
5/19/2018

1

Distributed Systems

13A. Distributed Systems: Goals & Challenges

13B. Distributed Systems: Communication

13H. Public Key Encryption

Distributed Systems: Issues and Approaches 1

Goals of Distributed Systems

• scalability and performance

– apps require more resources than one computer has

– grow system capacity /bandwidth to meet demand

• improved reliability and availability

– 24x7 service despite disk/computer/software failures

• ease of use, with reduced operating expenses

– centralized management of all services and systems

– buy (better) services rather than computer equipment

• enable new collaboration and business models

– collaborations that span system (or national) boundaries

– a global free market for a wide range of new services

the end of self-contained systems

• authentication

– Active Directory, LDAP, Kerberos, …

• configuration and control

– Active Directory, LDAP, DHCP, CIM/WBEM, SNMP, …

• external data services

– CIFS, NFS, Andrew, Amazon S3, …

• remote devices

– X11, web user interfaces, network printers

• even power management, bootstrap, installation

– vPro, PXE boot, bootp, live CDs, automatic s/w updates

Peter Deutsch's

"Seven Falacies of Network Computing"

1. network is reliable

2. no latency (instant response time)

3. available bandwidth is infinite

4. network is secure

5. network topology & membership are stable

6. network admin is complete & consistent

7. cost of transporting additional data is zero

Bottom Line: true transparency is not achievable

Heterogenous Interoperability

• heterogenous clients

– different instruction set architectures

– different operating systems and versions

• heterogenous servers

– different implementations

– offered by competing service providers

• heterogenous networks

– public and private

– managed by different orgs in different countries

Distributed Systems: Issues and Approaches 5

Fundmental Building Blocks Change

• the old model

– programs run in processes

– programs use APIs to access system resources

– API services implemented by OS and libraries

• the new model

– clients and servers run on nodes

– clients use APIs to access services

– API services are exchanged via protocols

• local is a (very important) special case

5/19/2018

2

Performance, Scalability, Availability

• old model – better components (4-40%/yr)

– find and optimize all avoidable overhead

– get the OS to be as reliable as possible

– run on the fastest and newest hardware

• new better – better systems (1000x)

– add more $150 blades and a bigger switch

– spreading the work over many nodes is a huge win

• performance – linear with/number of blades

• availability – service continues despite node failures

Changing Paradigms

• network connectivity becomes "a given"

– new applications assume/exploit connectivity

– new distributed programming paradigms emerge

– new functionality depends on network services

• applications demand new kinds of services:

– location independent operations

– rendezvous between cooperating processes

– WAN scale communication, synchronization

General Paradigm – RPC

• procedure calls – a fundamental paradigm

– primary unit of computation in most languages

– unit of information hiding in most methodologies

– primary level of interface specification

• a natural boundary between client and server

– turn procedure calls into message send/receives

• a few limitations

– no implicit parameters/returns (e.g. global variables)

– no call-by-reference parameters

– much slower than procedure calls (TANSTAAFL)

Remote Procedure Call Concepts

• Interface Specification

– methods, parameter types, return types

• eXternal Data Representation

– language/ISA independent data representations

– may be abstract (e.g. XML) or efficient (binary)

• client stub

– client-side proxy for a method in the API

• server stub (or skeleton)

– server-side recipient for API invocations

Distributed Systems: Issues and Approaches 10

Remote Procedure Calls – Data Flow

Distributed Systems: Issues and Approaches 11

client application

client stub server skeleton

server application

Client System Sever System

messages

call
call

Remote Procedure Calls – Tool Chain

RPC
interface

specification

RPC
generation

tool

Client RPC
stubs

server
RPC

skeleton

External Data
Representation
access fucntions

client
application

code

server
implementation

code

client
server

5/19/2018

3

(RPC – Key Features)

• client application links against local procedures

– calls local procedures, gets results

• all rpc implementation is inside those procedures

• client application does not know about RPC

– does not know about formats of messages

– does not worry about sends, timeouts, resents

– does not know about external data representation

• all of this is generated automatically by RPC tools

• the key to the tools is the interface specification

The Interoperability Challenge

• S/W, APIs and protocols evolve

– to embrace new requirements, functionality

• A single node is running a single OS release

– all s/w can be upgraded at same time as OS

• A distributed system is unlikely homogenous

– rolling upgrades do one server at a time

– newly added servers may be up/down-rev

– we may have no control over client s/w versions

• we must ensure they all “play well” together

Distributed Systems: Issues and Approaches 14

Ensuring Interoperability

1. restricted evolution

– all changes must be upwards compatible

2. compensation (run-time restriction)

