
4/18/2017

1

Synchronization Mechanisms &Problems

7H. Semaphores

7I. Producer/Consumer Problems

7J. Object Level Locking

7K. Bottlenecks, Contention and Granularity

Synchronization Mechanisms and Problems 1

Semaphores – signaling devices

when direct communication was not an option

e.g. between villages, ships, trains

Semaphores - History

• Concept introduced in 1968 by Edsger Dijkstra

– cooperating sequential processes

• THE classic synchronization mechanism

– behavior is well specified and universally accepted

– a foundation for most synchronization studies

– a standard reference for all other mechanisms

• more powerful than simple locks

– they incorporate a FIFO waiting queue

– they have a counter rather than a binary flag

Synchronization Mechanisms and Problems 3

Semaphores - Operations

• Semaphore has two parts:

– an integer counter (initial value unspecified)

– a FIFO waiting queue

• P (proberen/test) ... “wait”

– decrement counter, if count >= 0, return

– if counter < 0, add process to waiting queue

• V (verhogen/raise) ... “post” or “signal”

– increment counter

– if counter >= 0 & queue non-empty, wake 1st proc

Synchronization Mechanisms and Problems 4

using semaphores for exclusion

• initialize semaphore count to one

– count reflects # threads allowed to hold lock

• use P/wait operation to take the lock

– the first will succeed

– subsequent attempts will block

• use V/post operation to release the lock

– restore semaphore count to non-negative

– if any threads are waiting, unblock the first in line

Synchronization Mechanisms and Problems 5

Semaphores - for exclusion

struct account {

struct semaphore s; /* initialize count to 1, queue empty, lock 0 */

int balance;

…

};

int write_check(struct account *a, int amount) {

int ret;

p(&a->semaphore); /* get exclusive access to the account */

if (a->balance >= amount) { /* check for adequate funds */

amount -= balance;

ret = amount;
} else

ret = -1;

v(&a->semaphore); /* release access to the account */

return(ret);

}

Synchronization Mechanisms and Problems 6

4/18/2017

2

using semaphores for notifications

• initialize semaphore count to zero

– count reflects # of completed events

• use P/wait operation to await completion

– if already posted, it will return immediately

– else all callers will block until V/post is called

• use V/post operation to signal completion

– increment the count

– if any threads are waiting, unblock the first in line

• one signal per wait: no broadcasts

Synchronization Mechanisms and Problems 7

Semaphores - completion events

struct semaphore pipe_semaphore = { 0, 0, 0 }; /* count = 0; pipe empty */
char buffer[BUFSIZE]; int read_ptr = 0, write_ptr = 0;

char pipe_read_char() {
p (&pipe_semaphore); /* wait for input available */
c = buffer[read_ptr++]; /* get next input character */
if (read_ptr >= BUFSIZE) /* circular buffer wrap */

read_ptr -= BUFSIZE;
return(c);

}

void pipe_write_string(char *buf, int count) {
while(count-- > 0) {

buffer[write_ptr++] = *buf++; /* store next character */
if (write_ptr >= BUFSIZE) /* circular buffer wrap */

write_ptr -= BUFSIZE;
v(&pipe_semaphore); /* signal char available */

}
}

Synchronization Mechanisms and Problems 8

Counting Semaphores

• initialize semaphore count to ...

– count reflects # of available resources

• use P/wait operation to consume a resource

– if available, it will return immediately

– else all callers will block until V/post is called

• use V/post operation to produce a resource

– increment the count

– if any threads are waiting, unblock the first in line

• one signal per wait: no broadcasts

Synchronization Mechanisms and Problems 9

Implementing Semaphores

void sem_wait(sem_t *s) {

pthread_mutex_lock(&s->lock);

while (s->value <= 0)

pthread_cond_wait(&s->cond, &s->lock);

s->value--;

pthread_mutex_unlock(&s->lock);

}

Synchronization Mechanisms and Problems 10

void sem_post(sem_t *s) {

pthread_mutex_lock(&s->lock);

s->value++;

pthread_cond_signal(&s->cond);

pthread_mutex_unlock(&s->lock)

}

Implementing Semaphores in OS

void sem_post(struct sem_t *s) {

struct proc_desc *p = 0;

save = intr_enable(ALL_DISABLE);

while (TestAndSet(&s->lock));

s->value++;

if (p = get_from_queue(&s->queue)) {

p->runstate &= ~PROC_BLOCKED;

}

s->lock = 0;

intr_enable(save);

if (p)

reschedule(p);

