, Threads, Races and Critical Sections 2

OS Support For IPC

• Wide range of semantics

– may appear to be another kind of file

– may involve very different APIs

• provide more powerful semantics

• more accurately reflect complex realities

• Connection establishment mediated by the OS

– to ensure authentication and authorization

• Data exchange mediated by the OS

– to protect processes from one-another

– to ensure data integrity and authenticity

3IPC, Threads, Races and Critical Sections

Typical IPC Operations
• channel creation and destruction

• write/send/put

– insert data into the channel

• read/receive/get

– extract data from the channel

• channel content query

– how much data is currently in the channel

• connection establishment and query

– control connection of one channel end to another

– who are end-points, what is status of connections

4IPC, Threads, Races and Critical Sections

IPC: messages vs streams

• streams

– a continuous stream of bytes

– read or write few or many bytes at a time

– write and read buffer sizes are unrelated

– stream may contain app-specific record delimiters

• Messages (aka datagrams)

– a sequence of distinct messages

– each message has its own length (subject to limits)

– message is typically read/written as a unit

– delivery of a message is typically all-or-nothing

5IPC, Threads, Races and Critical Sections

IPC: flow-control

• queued messages consume system resources

– buffered in the OS until the receiver asks for them

• many things can increase required buffer space

– fast sender, non-responsive receiver

• must be a way to limit required buffer space

– back-pressure: block sender or refuse message

– receiver side: drop connection or messages

– this is usually handled by network protocols

• mechanisms to report stifle/flush to sender

6IPC, Threads, Races and Critical Sections

4/14/2017

2

IPC: reliability and robustness
• reliable delivery (e.g. TCP vs UDP)

– networks can lose requests and responses

• a sent message may not be processed
– receiver invalid, dead, or not responding

• When do we tell the sender "OK"?
– queued locally? added to receivers input queue?

– receiver has read? receiver has acknowledged?

• how persistent is system in attempting to deliver?
– retransmission, alternate routes, back-up servers, ...

• do channel/contents survive receiver restarts?
– can new server instance pick up where the old left off?

7IPC, Threads, Races and Critical Sections

Simplicity: pipelines

• data flows through a series of programs

– ls | grep | sort | mail

– macro processor | complier | assembler

• data is a simple byte stream

– buffered in the operating system

– no need for intermediate temporary files

• there are no security/privacy/trust issues

– all under control of a single user

• error conditions

– input: End of File output: SIGPIPE

IPC, Threads, Races and Critical Sections 8

Generality: sockets

• connections between addresses/ports
– connect/listen/accept

– lookup: registry, DNS, service discovery protocols

• many data options
– reliable (TCP) or best effort data-grams (UDP)

– streams, messages, remote procedure calls, …

• complex flow control and error handling
– retransmissions, timeouts, node failures

– possibility of reconnection or fail-over

• trust/security/privacy/integrity
– we have a whole lecture on this subject

IPC, Threads, Races and Critical Sections 9

half way: mail boxes, named pipes

• client/server rendezvous point

– a name corresponds to a service

– a server awaits client connections

– once open, it may be as simple as a pipe

– OS may authenticate message sender

• limited fail-over capability

– if server dies, another can take its place

– but what about in-progress requests?

• client/server must be on same system

IPC, Threads, Races and Critical Sections 10

Ludicrous Speed – Shared Memory

• shared read/write memory segments

– mmap(2) into multiple address spaces

– perhaps locked in physical memory

– applications maintain circular buffers

– OS is not involved in data transfer

• simplicity, ease of use … your kidding, right?

• reliability, security … caveat emptor!

• generality … locals only!

IPC, Threads, Races and Critical Sections 11

IPC: synchronous and asynchronous

• synchronous operations

– writes block until message sent/delivered/received

– reads block until a new message is available

– easy for programmers, but no parallelism

• asynchronous operations

– writes return when system accepts message
• no confirmation of transmission/delivery/reception

• requires auxiliary mechanism to learn of errors

– reads return promptly if no message available
• requires auxiliary mechanism to learn of new messages

• often involves "wait for any of these" operation

12IPC, Threads, Races and Critical Sections

4/14/2017

3

a brief history of threads

• processes are very expensive

– to create: they own resources

– to dispatch: they have address spaces

• different processes are very distinct

– they cannot share the same address space

– they cannot (usually) share resources

• not all programs require strong separation

– cooperating parallel threads of execution

– all are trusted, part of a single program

IPC, Threads, Races and Critical Sections 13

What is a thread?

