
4/30/2018

1

Performance Measurement and Analysis

9A. Introduction to performance and metrics

9B. Load characterization and generation

9C. Performance Measurement

9D. Performance Analysis

9E. Performance Results Reporting

Deadlock, Prevention and Avoidance 1

Performance Analysis Goals

• Quantify the system performance

– for competitive positioning

– to assess the efficacy of previous work

– to identify future opportunities for improvement

• Understand the system performance

– what factors are limiting our current performance

– what choices make us subject to these limitations

• Predict system performance

– how would proposed changes affect performance

• We seek WISDOM ... not numbers!

2Deadlock, Prevention and Avoidance

Principles

• The Pareto Principle

– 80% of cycles are spent in 20% of the code

• “Data trumps opinions”

– intuition often turns out to be wrong

– we can’t optimize what we don’t measure

• “Rust never sleeps”

– continuous measurement and comparison

– if we aren’t getting faster, we’re getting slower

• Performance is mostly about design

– code optimization is only occasionally useful

3Deadlock, Prevention and Avoidance

Why performance is so hard

• components operate in a complex system

– many steps/components in every process

– ongoing competition for all resources

– difficulty of making clear/simple assertions

– systems too large to replicate in laboratory

• lack of clear/rigorous requirements

– performance is highly dependent on specifics

• what we measure, how we measure it

– ask the wrong question, get the wrong answer

4Deadlock, Prevention and Avoidance

System Testing and Performance 5

Design for Performance

• Establish solid performance requirements

– justified by technology or competition

– apportion them to major system components

• Anticipate bottlenecks

– frequent operations (interrupts, copies, updates)

– limiting resources (network/disk bandwidth)

– traffic concentration points (resource locks)

• Design to minimize problems

– eliminate, reduce use, add resources

Design For Performance Measurement

• Performance is often key to success

– successful systems generally perform well

– their performance is constantly improving

• External performance is of limited value

– it can tell us if performance is good or bad

– it cannot tell us why we are so performing

• Good measurability must be designed in

– understand the key diagnostic metrics

– ensure that each is readily measurable

4/30/2018

2

System Testing and Performance 7

Performance: what to measure

• competitive performance metrics

– used to compare competing products

• nominal response time for simple query

• standard transactions per second

• engineering performance metrics

– used to spec components

– used to analyze performance problems

• time to perform a particular sub-operation

• channel utilization, idle time, cycles per operation

• be clear on what your goals are

Metric

a standard unit

– metric must be quantifiable

• time/rate, size/capacity, effectiveness/reliability ...

for measurement or evaluation

– metric must be measurable (or computable)

of something.

– an interesting/valuable quality/characteristic

– metric must be well-correlated with that quality

8Deadlock, Prevention and Avoidance

Choosing Your Metrics

• Core question in any performance study

– finding the right metrics is half the game

• Pick metrics based on:

– Completeness: do these metrics span “goodness”?

– Redundancy: each metric provides new info?

– Variability: how consistent is it likely to be?

– Feasibility: can I accurately measure this metric?

– Diagnostic/Predictive value: yields valuable insight

Common Types of System Metrics

• Duration/ response time

– Mean latency for a benchmark request?

• Processing rate

– How many web requests handled per second?

• Resource consumption

– How much disk is currently used?

• Reliability

– How many messages delivered without error?

– Mean Time Between Failure

Sources of Variation in Results

• inconsistent test conditions

– varying platforms, operations, injection rates

– background activity on test platform

– start-up, accumulation, cache effects

• flawed measurement choices/techniques

– measurement artifact, sampling errors

– measuring indirect/aggregate effects

• non-deterministic factors

– queuing of processes, network and disk I/O

– where (on disk) files are allocated

11Deadlock, Prevention and Avoidance

Capturing Variation

• Generally requires repetition of the same

experiment

• Ideally, sufficient repetitions to capture all

likely outcomes

– How do you know how many repetitions that is?

– You don’t

• Design your performance measurements

bearing this in mind

4/30/2018

3

An Example

• 11 pings from UCLA to MIT in one night

• Each took a different amount of time

(expressed in msec):

• How do we understand what this says about

how long a packet takes to get from LA to

Boston and back?