}

Synchronization Mechanisms and Problems 11

void sem_wait(sem_t *s) {

for (;;) {

save = intr_enable(ALL_DISABLE);

while(TestAndSet(&s->lock));

if (s->value > 0) {

s->value--;

s->sem_lock = 0;

intr_enable(save);

return;

}

add_to_queue(&s->queue, myproc);

myproc->runstate |= PROC_BLOCKED;

s->lock = 0;

intr_enable(save);

yield();

}

}

(locking to solve sleep/wakeup race)

• requires a spin-lock to work on SMPs

– sleep/wakeup may be called on two processors

– the critical section is short and cannot block

– we must spin, because we cannot sleep ... the lock we

need is the one that protects the sleep operation

• also requires interrupt disabling in sleep

– wakeup is often called from interrupt handlers

– interrupt possible during sleep/wakeup critical section

– If spin-lock already is held, wakeup will block for ever

• very few operations require both of these

Synchronization Mechanisms and Problems 12

4/18/2017

3

Limitations of Semaphores

• semaphores are a very spartan mechanism

– they are simple, and have few features

– more designed for proofs than synchronization

• they lack many practical synchronization features

– It is easy to deadlock with semaphores

– one cannot check the lock without blocking

– they do not support reader/writer shared access

– no way to recover from a wedged V'er

– no way to deal with priority inheritance

• none the less, most OSs support them

Synchronization Mechanisms and Problems 13

Using Condition Variables

pthread_mutex_t lock = PTHEAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHEAD_COND_INITIALIZER;

…

pthread_mutex_lock(&lock);

while (ready == 0)

pthread_cond_wait(&cond, &lock);

pthread_mutex_unlock(&lock)

…

if (pthread_mutex_lock(&lock)) {

ready = 1;

pthread_cond_signal(&cond);

pthread_mutex_unlock(&lock);

}

Synchronization Mechanisms and Problems 14

Bounded Buffer Problem w/CVs
void producer(FIFO *fifo, char *msg, int len) {

for(int i = 0; i < len; i++) {

pthread_mutex_lock(&mutex);

while (fifo->count == MAX)

pthread_cond_wait(&empty, &mutex);

put(fifo, msg[i]);

pthread_cond_signal(&fill);

pthread_mutex_unlock(&mutex);

}

}

Synchronization Mechanisms and Problems 15

void consumer(FIFO *fifo, char *msg, int len) {

for(int i = 0; i < len; i++) {

pthread_mutex_lock(&mutex);

while (fifo->count == 0)

pthread_cond_wait(&fill, &mutex);

msg[i] = get(fifo);

pthread_cond_signal(&empty);

pthread_mutex_unlock(&mutex);

}

}

Producer/Consumer w/Semaphores
void producer(FIFO *fifo, char *msg, int len) {

for(int i = 0; i < len; i++) {

sem_wait(&empty);

sem_wait(&mutex);

put(fifo, msg[i]);

sem_post(&mutex);

sem_post(&full);

}

}

Synchronization Mechanisms and Problems 16

void consumer(FIFO *fifo, char *msg, int len) {

for(int i = 0; i < len; i++) {

sem_wait(&full);

sem_wait(&mutex);

msg[i] = get(fifo);

sem_post(&mutex);

sem_post(&empty);

}

}

Object Level Locking

• mutexes protect code critical sections

– brief durations (e.g. nanoseconds, milliseconds)

– other threads operating on the same data

– all operating in a single address space

• persistent objects are more difficult

– critical sections are likely to last much longer

– many different programs can operate on them

– may not even be running on a single computer

• solution: lock objects (rather than code)

Synchronization Mechanisms and Problems 17

Whole File Locking

int flock(fd, operation)

• supported operations:

– LOCK_SH … shared lock (multiple allowed)

– LOCK_EX … exclusive lock (one at a time)

– LOCK_UN … release a lock

• lock is associated with an open file descriptor

– lock is released when that file descriptor is closed

• locking is purely advisory

– does not prevent reads, writes, unlinks

Synchronization Mechanisms and Problems 18

4/18/2017

4

Advisory vs Enforced Locking

• Enforced locking

– done within the implementation of object methods

– guaranteed to happen, whether or not user wants it

– may sometimes be too conservative

• Advisory locking

– a convention that “good guys” are expected to follow

– users expected to lock object before calling methods

– gives users flexibility in what to lock, when

– gives users more freedom to do it wrong (or not at all)

– mutexes are advisory locks

Synchronization Mechanisms and Problems 19

Ranged File Locking

int lockf(fd, cmd, offset, len)

• supported cmds:

– F_LOCK … get/wait for an exclusive lock

– F_ULOCK … release a lock

– F_TEST/F_TLOCK … test, or non-blocking request

– offset/len specifies portion of file to be locked

• lock is associated with a file descriptor

– lock is released when file descriptor is closed

• locking may or may not be enforced

– depending on the underlying file system

Synchronization Mechanisms and Problems 20

Cost of not getting a Lock

• protect critical sections to ensure correctness

• many critical sections are very brief

– in and out in a matter of nano-seconds

• blocking is much more (e.g. 1000x) expensive

– micro-seconds to yield, context switch

– milliseconds if swapped-out or a queue forms

• performance depends on conflict probability

Cexpected = (Cget * (1-Pconflict)) + (Cblock * Pconflict)

Synchronization Mechanisms and Problems 21

Probability of Conflict

Synchronization Mechanisms and Problems 22

Convoy Formation

• in general

Pconflict = 1 – (1 – (Tcritical / Ttotal))
threads-1

(nobody else in critical section at the same time)

• unless (or until) a FIFO queue forms

Pconflict = 1 – (1 – ((Twait+ Tcritical)/ Ttotal))
threads

if Twait >> Tcritical , Pconflict rises significantly

• if Twait exceeds the mean inter-arrival time

the line becomes permanent, parallelism ceases,

(cheap) Tcritical is replaced by (expensive) Twait

Higher Level Synchronization 23

Performance: resource convoys

throughput

offered load

ideal

convoy

Synchronization Mechanisms and Problems 24

4/18/2017

5

Contention Reduction

• eliminate the critical section entirely
– eliminate shared resource, use atomic instructions

• eliminate preemption during critical section
– by disabling interrupts … not always an option
– avoid resource allocation within critical section

• reduce time spent in critical section
– reduce amount of code in critical section

• reduce frequency of critical section entry
– reduce use of the serialized resource
– reduce exclusive use of the serialized resource

– spread requests out over more resources

Synchronization Mechanisms and Problems 25

Reducing Time in Critical Section

• eliminate potentially blocking operations

– allocate required memory before taking lock

– do I/O before taking or after releasing lock

• minimize code inside the critical section

– only code that is subject to destructive races

– move all other code out of the critical section

– especially calls to other routines

• cost: this may complicate the code

– unnaturally separating parts of a single operation

Synchronization Mechanisms and Problems 26

Reduce Time or Preemption
int List_Insert(list_t *l, int key) {

pthread_mutex_lock(&l->lock);

node_t new = (node_t*) malloc(sizeof(node_t));

if (new == NULL) {

perror(“malloc”);

pthread_mutex_unlock(&l->lock);

return(-1);

}

new->key = key;

new->next = l->head;

l->head = new;

pthread_mutex_unlock(&l->lock);

return 0;

}

Synchronization Mechanisms and Problems 27

int List_Insert(list_t *l, int key) {

node_t new = (node_t*) malloc(sizeof(node_t));

if (new == NULL) {

perror(“malloc”);

return(-1);

}

new->key = key;

pthread_mutex_lock(&l->lock);

new->next = l->head;

l->head = new;

pthread_mutex_unlock(&l->lock);

return 0;

}

Reduced Use of Critical Section

• can we use critical section less often

– less use of high-contention resource/operations

– batch operations

• consider “sloppy counters”

– move most updates to a private resource

– costs:

• global counter is not always up-to-date

• thread failure could lose many updates

– alternative:

• sum single-writer private counters when needed

Synchronization Mechanisms and Problems 28

Non-Exclusivity: read/write locks

• reads and writes are not equally common

– file read/write: reads/writes > 50

– directory search/create: reads/writes > 1000

• only writers require exclusive access

• read/write locks

– allow many readers to share a resource

– only enforce exclusivity when a writer is active

– policy: when are writers allowed in?

• potential starvation if writers must wait for readers

Synchronization Mechanisms and Problems 29

Spreading requests: lock granularity

• coarse grained - one lock for many objects

– simpler, and more idiot-proof

– greater resource contention (threads/resource)

• fine grained - one lock per object (or sub-pool)

– spreading activity over many locks reduces contention

– dividing resources into pools shortens searches

– a few operations may lock multiple objects/pools

• TANSTAAFL

– time/space overhead, more locks, more gets/releases

– error-prone: harder to decide what to lock when

Synchronization Mechanisms and Problems 30

4/18/2017

6

Partitioned Hash Table

int Hash_Insert(hash_t *h, int key) {

int bucket = key % h->num_buckets;

list_t *l = &h->lists[bucket];

return List_Insert(l, key);

