Recursion — A problem-solving technique whereby an original problem is repeatedly reduced to smaller instances of itself until a base case is reached.

Two Ways to Classify Recursion
1. Chain Recursion vs. Tree Recursion
2. Incremental vs. Divide-and-Conquer

<table>
<thead>
<tr>
<th>Typical Resource Usage</th>
<th>chain</th>
<th>tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>incremental</td>
<td>N</td>
<td>2^N</td>
</tr>
<tr>
<td>divide-and-conquer</td>
<td>$\log N$</td>
<td>$N \log N$</td>
</tr>
</tbody>
</table>

Resource means memory or run-time.

1. Chain vs. Tree Recursion

Chain Recursion: At each step, the problem is reduced to exactly one smaller instance of itself, plus some trivial work. Example:

$$\text{sum}(1, N) = \text{sum}(1, N - 1) + N.$$

Tree Recursion: At each step, the problem is reduced to at least two smaller instances of itself, plus some trivial work. E.g.,

$$\text{fib}(N) = \begin{cases}
\text{fib}(N - 1) + \text{fib}(N - 2) & \text{if } N > 1 \\
N & \text{if } N \leq 1
\end{cases}$$

2. Incremental vs. Divide-and-Conquer

Incremental: At each step, the size of the problem is reduced by subtracting a fixed amount from the given size. Example:

$$\text{sum}(1, N) = \text{sum}(1, N - 1) + N.$$

Divide and Conquer: At each step, the size of the problem is reduced by dividing the given size by at least 2. Examples: binary search, merge sort, GCD.