149.1 28.1 28.1 28.5 28.6 28.2

28.4 187.8 74.3 46.1 155.8

Statistical Measures of Samples

• tendency

– mean ... the average of all samples

– median ... the value of the middle sample

– mode ... the most commonly occurring value

• dispersion

– range ... between the highest and lowest samples

– standard deviation (σ) ... range for 2/3 of samples

– confidence interval ... Prob(x is within range)

– coefficient of variance … standard deviation/mean

14Deadlock, Prevention and Avoidance

Applied to Our Example Ping Data

• Mean: 71.2

• Median: 28.6

• Mode: 28.1

• Which of these best expresses the delay we

saw?

– Depends on what you care about

149.1 28.1 28.1 28.5 28.6 28.2

28.4 187.8 74.3 46.1 155.8

Applied to Our Ping Data Example

• Range: 28.1,188

• Standard deviation: 62.0

• Coefficient of variation: .87

149.1 28.1 28.1 28.5 28.6 28.2

28.4 187.8 74.3 46.1 155.8

Performance Testing: Factors

“Controlled variations, to enable comparison”

• We do experiments to answer questions

– trials should be probative of those questions

• Usually we are exploring alternatives

– what we increased the available memory?

– what if requests were faster or different?

– what if we used a different file system?

• Choose factors to explore our questions

Performance Testing: Levels

• A range of values/choices for each factor

• Some factors are boolean:

– with and without synchronous mirroring

• Some factors have numerical ranges:

– number of web requests applied per second

– amount of memory devoted to I/O buffers

• Some factors have categorical levels:

– Btrfs vs. Ext3 vs. XFS

4/30/2018

4

Choosing Factors and Levels

• Your experiment should look at all key factors

– each factor tested at each interesting level

• #tests = Π levels(factor i)

– this is a minimum if we want to capture variation

– full range testing may be impractical

• We must choose factors and levels carefully

– omit some levels of some factors in some tests

– cover interesting values, but not all combinations

Operations, rates, mixes

• performance is operation-dependent

– reads, writes, creates, deletes, lookups ...

– sequential, random, large, small

• it is also operation mix/order-dependent

– synergistic (e.g. cache) effects

– adverse (e.g. resource contention) effects

• what mix of operations should we measure

– what best approximates expected usage?

– what will best expose strengths and weaknesses

20Deadlock, Prevention and Avoidance

Simulated Work Loads

• Artificial load generation

– on-demand generation of a specified load

– controllable operation rates, parameters, mixes

– scalable to produce arbitrarily large loads

– can collect excellent performance data

• Weaknesses

– random traffic is not a usage scenario

– wrong parameter choices yield unrealistic loads

21Deadlock, Prevention and Avoidance

Captured Sessions

• Captured operations from real systems

– represent real usage scenarios

– can be analyzed and replayed over and over

• Weakness

– each represents only one usage scenario

– multiple instances not equivalent to more users

– danger of optimizing the wrong things

– limited ability to exercise little-used features

– they are kept around forever, and become stale

22Deadlock, Prevention and Avoidance

Testing under Live Loads

• Instrumented systems serving clients

– real combinations of real scenarios

– measured against realistic background loads

– enables collection of data on real usage

• Weakness

– demands good performance and reliability

– potetially limited testing opportunities

– load cannot be repeated/scaled on demand

23Deadlock, Prevention and Avoidance

Standard Benchmarks

• Carefully crafted/reviewed simulators

– heavily reviewed by developers and customers

– believed to be representative of real usage

– standardized and widely available

– well maintained (bugs, currency, improvements)

– comparison of competing products

– guide optimizations (of benchmark performance)

