
Winter 2004 UCLA CS 31 (Shinnerl)

Computing

The study of systematic processes that describe and transform

information: their theory, analysis, design, efficiency, implemen-

tation, and application.

Fundamental Question of Computing:

What can be automated?

Computer Science vs. Mathematics

— Mathematics is concerned mainly with declarative knowledge: identifying
the characteristics of and relationships among distinct abstract notions.

— Computer Science is concerned mainly with imperative knowledge: how
to construct effective methods for manipulating information.

1

Basics

Information is a primitive; i.e., it cannot be defined in terms

of simpler concepts. “Facts” and “ideas” are dependent on

context.

Data is information represented with symbols; e.g., numbers,

words, and images.

An algorithm is a finite sequence of unambiguous instructions

for the completion of a specific task in finitely many steps.

A program is the implementation of an algorithm suitable for

execution by a computing machine. Programs are also called

applications or software.

2

Digital vs. Analog E.g., an analog clock (big hand and little

hand) represents time continuously. A digital clock represents

time discretely.

An analog machine stores and represents information in a con-
tinuous range of values.

— No inherent limit on accuracy other than cost.

— May be difficult or expensive to convert data from one medium to an-
other.

A digital machine stores and represents information in a finite
set of discrete values.

— Accuracy limit is clear from the output.

— Relatively easy and cheap to convert data from one medium to another.

3

Abstraction

The extraction of the essential, defining characteristics of an

object from the collection of all its common instances. An ab-

straction is a simplified model of something.

E.g., one abstraction for a car is “something with wheels that

you can drive.” Other abstractions are more appropriate in other

contexts: design, marketing, maintainance and repair, safety

testing, etc.

4

Levels of Abstraction

A high level of abstraction is a superficial view.

— The “big picture,” the “forest.”

— Ignore small-scale details.

— Concentrate on relevant aggregate properties.

A low level of abstraction is a precise, technical view.

— The “details,” the “trees.”

— Ignore large-scale aggregate properties.

— Concentrate on localized primitives.

Each level is useful in its own context.

— A hierarchy of intermediate levels extends from the superficial to the
minute.

— Imagine flying in an airplane over the countryside. The lower the plane
is, the more detail you see, and the more restricted in scope the view is.

5

Some Traditional Applications of Computing

Data Archiving and Database Management

Scheduling and Operations Research —manufacturing and dis-

tribution, logistics

Mathematical and Scientific Computation and Simulation —

cryptography, geology, meteorology, astronomy, chemistry

Systems Engineering and Design — weapons systems, space ex-

ploration, aircraft design and maintenance, expert systems

Text Processing — document preparation and analysis

Graphics and Visualization

6

Some Emerging Applications of Computing

Artificial Intelligence — speech recognition, robotics, cybernetics,

computer vision

Electronic Design Automation (EDA), e.g., in VLSICAD

Bioinformatics — genomics, proteomics, drug design

Distributed networks of semi-autonomous agents

Telecommunications

Data Mining

Entertainment

7

Example: VLSICAD Physical Design

(Computer-aided design of very large-scale integrated circuits)

Layout: arrange the components of an integrated circuit in the

most efficient configuration feasible.

A B C

D E F

G H I

Cell

Pad

Placement
Region R

3−pin net

2−pin
net B

E

AC

D

F G

H

I

A Good Layout A Poor Layout

8

Computer

A machine used for computing. A collection of physical com-

ponents (hardware), each controlled through a software inter-

face, including memory, input & output (I/O), a processing unit

(CPU), and an interconnect.

Hierarchy of Abstraction Levels:

User (Systems)

Programming

Functional Organization (Architecture)

Electrical Engineering

Physics, Chemistry

9

The Von Neumann Model of the Computer

I/O, CPU/ALU, Primary Memory (RAM), Secondary Memory,

Interconnect Network

• serial operation

• binary representation

• stored program

• interchangeability of instructions and data

A CPU has

(i) a finite number (100 – 1000) of executable instructions im-

plemented as miniature electronic circuits on a chip.

(ii) a small number of memory registers for temporarily storing

data needed by the current instruction
10

Binary Representation of Data

By assigning each character symbol a unique integer value and

converting it to binary, we can store all data in binary.

In the usual decimal representation (base-10) 386.7103 means

3∗102+8∗101+6∗100+7∗10−1+1∗10−2+0∗10−3+3∗10−4.

In a binary representation (base-2), 10110.101 means

1 ∗24+0 ∗23+1 ∗22+1 ∗21+0 ∗20+1 ∗2−1+0 ∗2−2+1 ∗2−3.