• strictly a unit of execution/scheduling

– each thread has its own stack, PC, registers

• multiple threads can run in a process

– they all share the same code and data space

– they all have access to the same resources

– this makes the cheaper to create and run

• sharing the CPU between multiple threads

– user level threads (w/voluntary yielding)

– scheduled system threads (w/preemption)

IPC, Threads, Races and Critical Sections 14

When to use processes

• running multiple distinct programs

• creation/destruction are rare events

• running agents with distinct privileges

• limited interactions and shared resources

• prevent interference between processes

• firewall one from failures of the other

IPC, Threads, Races and Critical Sections 15 IPC, Threads, Races and Critical Sections 16

Using Multiple Processes: cc
shell script to implement the cc command

cpp $1.c | cc1 | ccopt > $1.s

as $1.s

ld /lib/crt0.o $1.o /lib/libc.so

mv a.out $1

rm $1.s $1.o

When to use threads

• parallel activities in a single program

• frequent creation and destruction

• all can run with same privileges

• they need to share resources

• they exchange many messages/signals

• no need to protect from each other

IPC, Threads, Races and Critical Sections 17 IPC, Threads, Races and Critical Sections 18

Using Multiple Threads: telnet

netfd = get_telnet_connection(host);

pthread_create(&tid, NULL, writer, netfd);

reader(netfd);

pthread_join(tid, &status);

...

reader(fd) { int cnt; char buf[100];

while(cnt = read(0, buf, sizeof (buf) > 0)

write(fd, buf, cnt);

}

writer(fd) { int cnt; char buf[100];

while(cnt = read(fd, buf, sizeof (buf) > 0)

write(1, buf, cnt);

}

4/14/2017

4

Kernel vs User-Mode Threads

• Does OS schedule threads or processes?

• Advantages of Kernel implemented threads

– multiple threads can truly run in parallel

– one thread blocking does not block others

– OS can enforce priorities and preemption

– OS can provide atomic sleep/wakeup/signals

• Advantages of library implemented threads

– fewer system calls

– faster context switches

– ability to tailor semantics to application needs

IPC, Threads, Races and Critical Sections 19

Thread state and thread stacks

• each thread has its own registers, PS, PC

• each thread must have its own stack area

• max size specified when thread is created

– a process can contain many threads

– they cannot all grow towards a single hole

– thread creator must know max required stack size

– stack space must be reclaimed when thread exits

• procedure linkage conventions are unchanged

20IPC, Threads, Races and Critical Sections

UNIX stack space management

Data segment starts at page boundary after code segment
Stack segment starts at high end of address space
Unix extends stack automatically as program needs more.

Data segment grows up; Stack segment grows down
Both grow towards the hole in the middle. They are not allowed to meet.

0x00000000 0xFFFFFFFF

code segment data segment stack segment

21IPC, Threads, Races and Critical Sections

Thread Stack Allocation

0x00000000

0xFFFFFFFF

code data

stack

thread

stack 1

0x0120000

thread

stack 2

thread

stack 3

22IPC, Threads, Races and Critical Sections

Thread Safety - Reentrancy

• thread-safe routines must be reentrant
– any routine can be called by multiple threads

– concurrent or interspersed execution

– signals can also cause reentrancy

• state cannot be saved in static variables
– e.g. errno … getting around C scalar returns

– e.g. optarg … implicit session state

• transient state can be safely allocated on stack

• persistent session state must be client-owned
– open returns a descriptor

– descriptor is passed to all subsequent operations

IPC, Threads, Races and Critical Sections 23

Thread Safety – Shared Data/Events

• threads operate in a single address space

– automatic (stack) locals are private

– storage (from thread-safe malloc) can be private

– read-only data causes no problems

– shared read/write data is a problem

• signals are sent to processes

– delivered to first available thread

– chosen recipient may not have been expecting it

• a call to exit(2) terminates all threads

IPC, Threads, Races and Critical Sections 24

4/14/2017

5

Synchronization - evolution of problem

• batch processing - serially reusable resources
– process A has tape drive, process B must wait