• Weakness

– inertia, used where they are not applicable

24Deadlock, Prevention and Avoidance

4/30/2018

5

System Testing and Performance 25

Meaningful Measurements

• measure under controlled conditions

– on a specified platform

– under a controlled and calibrated load

• measure the right things

– direct measurements of key characteristics

• ensure quality of results

– competing measurements we can cross-compare

– measure/correct for artifacts

– quantify repeatability/variability of results

Common Performance Problems

• non-scalable solutions

– cost per operation becomes prohibitive at scale

– worse-than-linear overheads and algorithms

– queuing delays associated w/high utilization

• bottlenecks

– one component that limits system throughput

• accumulated costs

– layers of calls, data copies, message exchanges

– redundant or unnecessary work

26Deadlock, Prevention and Avoidance

System Testing and Performance 27

Dealing w/Performance Problems

• is a lot like finding and fixing a bug

– formulate a hypothesis

– gather data to verify your hypothesis

– be sure you understand underlying problem

– review proposed solutions

• for effectiveness

• for potential side effects

– make simple changes, one at a time

– re-measure to confirm effectiveness of each

• only harder

End-to-End Testing

• client-side throughput/latency measurements

– elapsed time for X operations of type Y

– instrumented clients to collect detailed timings

• advantages

– easy tests to run, easy data to analyze

– results reflect client experienced performance

• disadvantages

– no information about why it took that long

– no information about resources consumed

28Deadlock, Prevention and Avoidance

Common Measurement Mistakes

• measuring time but not utilization

– everything is fast on a lightly loaded system

• capturing averages rather than distributions

– outliers are usually interesting

• ignoring start-up, accumulation, cache effects

– not measuring what we thought

• ignoring instrumentation artifact

– it may greatly distort both times and loads

29Deadlock, Prevention and Avoidance

System Resource Utilization

% time io_benchmark_3

real 0m0.178s

user 0m0.003s

sys 0m0.005

% mpstat

07:44:18 CPU %user %nice %system %iowait %irq %soft %idle intr/s

07:44:18 all 3.01 57.31 0.36 0.13 0.01 0.00 39.19 1063.46

07:44:18 0 5.87 69.47 0.44 0.05 0.01 0.01 24.16 262.11

07:44:18 1 1.79 48.59 0.36 0.23 0.00 0.00 49.02 268.92

07:44:18 2 2.19 42.63 0.28 0.16 0.01 0.00 54.73 260.96

07:44:18 3 2.17 68.56 0.34 0.06 0.03 0.00 28.83 271.47

% iostat -d

Device: tps read/s wrtn/s read wrtn

sda 194.72 1096.66 1598.70 2719068704 3963827344

sda1 178.20 773.45 1329.09 1917686794 3295354888

sda2 16.51 323.19 269.61 801326686 668472456

sdb 371.31 945.97 1073.33 2345452365 2661206408

sdb1 371.31 945.95 1073.33 2345396901 2661206408

sdc 408.03 207.05 972.42 513364213 2411023092

sdc1 408.03 207.03 972.42 513308749 2411023092

Deadlock, Prevention and Avoidance 30

4/30/2018

6

Averages Don’t Tell the Story

Deadlock, Prevention and Avoidance 31

Cache, Accumulation Start-up Effects

• cached results may accelerate some runs

– random requests that are unlikely to be in cache

– overwhelm cache w/new data between tests

– disable or bypass cache entirely

• start-up costs distort total cost of computation

– do all forks/opens prior to starting actual test

– long test runs to amortize start-up effects down

– measure and subtract start-up costs

• system performance may degrade with age

– reestablish base condition for each test

Deadlock, Prevention and Avoidance 32

Measurement Artifact

• costs of instrumentation code

– additional calls, instructions, cache misses

– additional memory consumption and paging

• costs of logging results

– may dwarf the costs of instrumentation

– increased disk load/latency may slow everything

• make it run-time controllable option

• minimize file/network writes

– in-memory circular buffer, reduce before writing

Deadlock, Prevention and Avoidance 33 System Testing and Performance 34

Execution Profiling

• automated measurement tools

– compiler options for routine call counting

• one counter per routine, incremented on entry

– statistical execution sampling

• timer interrupts execution at regular intervals

• increment a counter in table based on PC value

• may have configurable time/space granularity

– tools to extract data and prepare reports

• number of calls, time per call, percentage of time

• very useful in identifying the bottlenecks

4/30/2018 System Testing and Performance 35

Execution Profiling

%time seconds cum % cum sec procedure (file)

42.9 0.0029 42.9 0.00 printit (profsample.c)

42.9 0.0029 85.7 0.01 add_vector (profsample.c)

14.3 0.0010 100.0 0.01 mult_by_scalar (profsample.c)

