Synchronization Mechanisms &Problems

7H. Semaphores
71. Producer/Consumer Problems
7). Object Level Locking

7K. Bottlenecks, Contention and Granularity

Synchronization Mechanisms and Problems

4/18/2017

Semaphores — signaling devices

when direct communication was not an option

e.g. between villages, ships, trains

Semaphores - History

¢ Concept introduced in 1968 by Edsger Dijkstra
— cooperating sequential processes

e THE classic synchronization mechanism
— behavior is well specified and universally accepted
— a foundation for most synchronization studies
— a standard reference for all other mechanisms

¢ more powerful than simple locks
—they incorporate a FIFO waiting queue
—they have a counter rather than a binary flag

Synchronization Mechanisms and Problems

Semaphores - Operations

e Semaphore has two parts:
— an integer counter (initial value unspecified)
— a FIFO waiting queue
¢ P (proberen/test) ... “wait”
— decrement counter, if count >= 0, return
—if counter < 0, add process to waiting queue
¢ V (verhogen/raise) ... “post” or “signal”
—increment counter
— if counter >= 0 & queue non-empty, wake 1%t proc

Synchronization Mechanisms and Problems

using semaphores for exclusion

* initialize semaphore count to one
— count reflects # threads allowed to hold lock
* use P/wait operation to take the lock
— the first will succeed
— subsequent attempts will block
* use V/post operation to release the lock
— restore semaphore count to non-negative
—if any threads are waiting, unblock the first in line

Synchronization Mechanisms and Problems

Semaphores - for exclusion

struct account {
struct semaphore s;
int balance;

p

/* initialize count to 1, queue empty, lock 0 */

int write_check(struct account *a, int amount) {
intret;
p(&a->semaphore); /* get exclusive access to the account */
if (a->balance >= amount) { /* check for adequate funds */
amount -= balance;
ret = amount;
}else
ret=-1;

v(&a->semaphore);

/* release access to the account */
return(ret);

Synchronization Mechanisms and Problems Yo

4/18/2017

using semaphores for notifications Semaphores - completion events
struct semaphore pipe_semaphore = {0, 0, 0 }; /* count = 0; pipe empty */
e initialize semaphore count to zero char buffer[BUFSIZE]; int read_ptr = 0, write_ptr = 0;
— count reflects # of completed events char pipe_read_char() {
* use P/wait operation to await completion
— if already posted, it will return immediately)
— else all callers will block until V/post is called void pipe_write_string{ char *buf, int count) {
. . . while(count—->0){
* use V/post operanon to s|gna| comp|et|on buffer[write_ptr++] = *buf++; /* store next character */
if (write_ptr >= BUFSIZE) ~ /* circular buffer wrap /
H write_ptr -= BUFSIZE;
—increment the count v(&p\plleﬁz\g\'ove) /* signal char available */
—if any threads are waiting, unblock the first in line } !
¢ one signal per wait: no broadcasts
Counting Semaphores Implementing Semaphores
* initialize semaphore count to ... void sem_wait(sem_t *s) {
. pthread_mutex_lock(&s->lock);
— count reflects # of available resources while (s->value <= 0)
* use P/wait operation to consume a resource "’th'ead—c°”d—“’a‘t(&5’>c°”d' &s->lock);
s->value--;
—if available, it will return immediately pthread_mutex_unlock(&s->lock);
— else all callers will block until V/post is called }
. void sem_post(sem_t *s) {
* use V/post operation to produce a resource pthread_mutex_lock(&s->lock);
—increment the count s->valuett;
. iy . T pthread_cond_signal(&s->cond);
— if any threads are waiting, unblock the first in line pthread_mutex, unlock(&s->lock)
* one signal per wait: no broadcasts }
ion Mecharisms and probler ion Mecharisms and probler
Implementing Semaphores in OS (locking to solve sleep/wakeup race)
void sem_wait(sem_t *s) { i i
for (;){ * requires a spin-lock to work on SMPs
save = intr_enable(ALL_DISABLE);
while(TestAndSet(&s->lock)); — sleep/wakeup may be called on two processors
Flszvalue > D)‘{ — the critical section is short and cannot block
s>value-; void sem_post(struct sem_t *s) {)
s->sem_lock = 0; struct proc_desc *p = 0; — we must spin, because we cannot sleep ... the lock we
nir_enable(save save = intr_enable(ALL_DISABLE); need is the one that protects the sleep operation
) return; while (TestAndSet(&s->lock));
s>value+t; ¢ also requires interrupt disabling in slee
O ..1u e S quir pt disabling P
myproc->runstate | = PROC_BLOCKED; p->runstate &= ~PROC_BLOCKED; — wakeup is often called from interrupt handlers
s->lock = 0;
ntr_enable(save); i»\m o — interrupt possible during sleep/wakeup critical section
) vield(: _‘f”?’)“*”b‘” save); — If spin-lock already is held, wakeup will block for ever
if (p
} reschedule(p); * very few operations require both of these