Any number can always be expanded in powers of 2. Different

numbers always have different expansions.

11

Memory, a.k.a. “Storage”

— Can be viewed as one long sequence of cells, each capable

of storing a binary digit (bit): 0 or 1.

— Bits are grouped in consecutive 8-bit chunks called bytes.

— Bytes are addressed sequentially but can usually be accessed

directly.

The largest number of bits that can be simultaneously manipu-

lated in the hardware circuitry is a fundamental parameter of the

machine’s architecture known as word length. Most machines

today (2003) use 32-bit (i.e., 4-byte) words.

12

File

Any named collection of data or instructions stored in memory.

Programs and data are both stored as files. Files are organized

hierarchically in directories and subdirectories.

For text files, a.k.a. formatted files, each symbol in the user’s

character set is assigned a unique positive integer value (usu-

ally, between 32 and 127) according to a standard code (usually,

ASCII). The binary representation of this integer is what is ac-

tually stored in memory. Each character code will occupy the

same fixed number of bytes, e.g., 1, 2, or 4.

In a binary or unformatted file, the bits typically do not represent

simple alphanumerical characters and instead follow some other

pattern understood only by certain programs.

13

Kinds of Memory

Any location in a Random Access Memory (RAM) can be ac-

cessed directly within a small fixed amount of time.

In contrast, accessing a particular location in a Sequential Access

Memory (e.g., a tape memory) requires traversing past all the

locations preceding it.

Volatile memory requires a steady source of power to hold its

content, e.g., DRAM and SRAM chips. Nonvolatile memory

doesn’t, e.g., optical and magnetic disks.

14

The Memory Pyramid— the closer the memory is to the CPU,
the faster it can be accessed, the less there is of it, and the more
it costs.

Peripherals (Floppy Diskette, CD-RW, etc)

Secondary Memory
(‘‘Disk, Hard Drive’’)

Primary Memory
(‘‘RAM’’)

Level-1 Cache

CPU registers

Level-2 Cache

 cost,
 speed

access time
Size (# bits),

The Memory Pyramid
15

Operating System (OS)

The collection of programs responsible for the smooth coor-

dination of the hardware (physical components) and software

(programs) in a computer.

Input/Output (I/O)

Command interpreter (shell)

File management and security

Program development tools

Time sharing and accounting

Communication

16

Measuring Difficulty

Problems are classified by the amount of computational effort it

takes to solve them.

Each problem can be given a size, N = the number of bits needed to encode
it. Solving a given problem of size N requires a certain amount of memory
and run-time, expressible as an increasing function of N , called a growth rate.
E.g.,

logN logarithmic√
N ,

3
√

N , . . . nth root
N linear; f(kx) = kf(x); “scalable”
N logN

N2, N3, . . . polynomial
2N exponential

Difficult problems require large amounts of resources (memory

and time) relative to their sizes; e.g. N4 or 2N .

17
N

log N

sqrt(N)

2 NN 2

Familiar Growth Rates

N

18

Scalability and Intractability

Scalable Problems Exhibit Linear Growth

f(N) = cN e.g., 1,5,9,13,17, . . .

f(N +1) = f(N) + f(1) constant rate of change

f(kN) = kf(N) difficulty proportional to size

Intractable Problems Exhibit Exponential Growth

f(N) = c2N , e.g., 1,2,4,8,16, . . .

f(N +1) = kf(N)⇒ “explosive” growth.

For large values of N (e.g., N > 1000), the problem can-

not be solved with any reasonable amount of resources.

19

Moore’s Law

Since 1950, computing power has increased exponentially.

About every 18 months,

— the minimum feature length on a chip decreases by ×0.7.
— the on-chip density of logic devices (per mm2) doubles.

— the cost of memory (per bit) decreases by ×0.5.
— the number of operations performed per second doubles.

— the cost of building a chip fabrication plant doubles.

Every 15 years, computers become 1000 times more powerful!

The increase since 1950 is more than one billion!

Although the trend cannot continue forever, it is expected to

continue through at least 2008.

20

Programming Languages

The CPU understands only its own special binary machine lan-

guage, which represents primitive CPU operations called instruc-

tions at the lowest level of abstraction.

High-level programming languages like C++ enable the con-

struction of portable source codes, i.e., programs that run cor-

rectly on many different types of machines and operating sys-

tems.

A compiler is a program that translates high-level source-code in

some specific programming language into machine language for

some specific machine (e.g., C, Fortran, C++). An interpreter

simultaneously translates and executes source-code statement

by statement (e.g., Java, Lisp).