Simple execution profiling

% cumulative self self total

time seconds seconds calls ms/call ms/call name

42.9 0.0029 0.0029 2200 0.0013 0.0013 printit

42.9 0.0058 0.0029 20 0.1450 0.1450 add_vector

0 0.0058 0.0000 1 main

14.3 0.0068 0.0010 2 0.5000 1.2225 mult_by_scalar

Profiling with call counting

System Testing and Performance 36

Time Stamped Event Logs

• application instrumentation technique

• create a log buffer and routine

– call log routine for all interesting events

– routine stores time and event in a buffer

• requires a cheap, very high resolution timer

• extract buffer, archive, mine the data

– time required for particular operations

– frequency of operations

– combinations of operations

– also useful for post-mortem analysis

4/30/2018

7

4/30/2018 System Testing and Performance 37

Time Stamping

date time event sub-type

---------- ------------ ------------ -------------

05/11/06 09:02:31.207408 packet_rcv 0x20749329

05/11/06 09:02:31.209301 packet_route 0x20749329

05/11/06 09:02:31.305208 wakeup 0x4D8C2042

05/11/06 09:02:31.401106 read_packet 0x033C2DA0

05/11/06 09:02:31.401223 read_packet 0x033C2DA0

05/11/06 09:02:31.402110 sleep 0x4D8C2042

05/11/06 09:02:31.614209 interrupt 0x00000003

05/11/06 09:02:31.614209 dispatch 0x1B0324C0

05/11/06 09:02:31.614210 intr_return 0x00000003

05/11/06 09:02:31.652303 check_queue 0x2D3F2040

05/11/06 09:02:31.652306 packet_rcv 0x20749329

Dump of simple trace log

Performance Analysis

• Can you characterize latency and throughput?

– of the system, of each major component

• Can you account for all the end-to-end time?

– processing, transmission, queuing delays

• Can you explain how these vary with load?

• Are there any significant unexplained results?

• Can you predict the performance of a system?

– as a function of its configuration/parameters

38Deadlock, Prevention and Avoidance

Performance: Throughput vs Load

Scheduling: Algorithms, Mechanisms and Performance 39

throughput

offered load

ideal

typical

(why throughput falls off)

• dispatching processes is not free

– it takes time to dispatch a process (overhead)

– more dispatches means more overhead (lost time)

– less time (per second) is available to run processes

• how to minimize the performance gap

– reduce the overhead per dispatch

– minimize the number of dispatches (per second)

• allow longer time slices per task

• increase the number of servers (e.g. CPUs)

• this phenomenon will be seen in many areas

Scheduling: Algorithms, Mechanisms and Performance 40

Performance: response time vs load

Scheduling: Algorithms, Mechanisms and Performance 41

delay
(response time)

offered load

ideal

typical

(why response time grows w/o limit)

• response time is function of server & load

– how long it takes to complete one request

– how long the waiting line is

• length of the line is function of server & load

– how long it takes to complete one request

– the average inter-request arrival interval

• if requests arrive faster than they are serviced

– the length of the waiting list grows

– and the response time grows with it

Scheduling: Algorithms, Mechanisms and Performance 42

4/30/2018

8

Throughput (data flow) model

43Deadlock, Prevention and Avoidance

NICs SCM ZIP DRAM

DIF SHA

3M IOP

12 GB/s

6 IOP

24 GB/s

6 IOP

24 GB/s

330K IOP

1.3 GB/s

330K IOP

1 GB/s

SSD
80K IOP

1 GB/s

NICs SCM ZIP DRAM

DIF SHA

3M IOP

12 GB/s

330K IOP

1.3 GB/s

330K IOP

1 GB/s

SSD
80K IOP

1 GB/s

6 IOP

24 GB/s

6 IOP

24 GB/s

3M IOP

12 GB/s

3M IOP

12 GB/s

Assumptions (conservative):

• 6M 4K writes per second

•3x write aggregation
• 3x de-duplication
• 1.2x compression

compute/verify checksum de-duplication

write aggregationmirroring compression collect 1MB writes

Understanding where the time went

Deadlock, Prevention and Avoidance 44

dequeue

from NIC

iSER

processing

50 cy

582 nS

update index

(mem)

delays: 7,200 uS

computation: 1,781 nS

hyperthreading: 1.9x

create

RBLKs

75nS

RBLK

enq/disp

85 nS

285 nS

enqueue

SCM cmds

200 nS

FPGA

processing

Finish

transaction

10 nS

construct

write resp

54 nS

enqueue

write resp

104 nS

dequeue

from NIC

house

keeping

50 cy

42 ns

dequeue

SCM rsp

150 nS

52 nS

52 nS

75 uS

queueing

delays

7,200nS

Understanding the Delays

Deadlock, Prevention and Avoidance 45

Operation

mean

measured

queue time

measured CPU

%

(ρρρρ)

mean

measured svc

time (1/λλλλ)

λρλρλρλρ2/(1-ρρρρ)

4K read 4.1µs 90% 478ns 4.3µs

4K write 2.0µs 88% 267ns 1.9µs

The measured queuing delays within iSER processing very

nearly match the values predicted for an M/M/1 system with

the measured service times and CPU utilization.