ization Mechanisms and Problems 11 Synchronization Mechanisms and Problems

Limitations of Semaphores

* semaphores are a very spartan mechanism
— they are simple, and have few features
— more designed for proofs than synchronization
* they lack many practical synchronization features
— Itis easy to deadlock with semaphores
— one cannot check the lock without blocking
— they do not support reader/writer shared access
— no way to recover from a wedged V'er
— no way to deal with priority inheritance
* none the less, most OSs support them

onization Mechanisms and Problems

4/18/2017

Using Condition Variables

pthread_mutex_t lock = PTHEAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHEAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);

while (ready == 0)
pthread_cond_wait(&cond, &lock);

pthread_mutex_unlock(&Ilock)

if (pthread_mutex_lock(&lock)) {
ready=1;
pthread_cond_signal(&cond);
pthread_mutex_unlock(&Ilock);

Bounded Buffer Problem w/CVs

void producer(FIFO *fifo, char *msg, intlen) {
for(inti=0;i<len;i++){
pthread_mutex_lock(&mutex);
while (fifo->count == MAX)
pthread_cond_wait(&empty, &mutex);
put(fifo, msg[i]);
pthread_cond_signal(&fill);
pthread_mutex_unlock(&mutex);

} void consumer(FIFO *fifo, char *msg, intlen) {
for(inti=0;i<len;i++){
pthread_mutex_lock(&mutex);
while (fifo->count == 0)

pthread_cond_wait(&fill, &mutex);

msgli] = get(fifo);
pthread_cond_signal(&empty);
pthread_mutex_unlock(&mutex);

Producer/Consumer w/Semaphores

void producer(FIFO *fifo, char *msg, intlen) {
for(inti=0;i<len;i++){
sem_wait(&empty);
sem_wait(&mutex);
put(fifo, msg[i]);
sem_post(&mutex);
sem_post(&full);

) void consumer(FIFO *fifo, char *msg, intlen) {
for(inti=0;i<len;i++){
sem_wait(&full);
sem_wait(&mutex);
msgli] = get(fifo);
sem_post(&mutex);
sem_post(&empty);

Object Level Locking

* mutexes protect code critical sections
— brief durations (e.g. nanoseconds, milliseconds)
— other threads operating on the same data
— all operating in a single address space

¢ persistent objects are more difficult
— critical sections are likely to last much longer
— many different programs can operate on them
— may not even be running on a single computer

« solution: lock objects (rather than code)

ization Mechanisms and Problems

Whole File Locking

int flock(fd, operation)
e supported operations:
— LOCK_SH ... shared lock (multiple allowed)
— LOCK_EX ... exclusive lock (one at a time)
— LOCK_UN ... release a lock
¢ lock is associated with an open file descriptor
—lock is released when that file descriptor is closed
* locking is purely advisory
— does not prevent reads, writes, unlinks

ization Mechanisms and Problems

Advisory vs Enforced Locking

* Enforced locking
— done within the implementation of object methods
— guaranteed to happen, whether or not user wants it
— may sometimes be too conservative

e Advisory locking
— a convention that “good guys” are expected to follow
— users expected to lock object before calling methods
— gives users flexibility in what to lock, when
— gives users more freedom to do it wrong (or not at all)
— mutexes are advisory locks

onization Mechanisms and Problems

Ranged File Locking
int lockf(fd, cmd, offset, len)