– all sessions begin with version negotiation

3. better tools that embrace polymorphism

– every agent speaks his own protocol version

– RPC language and tools are version-aware

• messages are un-marshaled as each client expects

• default behaviors are based on older expectations

– equally applicable to messages and at-rest data

Distributed Systems: Issues and Approaches 15

Extensible Data Representations

• Upwards compatible serialized object formats

– platform independent data representations

– client-version sensitive translation

• old clients never see new-version fields

• new clients infer upwards compatible defaults

• Example: Google Protocol Buffers

– very efficient translation

– applicable to both protocols and persisted data

– supports many representations (e.g. binary, json)

– has adaptors for many languages (e.g. C, python)

Distributed Systems: Issues and Approaches 16

RPC is not a complete solution

• client/server binding model

– expects to be given a live connection

• threading model implementaiton

– a single thread service requests one-at-a-time

– numerous one-per-request worker threads

• failure handling

– client must arrange for timeout and recovery

• higher level abstractions

– e.g. Microsoft DCOM, Java RMI, DRb, Pyro

Distributed Systems: Issues and Approaches 17

Evolving Interaction Paradigms

• HTTP is becoming the preferred transport

– well supported, tunnels through firewalls

• Simple Object Access Protocol (SOAP)

– HTTP transport of XML encoded RPC requests

– options for other transports and encodings

– supports non-RPC interactions (e.g. transactions)

• REpresentational State Transfer (REST)

– stateless, scalable, cacheable, layerable

– operations limited to Create/Read/Update/Delete

Distributed Systems: Issues and Approaches 18

5/19/2018

4

Sample SOAP Request

<?xml version="1.0"?>

<soap:Envelope xmlns:soap=“http://www.w3.org/2003/05/soap-envelope”>

<soap:Header>

</soap:Header>

<soap:Body>

<m:GetStockPrice xmlns:m=“http://www.example.org/stock/Surya”>

<m:StockName>IBM</m:StockName>

</m:GetStockPrice>

</soap:Body>

</soap:Envelope>

Distributed Systems: Issues and Approaches 19

Sample REST (json) Request

{

"username" : "my_username",

"password" : "my_password",

"validation-factors" : {

"validationFactors" : [

{

"name" : "remote_address",

"value" : "127.0.0.1"

}

]

}

}

Distributed Systems: Issues and Approaches 20

Marshal (and un-marshal)

• English

to arrange or assemble a group into order

• usually a group of people or soldiers

• also assembling devices into a coat of arms

• Computer Science

transforming the in-memory representation of an

object into a suitable format for storage or

transmission

Distributed Systems: Issues and Approaches 21

Asymmetric Cryptosystems

• Encryption and decryption use different keys
– C = E(KE,P)

– P = D(KD,C)

– P = D(KD , E(KE ,P))

• Often works the other way, too
– C= E(KD,P)

– P = D(KE,C)

– P = D(KD , E(KE ,P))

• Public Key (PK) encryption is such a system
– KE is called the public key, KD is called the private key

– it is very difficult to infer KD from D, E, C, P and KE

Asymmetric Encryption

(public key)

asymmetric

encryption

secret

K’

message

asymmetric

encryption

message

sender’s system receiver’s systeminsecure network

secret

K

encrypted transmission

complementary keys

(data encrypted

with one must be

decrypted with the

other)
23Distributed Systems: Issues and Approaches

(Public Key Encryption)

• an asymmetric (two key) encryption technique

– one key is private – (not shared) only key owner knows it

– one key is public – it is advertised to the entire world

• it can be used to implement "your eyes only" privacy

– encrypt a message with the recipient's public key

– the message can only be decrypted with his private key

• it can be used to implement guaranteed signatures

– sender encrypts message with his own private key

– if it decrypts w/sender's public key, it must be from sender

• these can be combined for authentication + privacy

24Distributed Systems: Issues and Approaches

5/19/2018

5

Example Public Key Ciphers

• RSA

– the most popular public key algorithm

– used on pretty much everyone’s computer

• Elliptic curve cryptography

– an alternative to RSA

– tends to have better performance

– not as widely used or studied

Digital Signatures

cryptographic

hash

message

cryptographic

hash

message

compare
asymmetric

encryption

private

key

insecure

transmission

asymmetric

encryption

public

key

digital

signature

26Distributed Systems: Issues and Approaches

(Signing a message)