– process A updates file first, then process B

• cooperating processes
– exchanging messages with one-another

– continuous updates against shared files

• shared data and multi-threaded computation
– interrupt handlers, symmetric multi-processors

– parallel algorithms, preemptive scheduling

• network-scale distributed computing

25IPC, Threads, Races and Critical Sections

The benefits of parallelism

• improved throughput

– blocking of one activity does not stop others

• improved modularity

– separating complex activities into simpler pieces

• improved robustness

– the failure of one thread does not stop others

• a better fit to emerging paradigms

– client server computing, web based services

– our universe is cooperating parallel processes

26IPC, Threads, Races and Critical Sections

What's the big deal?

• sequential program execution is easy

– first instruction one, then instruction two, ...

– execution order is obvious and deterministic

• independent parallel programs are easy

– if the parallel streams do not interact in any way

• cooperating parallel programs are hard

– if the two execution streams are not synchronized

• results depend on the order of instruction execution

• parallelism makes execution order non-deterministic

• results become combinatorially intractable

27IPC, Threads, Races and Critical Sections

Race Conditions

• shared resources and parallel operations
– where outcome depends on execution order

– these happen all the time, most don’t matter

• some race conditions affect correctness
– conflicting updates (mutual exclusion)

– check/act races (sleep/wakeup problem)

– multi-object updates (all-or-none transactions)

– distributed decisions based on inconsistent views

• each of these classes can be managed
– if we recognize the race condition and danger

28IPC, Threads, Races and Critical Sections

Non-Deterministic Execution

• processes block for I/O or resources

• time-slice end preemption

• interrupt service routines

• unsynchronized execution on another core

• queuing delays

• time required to perform I/O operations

• message transmission/delivery time

IPC, Threads, Races and Critical Sections 29

What is "Synchronization"

• true parallelism is imponderable

– pseudo-parallelism may be good enough
• identify and serialize key points of interaction

• there are two interdependent problems

– critical section serialization

– asynchronous completions

• they are often discussed as a single problem

– many mechanisms simultaneously solve both

– solution to either requires solution to the other

30IPC, Threads, Races and Critical Sections

4/14/2017

6

A Synchronization Problem
(multi-thread, shared memory, circular buffer)

read(buf, desired):
while desired > 0

wait (nextWrite > lastRead)

avail = nextWrite – lastRead

count = min(avail, desired)

copy(lastRead, buf, count)

lastRead += count

if lastRead == endOfBuffer

lastRead = startOfBuffer

nextWrite = startOfBuffer

desired -= count

IPC, Threads, Races and Critical Sections 31

write(buf, toSend):
while toSend > 0

wait(nextWrite < endOfBuffer)

free = endOfBuffer – nextWrite

count = min(free, toSend)

copy(buf, nextWrite, count)

nextWrite += count

toSend -= count;

Critical Section Await Event Signal Event

Problem 1: Critical Sections

• a resource shared by multiple threads

– multiple concurrent threads, processes or CPUs

– interrupted code and interrupt handler

• use of the resource changes its state

– contents, properties, relation to other resources

– updates are non-atomic (or non-global)

• correctness depends on execution order

– when scheduler runs/preempts which threads

– true (e.g. multi-processor) parallelism

– relative timing of independent events

– leading to “indeterminate” results

32IPC, Threads, Races and Critical Sections

Reentrant & MT-safe code

• consider a simple recursive routine:
int factorial(x) { tmp = factorial(x-1); return x*tmp}

• consider a possibly multi-threaded routine:
void debit(amt) {tmp = bal-amt; if (tmp >=0) bal = tmp)}

• neither would work if tmp was shared/static

– must be dynamic, each invocation has own copy

– this is not a problem with read-only information

• some variables must be shared

– and proper sharing often involves critical sections

33IPC, Threads, Races and Critical Sections

Critical Section - updating a file

Process #1
remove("database");

fd = create("database");

write(fd, newdata, length);

close(fd);

Process #2

fd = open("database", READ);

count = read(fd, buffer, length);

...