}

Synchronization Mechanisms and Problems 31

• Each list_t is still protected by a lock

– but contention has been greatly reduced

• Partitioning function must be race-free

– no critical-section to protect

– per partition load depends on request randomness

Mid-Term Exam

• When

– Thursday, the full 110 minute period

• Value

– 15% of course grade

• Form and content

– 10 multi-part, brief-answer questions

• covering all lectures and reading to date

• based on key learning objectives

– one hard extra credit question

• similar to those on part II of the final

Synchronization Mechanisms and Problems 32

Supplementary Slides

Example: P and V
void v(struct semaphore *s) {

struct proc_desc *p = 0;

save = intr_enable(ALL_DISABLE);
while (TestAndSet(&s->sem_lock));
s->sem_count++;
if (p = get_from_queue(&s->sem_queue)) {

p->runstate &= ~PROC_BLOCKED;
}
s->sem_lock = 0;
intr_enable(save);
if (p)

reschedule(p);
}

void p(struct semaphore *s) {
struct proc_desc *p = 0;
for (;;) {

save = intr_enable(ALL_DISABLE);
while (TestAndSet(&s->sem_lock));
if (s->sem_count > 0) {

s->sem_cont--;
s->sem_lock = 0;
intr_enable(save);
return;

}
add_to_queue(&s->sem_queue, myproc);
myproc->runstate |= PROC_BLOCKED;
s->sem_lock = 0;
intr_enable(save);
yield();

}
}

process A
process B

Semaphore
lock

count
queue

int disable

0
0

NO YES

1
NO

P
V V

WAKEP

1
YES

YES

YES
0

YES

YES

A
YES

YES

YES

YES
0

Synchronization Mechanisms and Problems 34

1

Example: Producer/Consumer

char pipe_read_char() {

p (&pipe_semaphore);
c = buffer[read_ptr++];

if (read_ptr >= BUFSIZE)
read_ptr -= BUFSIZE;

return(c);
}

void pipe_write_string(char *buf, int count) {

while(count-- > 0) {
buffer[write_ptr++] = *buf++
if (write_ptr >= BUFSIZE)

write_ptr -= BUFSIZE;

v(&pipe_semaphore);
}

}

process A
process B

buffer

read_ptr
write_ptr

sem count

WRITE “abc”
READ WAKE READ

0

0
0

a

1

b

2

2

c

3

3

1

2 1

2

Synchronization Mechanisms and Problems 35

Active/Passive - the preemption thing

• standard semaphore semantics are not complete

– who runs after a V unblocks a P?

– the running V'er or the blocked P'er

• there are arguments for each behavior

– gratuitous context switches increase overhead

– producers and consumers should take turns

– if we delay P'er, someone else may get semaphore

• preemptive priority-based scheduler can do this

– reassess scheduling whenever someone wakes up

– P'ers priority controls who will run after wake-up

Synchronization Mechanisms and Problems 36

4/18/2017

7

Where to put the locking

• there is a choice about where to do locking

– A ,B require serialization, and are called by C,D

– should we lock in objects (A,B) or in callers (C,D)

• OO modularity says: as low as possible (in A,B)

– correct locking is part of correct implementation

• but as high as necessary (in C,D)

– locking needs may depend on how object is used

– one logical transaction may span many method calls

– in such cases, only the caller knows start/end/scope

Synchronization Mechanisms and Problems 37

Performance of Locking

• Locking typically performed as an OS system

call

– Particularly for enforced locking

• Typical system call overheads for lock

operations

• If they are called frequently, high overheads

• Even if not in OS, extra instructions run to lock

and unlock

38Synchronization Mechanisms and Problems

Eliminating Critical Sections

• Eliminate shared resource

– Give everyone their own copy

– Find a way to do your work without it

• Use atomic instructions

– Only possible for simple operations

• Great when you can do it

• But often you can’t

39Synchronization Mechanisms and Problems

Locking Costs

• Locking called when you need to protect

critical sections to ensure correctness

• Many critical sections are very brief

– In and out in a matter of nano-seconds

• Overhead of the locking operation may be

much higher than time spent in critical section

40Synchronization Mechanisms and Problems

Performance: lock contention

• The riddle of parallelism:

– parallelism: if one task is blocked, CPU runs another

– concurrent use of shared resources is difficult

– critical sections serialize tasks, eliminating parallelism

• What if everyone needs to use one resource?

– one process gets the resource

– other processes get in line behind him (convoy)

– parallelism is eliminated; B runs after A finishes

– that resource becomes a bottle-neck

Synchronization Mechanisms and Problems 41