• encrypting a message with private key signs it

– only you could have encrypted it, it must be from you

– it has not been tampered with since you wrote it

• encrypting everything w/private key is a bad idea

– if use a key too much, someone will eventually crack it

– asymmetric encryption is extremely slow

• no need to encrypt whole message w/private key

– compute a cryptographic hash of your message

– encrypt the cryptographic hash with your private key

– faster and safer than encrypting whole message

27Distributed Systems: Issues and Approaches

Using Digital Signatures

• much better than ink signatures or fingerprints

– uniquely identify the document signer

– uniquely identify the document that was signed

– signature cannot be copied onto another document

• we know document has not been tampered with

– we can recompute the cryptographic hash at any time

– confirm it matches message the sender signed

– sender cannot later claim not to have signed message

• digitally signed contracts can be legally binding

– several states have passed such legislation

28Distributed Systems: Issues and Approaches

Can we trust public keys?

• if I have a public key

– I can authenticate received messages

– I know they were sent by the owner of the private key

• but how do I know who that person is?

– can I be sure who a public key belongs to?

– how do I know that this is really my bank's public key?

– could some swindler have sent me his key instead?

• I would like a certificate of authenticity

– a digital Notary stamp

– certifying who the real owner of a public key is

29Distributed Systems: Issues and Approaches

Certificate:
Data:

Version: v3; Serial Number: 3;

Issuer: OU=Ace Certificate Authority, O=Ace Industry, C=US
Validity: Not After: Sun Oct 17 18:36:25 1999

Subject: CN=Jane Doe, OU=Finance, O=Ace Industry, C=US

Subject Public Key Info: Algorithm: PKCS #1 RSA Encryption

Public Key: Modulus:
00:ca:fa:79:98:8f:19:f8:d7:de:e4:49:80:48:e6:2a:2a:86:

...

Signature:
Algorithm: PKCS #1 MD5 With RSA Encryption

Signature:

6d:23:af:f3:d3:b6:7a:df:90:df:cd:7e:18:6c:01:69:8e:54:65:fc:06:

...

Public Key Certificates

G1

30Distributed Systems: Issues and Approaches

5/19/2018

6

(What Is a PK Certificate?)

• Essentially a data structure

– name and description of an actor

– public key belonging to that actor

– validity/expiration information

• Signed by someone I trust

– whose public key I already have

– a digital Notary Public

• Testifying that the actor owns the public key

– and (by implication) the matching private key

Using Public Key Certificates

• if I know public key of the authority who signed it

– I can validate the signature is correct

– I can tell the certificate has not been tampered with

• if I trust the authority who signed the certificate

– I can trust they authenticated the certificate owner

– e.g. we trust drivers licenses and passports

• but first I must know and trust signing authority

– everybody knows and trusts RSA as an authority

– does that mean that only RSA can sign certificates?

32Distributed Systems: Issues and Approaches

Delegated Authority

• I can accept certificates from a known authority

– not practical for one authority to issue all certificates

– how to validate certificates from unknown authority

• what if he has a certificate

– that is signed by an authority I know and trust

– that authorizes him to issue certificates

• if I trust RSA, I should also trust their "delegates"

– perhaps I can also trust people they delegate

– but I would need to see the entire chain of certificates

33Distributed Systems: Issues and Approaches

Certificate Authority Hierarchy

Mark Kampe

at UCLA

UCLA

Certificate Authority

USA

Certificate Authority

Japan

Certificate Authority

UK

Certificate Authority

Root

Certificate Authority

… …

34Distributed Systems: Issues and Approaches

A Chicken and Egg Problem

• certificate is a formal introduction to a new partner

– I can trust he is who he claims to be

– if I can validate the certificate

– by following the chain of delegated trust

• How do I trust the authority at the end of the chain?

• Ultimately through some other mechanism

– OS or browser comes with an initial set of certificates

– hand delivered (as in our IOT security project)

– down-loaded, over a secure channel, from trusted site

– you decide to accept a new certificate

Assignments

• For next lecture

– Arpaci C48: NFS

– Leases

– Distributed Consensus

– Two-Phase & Three-Phase Commits

– Authentication Services

• Lab

– Project 3B

Distributed Systems: Issues and Approaches 36

5/19/2018

7

Supplementary Slides

37Distributed Systems: Issues and Approaches

new view of “system architecture”