34IPC, Threads, Races and Critical Sections

What could go wrong with an add?

thread #1

counter = counter + 1;

mov counter, %eax

add $0x1, %eax

mov %eax, counter

IPC, Threads, Races and Critical Sections 35

thread #2

counter = counter + 1;

mov counter, %eax

add $0x1, %eax

mov %eax, counter

Achieving Mutual Exclusion

pthread_mutex_t lock;

pthread_mutex_init(&lock, NULL);

…

if (pthread_mutex_lock(&lock) == 0) {

counter = counter + 1;

pthread_mutex_unlock(&lock);

}

IPC, Threads, Races and Critical Sections 36

4/14/2017

7

Recognizing Critical Sections

• generally involves updates to object state

– may be updates to a single object

– may be related updates to multiple objects

• generally involves multi-step operations

– object state inconsistent until operation finishes

– preemption compromises object or operation

• correct operation requires mutual exclusion

– only one thread at a time has access to object(s)

– client 1 completes before client 2 starts

37IPC, Threads, Races and Critical Sections

Critical Sections in Operating System

• Shared data used by concurrent threads

– process state variables

– resource pools

– device driver state

• logical parallelism

– created by preemptive scheduling

– asynchronous interrupts

• physical parallelism

– shared memory, symmetric multi-processors

38IPC, Threads, Races, Critical Sections

Two Types of Atomicity

• Before or After (mutual exclusion)

– A enters critical section before B starts

– A enters critical section after B completes

• All or None (atomic transactions)

– an update that starts will complete w/o interruption

– an uncompleted update has no effect

IPC, Threads, Races and Critical Sections 39

mutex

Assignments

• Project

– assemble and bring up your Edison

• Reading

– AD 27.3-4 (synchronization APIs)

– AD 28 (locks and implementation)

– AD 30-30.1 condition variables

IPC, Threads, Races and Critical Sections 40

Supplementary Slides

IPC: communication fan-out

• point-to-point/unicast (1->1)

– channel carries traffic from one sender to one receiver

• multi-cast (1->N)

– messages are sent to specified receivers or group

• broadcast (1->N)

– messages are sent to all receivers in a community

• publish/subscribe (N->M)

– messages are distributed/filtered based on content

– routing can be at sender, receiver, and in-between

42IPC, Threads, Races and Critical Sections

4/14/2017

8

IPC: in-band vs. out-of-band

• in-band messages

– messages delivered in same order as sent

– message n+1 won't be seen till after message n

• out-of-band messages

– messages that leap ahead of queued traffic

• often used to announce errors or cancel requests

– use priority to “cut” ahead in the queue

• priority must be honored on each link in the path

– deliver them over a separate channel

• a separate message channel, or perhaps a signal

43IPC, Threads, Races and Critical Sections

IPC examples: UNIX sockets
• more powerful than pipes

– can be bound to various protocols
• tcp ... reliable stream, network protocol

• udp ... unreliable datagrams, network protocol

• unix ... named pipes

– more versatile connection options
• connect, listen, accept, broadcast, multicast

• both stream and message semantics

– read/write ... synchronous stream

– send/recv ... synchronous datagrams

• socket is destroyed when creator dies

44IPC, Threads, Races and Critical Sections

IPC examples: mail boxes
• named message queues

– associated with a particular receiving process

– any process can send messages to any mailbox

• additional semantics vary with implementations

– trusted identification of sending process

– synchronous and asynchronous options

– confirmation of delivery (or receipt)

– contents of queue may survive a kill and restart

• messages typically buffered in the OS

– some flow control is usually provided

45IPC, Threads, Races and Critical Sections

Synchronization – a Parable
• consider the “Garden of Eden”

– we were warned of the “knowledge of good and evil”

• which would forever end our innocent lives in paradise

– but we were then tempted to eat that fruit

• it would open our eyes, and give us God-like knowledge

– we ate, lost our innocence, were banished from paradise

• consider the “Garden of computation”

– we were warned about cooperating parallel processes

• which would forever cost us our innocence

• but we also saw the power that knowledge could unleash

– again we took the bait, and lost our innocence

• programming, once simple, has been made impossibly difficult

46IPC, Threads, Races and Critical Sections