* supported cmds:
—F_LOCK ... get/wait for an exclusive lock
— F_ULOCK ... release a lock
— F_TEST/F_TLOCK ... test, or non-blocking request
— offset/len specifies portion of file to be locked
¢ lock is associated with a file descriptor
—lock is released when file descriptor is closed
¢ locking may or may not be enforced
— depending on the underlying file system

onization Mechanisms and Problems

Cost of not getting a Lock

¢ protect critical sections to ensure correctness
¢ many critical sections are very brief
—in and out in a matter of nano-seconds
¢ blocking is much more (e.g. 1000x) expensive
— micro-seconds to yield, context switch
— milliseconds if swapped-out or a queue forms
¢ performance depends on conflict probability

Cexpected = (Cget * (1_Pconflict)) + (Cblock * Pconflict)

Probability of Conflict

Loc Contenticn

Convoy Formation

* in general

Pconflict =1- (1 - (Tcritical / Ttotal))thread&1

(nobody else in critical section at the same time)
* unless (or until) a FIFO queue forms

Pconflict =1- (1 - ((Twait+ Tcritical)/ Ttotal))threads
if Twait >> Teritical |, Peonfiice FiS€S significantly
* if T, exceeds the mean inter-arrival time
the line becomes permanent, parallelism ceases,
(cheap) T, ol is replaced by (expensive) T,

onization

threads=10 ——
threads=3 ——
08 threads=5
5 threads=4 —— /
= threads=2
S e / /
5 7 ya
2 e
ﬁ 04 /
o
[
0.2
0
001 01 1
Fraction oftotal time 1 crtical section
t N d P
Performance: resource convoys
—
throughput -
convoy
offered load

4/18/2017

Contention Reduction

¢ eliminate the critical section entirely
— eliminate shared resource, use atomic instructions
¢ eliminate preemption during critical section
— by disabling interrupts ... not always an option
— avoid resource allocation within critical section
¢ reduce time spent in critical section
— reduce amount of code in critical section
¢ reduce frequency of critical section entry
— reduce use of the serialized resource
— reduce exclusive use of the serialized resource
— spread requests out over more resources

4/18/2017

Reducing Time in Critical Section

 eliminate potentially blocking operations
— allocate required memory before taking lock
—do I/0 before taking or after releasing lock

* minimize code inside the critical section
— only code that is subject to destructive races
— move all other code out of the critical section
— especially calls to other routines

¢ cost: this may complicate the code

— unnaturally separating parts of a single operation

onization Mechanisms and Problems

Reduce Time or Preemption

int List_Insert(list_t *I, int key) {
pthread_mutex_lock(&I->lock);
node_t new = (node_t*) malloc(sizeof(node_t));
if (new == NULL) {
perror(“malloc”);

pthread_mutex_unlock(&I->lock); int List_Insert{list_t *I, int key) {

return(-1); node_t new = (node_t*) malloc(sizeof(node_t));
) if (new == NULL) {
new-key = key; perror(“malloc”);
new->next = l->head; return(-1);
I>head = new; }
pthread_mutex_unlock(&I->lock); new->key = key;
return 0; pthread_mutex_lock(&I->lock);
} new->next = I->head;

I->head = new;
pthread_mutex_unlock(&I->lock);
return 0;

Reduced Use of Critical Section

e can we use critical section less often
— less use of high-contention resource/operations
— batch operations
¢ consider “sloppy counters”
— move most updates to a private resource
— costs:
« global counter is not always up-to-date
* thread failure could lose many updates
— alternative:
¢ sum single-writer private counters when needed

Non-Exclusivity: read/write locks

* reads and writes are not equally common
— file read/write: reads/writes > 50
— directory search/create: reads/writes > 1000
* only writers require exclusive access
» read/write locks
— allow many readers to share a resource
— only enforce exclusivity when a writer is active

— policy: when are writers allowed in?
* potential starvation if writers must wait for readers

ization Mechanisms and Problems

Spreading requests: lock granularity

* coarse grained - one lock for many objects
— simpler, and more idiot-proof
— greater resource contention (threads/resource)
¢ fine grained - one lock per object (or sub-pool)
— spreading activity over many locks reduces contention
— dividing resources into pools shortens searches
— afew operations may lock multiple objects/pools
* TANSTAAFL
— time/space overhead, more locks, more gets/releases
— error-prone: harder to decide what to lock when

ization Mechanisms and Problems

Partitioned Hash Table

int Hash_Insert(hash_t *h, int key) {
int bucket = key % h->num_buckets;
list_t *| = &h->lists[bucket];
return List_Insert(l, key);