• customers pay for services

– we design and build systems to provide services

• services are built up from protocols

– service is delivered to customers via a network

– service is provided by collaborating servers

– servers are commissioned/controlled by network

• the fundamental unit of service is a node

– provides defined services over defined protocols

– language, OS, ISA are mere implementation details

Centralized System Management

• single point of management for all systems

– ensure consistent service configuration

– eliminate problems with mis-configured clients

• zero client-side administration

– plug in a new client, and it should just work

– reduced (per client) costs of support

• uniform & ubiquitous computer services

– all data and services available from all clients

– global authentication and resource domain

Centralized Services and Servers

• quality and reliability of service

– guaranteed to be up 24x7

– performance monitored, software kept up-to-date

– regular back-ups taken

• price performance

– powerful servers amortized over many clients

• ease of use

– no need to install and configure per client services

– services are available from any client

System Initialization

• Dynamic Host Configuration Protocol

– automatic IP address assignment (static or
dynamic)

– automatic network configuration (subnet,
gateway)

– server discovery (domain and other services)

– locate an appropriate network boot server

• Trivial File Transfer Protocol

– anonymous UDP file transfer protocol

– used to load boot images over the network

System Configuration

• Domain Name Service

– host-name to IP address resolution

• Lightweight Directory Access Protocol

– domain configuration database

• associates attributes with “distinguished names” (keys)

– information about users, devices, services, etc

• Active Directory

– Microsoft domain configuration database

• supported by its own APIs

• accessible through LDAP

5/19/2018

8

System Management

• Simple Network Management Protocol

– defines standard Management Information Bases

• get/set operations for status and control

• devices can generate asynchronous TRAPs

• Common Information Model

– defines standard schemas and object models

• Web Based Enterprise Management (XML binding)

• Windows Management Instrumentation (COM binding)

• System Logging

– forwarding event messages to log server

the Rise of “Middle-ware”

• old model – the OS was the platform

– applications are written for an Operating System

– OS implements resources to enable applications

• new model – the OS enables the platform

– applications are written to a middle-ware layer

• e.g. Enterprise Java Beans, Component Object Model,
etc.

– object management is user-mode and distributed

• e.g. CORBA, SOAP

– OS APIs less relevant to applications developers

• the network is the computer

Remote File Access

• Network File System (NFS)

– originated at Berkeley, peer-to-peer file sharing

• Common Internet File System (aka SMB)

– originated at Microsoft, remote file access
sessions

• Special Purpose NAS products

– NAS virtualization

– High Performance Computing

– High Bandwidth Streaming

– Information Lifecycle Management

Security and Licensing

• Kerberos

– encryption based authentication/work-ticket

server

• NT LAN Manager Authentication

– challenge/response authentication

• Key Servers and Public Key Infrastructure

– storage and retrieval of public key certificates

• License Managers

– run-time validation of license authenticity

Mail & Messaging

• Outgoing mail servers

– know how to route outgoing mail for delivery

– Simple Mail Transfer Protocol

• Incoming mail servers

– available 24x7 to receive and view mail, backed up

– Post Office Protocol, Internet Mail Access Protocol

• Internet Relay Chat servers

– form the backbone for chat traffic

– Internet Relay Chat Protocol (or something like it)

Service Discovery

• Service Location Protocol

– resource/service registration and discovery

protocol

• Object Reference Brokers and IIOP

– registry for object implementations

– match maker for remote object references

• Jini/JDMK

– Java tools to find services and protocol adaptors

5/19/2018

9

Advanced Features – IP Multiplexing

• large servers may need heroic bandwidth

– more than one interface can deliver

– perhaps more than one wire can carry

• put multiple interfaces on multiple sub-nets

• exploit them with smarter IP routing

– routing should always pick the quickest route

– both subnets are known to lead to the same place

– IP can look at queue lengths, and pick the shorter

– or it could just "round-robin" through the interfaces

• getting input redirected is a harder problem

Advanced Features – Quality of Service

• guarantee apps a fixed share of bandwidth

• very useful for time-critical messages

– real-time telemetry

– streaming video

• implement with a scheduling module

– plumbed between IP and Generic LAN Driver

– observes queues and schedules packets for drivers

• result: key applications less sensitive to overload

• caveat: QoS is an end-to-end problem

– it must be solved all along the line

Distributed Temporal Separation
Reader

1

Writer

1

Server

1

Server

2

Writer

2

Reader

2
x=1

x=1

x=1x=1

x=2

x=1x=2

x=3

x=3x=2

x=2

x=3

x=2
x=3

Different clients see

different values at the

same time

Different clients see

successive values in

different orders

1. The system does not have a scalar state. State is a vector.

2. There is no total ordering; There are only partial orderings.