Performance Model Notation

• commonly used concepts/symbols

– λ request arrival rate (e.g. 200/s)

– µ request service rate (e.g. 400/s)

– ρ load factor (λ/µ, e.g. 50%)

• when (λ > µ) or (ρ > 1)

– requests arriving faster than they can be serviced

– the system is overloaded

QT1A: Throughput vs. Latency

µλ

arrival rate service rate

ρ = λ/µ

utilization/load factor

M/M/1 Queuing System
• Poisson arrivals, FIFO service, one server
• mean queue length: (1−ρ)/ρ
• mean waiting time: ρ/(µ−λ)

This is a fundamental result

All Presentations

1. To whom am I speaking?

– what they do, and do not know

– what they are, and are not prepared to absorb

2. Why are they listening to me?

– how might this help them achieve their goals

– how might this address their concerns

3. What do I want them to leave with?

– what conclusions do I want them to draw

– what actions do I want them to take

48Deadlock, Prevention and Avoidance

4/30/2018

9

Performance Presentation

• highlight the key results

– answers to the basic questions

– identified problems, risks and opportunities

• why should they believe these results

– methodology employed, relation to other results

– back-up details

• not just numbers, but explanations

– how do we now better understand the system

– how does this affect our plans and intentions

49Deadlock, Prevention and Avoidance

Time Breakdown (high level)

Deadlock, Prevention and Avoidance 50

80 uS

dequeue

from NIC

process

PDU

create read

request

main

queue

processing

in CX3

create

RDMA task

NIC

queue

enqueue

read

RDMA read

payload

main

queue

dequeue

from NIC

process

event

main

queue

process

write

target

queue

create

ACK

main

queue

processing

in CX3

transmit

ACK

main

queue

process

completion

2% 0%

14%

6%

78%

iSER cache

queueing RDMA

Throughput and Scalability

Deadlock, Prevention and Avoidance 51

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4

IO
P

S
 (

x1
0

0
0

)

NICs (or equivalent SSD load)

Throughput

iSER (qd=4) Tier-0 (qd=4)

Tier-1 system (qd=4)

system (qd=8)

0

50

100

150

200

250

300

350

1 2 3 4

m
ic

ro
-s

e
co

n
d

s

NICs (or equivalent SSD load)

Latency

iSER (qd=4) Tier-0 (qd=4)

Tier-1 system (qd=4)

system (qd=8)

Sample Conclusions

• Throughput

• iSER throughput linear with NICs (up to limits we could test)

• cache throughput limited by memory speed (due to large index)

• Latency

• dominated by NIC and queuing delays (not processing time)

queuing delays are a result of high CPU utilization

NIC associated delays may be a load-related problem in CX-3

• very good until increasing queue depth becomes the problem

• Efficiency and Hyper-Threading

• 2-2.5µs of processing per 4K write/read operation

• NIC/protocol handling hyper-threads very well (1.8x)

• cache hyper-threading (1.2x-1.4x) is limited by large index

Deadlock, Prevention and Avoidance 52

Assignments

• Reading

– AD Ch 33 events

– AD Ch 35 introduction to storage

– AD Ch 36 devices

– AD Ch 37 disks

– AD ch 38 RAID

– poll(2), select(2), sigaction(2)

• Lab

– Project 4B: embedded system sensor I/O

Deadlock, Prevention and Avoidance 53

Supplemental Slides

4/30/2018

10

System Testing and Performance 55

Performance Testing

• identify key performance metrics

– throughputs, response times, failure rates

– some may be external competitive numbers

– some may be internal assessment numbers

• define ways to measure each

– test transactions and measurement points

• define suites to exercise and measure

– there are often performance benchmarks

• this testing should be automated

System Testing and Performance 56

Meaningful Measurements

• measure under controlled conditions

– on a specified platform

– under a controlled and calibrated load

• measure the right things

– direct measurements of key characteristics

• ensure quality of results

– competing measurements we can cross-compare

– measure/correct for artifacts

– quantify repeatability/variability of results

Factors in Experiments

• We do experiments to answer questions

– choose factors that are probative of those questions

• If you care about web server scaling …

– , factors probably related to amount of work offered

• If you want to know which file system works best

for you, factor is likely to be different file systems

• If you’re deciding how to partition a disk, factor is

likely to be different partitionings

Measurement Workloads

• Most measurement programs require the use of
a workload

• Some kind of work applied to the system you are
testing

– Preferably similar to the work you care about

• Can be of several different forms

– Simulated workloads

– Replayed trace

– Live workload

– Standard benchmarks