}
e Each list_t is still protected by a lock
— but contention has been greatly reduced
e Partitioning function must be race-free

— no critical-section to protect
— per partition load depends on request randomness

4/18/2017

Mid-Term Exam

* When

— Thursday, the full 110 minute period
* Value

—15% of course grade
e Form and content

— 10 multi-part, brief-answer questions
 covering all lectures and reading to date
* based on key learning objectives

— one hard extra credit question
* similar to those on part Il of the final

Example: Pand V

void p(struct semaphore *s) {
struct proc_desc *p = 0;
for () {
save = intr_enable(ALL_DISABLE);

void V(struct semaphore *s) {
struct proc_desc *p = 0;

save =intr_enable(ALL_DISABLE);

while (TestAndSet(&s->sem_lock));

s->sem_count++;

if (p = get_from_queue(&s->sem_queue)) {
p->runstate &= ~PROC_BLOCKED;

while (TestAndSet(&s->sem_lock));
if (s->sem_count > 0) {
s->sem_cont--;
s->sem_lock = 0;
intr_enable(save);
return;

Supplementary Slides

}
s->sem_lock = 0;

add_to_queue(&s->sem_queue, myproc);
intr_enable(save);

myproc->runstate |= PROC_BLOCKED;

if (p) : s->sem_lock = 0;
reschedule(p); intr_enable(save);
' yield():
}
}
process A P P WAKE
process B v v
Semaphore
lock NC YES YES YES YES YES
count 0 1 0 1)
o A
int disable NC YES YES YES YES YES

Example: Producer/Consumer

char pipe_read_char() {

p (&pipe_semaphore);
¢ = bufferfread_ptr++];

if (read_ptr >= BUFSIZE)

read_ptr -= BUFSIZE;
return(c);

process A
process B READ

buffer

read_pur
write_ptr

oo

sem count o

void pipe_write_string(char *buf, int count) {

WRITE “abc”

while(count-- > 0) {
bufferfwrite_ptr++] = *buf++
if (write_ptr >= BUFSIZE)
write_ptr -= BUFSIZE;

V(&pipe_semaphore);

WAKE READ

Active/Passive - the preemption thing

* standard semaphore semantics are not complete
— who runs after a V unblocks a P?
— the running V'er or the blocked P'er
 there are arguments for each behavior
— gratuitous context switches increase overhead
— producers and consumers should take turns
— if we delay P'er, someone else may get semaphore
e preemptive priority-based scheduler can do this
— reassess scheduling whenever someone wakes up
— P'ers priority controls who will run after wake-up

Where to put the locking

* there is a choice about where to do locking

— A ,Brequire serialization, and are called by C,D

— should we lock in objects (A,B) or in callers (C,D)
00 modularity says: as low as possible (in A,B)
— correct locking is part of correct implementation
but as high as necessary (in C,D)

— locking needs may depend on how object is used

— one logical transaction may span many method calls
— in such cases, only the caller knows start/end/scope

4/18/2017

Performance of Locking

Locking typically performed as an OS system
call

— Particularly for enforced locking

Typical system call overheads for lock
operations

If they are called frequently, high overheads

Even if not in OS, extra instructions run to lock
and unlock

Eliminating Critical Sections

¢ Eliminate shared resource
— Give everyone their own copy
— Find a way to do your work without it
* Use atomic instructions
— Only possible for simple operations
¢ Great when you can do it
¢ But often you can’t

Locking Costs

Locking called when you need to protect
critical sections to ensure correctness
Many critical sections are very brief

—In and out in a matter of nano-seconds

Overhead of the locking operation may be
much higher than time spent in critical section

Performance: lock contention

e The riddle of parallelism:

— parallelism: if one task is blocked, CPU runs another

— concurrent use of shared resources is difficult

— critical sections serialize tasks, eliminating parallelism
* What if everyone needs to use one resource?

— one process gets the resource

— other processes get in line behind him (convoy)

— parallelism is eliminated; B runs after A finishes

— that resource becomes a bottle-neck