21

Source-Code Program

A finite sequence of statements in some higher-level program-

ming language; e.g.,

read*, a

read*, b

c = a + b

print*, c

22

Executable Program

A finite sequence of binary CPU instructions. It is relatively

straightforward to translate between these binary instructions

and their assembly language codes, illustrated below.

11010 00100 read a

11010 00110 read b

01011 00100 00001 fetch a r1

01011 00100 00010 fetch b r2

01101 00001 00010 00011 add r1 r2 r3

01000 00010 01000 store r3 c

11001 01000 write c

Here a, b and c are programmer-given names of variables and

r1, r2, and r3 are fixed names of CPU registers.

23

Essential Elements of Programming Languages

Primitive Expressions can be evaluated directly without sim-

plification.

Means of Combination are used to build compound entities

from simpler ones.

Means of Abstraction are used to bind names to new entities

and manipulate them like old ones.

24

Elements of Programming

Programs and subprograms; libraries

Arithmetic and logical expressions

Variables and constants

Assignment of value

Conditional branching (decisions)

Unconditional transfer of control (jumps)

Loops (repetition)

Input and Output (I/O)

Primitive or “built-in” data types: bool, int, char, double, etc.

Derived types, compound types, and data structures: pointers, refer-
ences, lists, arrays, stacks, trees, graphs, etc.

Comments

25

Programming Paradigms

Procedural: Define your tasks and use the best algorithms

you can find.

Object-Oriented: Define appropriate data types endowed

with suitable operations.

Procedural programming is algorithm-centered. Object-oriented

programming is data-centered.

Some Procedural Languages:

FORTRAN, BASIC, Pascal

Some Object-Oriented Languages:

C++, Java, Ada

26

Primitive C++ Programs

The empty program:

int main () { return 0; }

The “Hello, world!” Program:

#include <iostream>

int main () {

std::cout << "Hello, world!\n";

return 0;

}

27

C++ Basics

A C++ source-code program is a collection of files containing

type definitions and function definitions, with exactly one of the

functions named int main(), where execution begins.

A useful program will almost always also contain

— preprocessor directives, e.g., #include <iostream>

— using declarations, e.g., using std::cout;

— globally defined constants and namespaces

— Comments /* like this */ // or this

— Named local variables in which data are stored.

Many programs also contain global variables. These are acces-

sible to all functions and data types in the program. Their use

should generally be avoided as much as possible.

28

In C++, all data are classified into types. A class or struct is a

programmer-defined type. E.g.,

struct Date { int month, day, year; };

defines a Date type to hold three integer members: month, day

and year.

A variable is an object with an identifier, i.e., a named chunk of

memory. E.g., Date today; creates a variable of type Date named

today.

A legal C++ identifier is any sequence of letters, digits, and

underscores () that begins with either a letter or an underscore

and is not one of the reserved C++ keywords (e.g., “return”).

The programmer must assign types and identifiers to his/her

variables, functions, and classes by means of definitions.

29

Every object of the same type requires the same amount of

storage, but the exact amount also depends on the operating

platform (machine and operating system). The C++ operator

sizeof can be used to determine the size requirements in bytes

for a given type on a given machine. E.g., the C++ statement

std::cout << sizeof(int) ;

displays the value 4 on most 32-bit machines.

Data conversion from one type to another is usually supported

whenever it makes sense. For instance, the integer value of

the letter ’A’ is obtained by evaluating the expression int(’A’).

On an ASCII machine, this value is 65 (decimal), or 1000001

(binary).

30

Control Structures

The order in which a program’s instructions are executed is

known as the flow of control. A control structure is a block

of statements grouped together for a common purpose.

Selection Control structures (“IF blocks”) are used to decide

which instruction to execute next. E.g.,

if (weight > 300) // The "if" condition

cout << "overweight"; // The "if" body

else if (weight < 100)

cout << "underweight";

else

cout << "normal";

31

Iteration Control structures (“loops”) are used to repeat a

block of statements until some condition is violated. E.g.,

int main()

{

int N, i = 1, sum = 0;

cin >> N;

while (i <= N) // The loop condition.

{

sum = sum + i; // The loop body.

i = i+1;

}

cout << "1+2+ ... +"<< N << " = " << sum;

return 0;

}

32

Nesting

A control structure may be placed inside another control struc-

ture. Example: print out a multiplication table.

int main() {

int N = 5;

for (int i = 1; i <= N; i = i+1)

{

for (int j = 1; j <= N; j = j+1)

cout << setw(4) << i*j;

cout << endl;

}

return 0;

}

33

Output:

1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

4 8 12 16 20

5 10 15 20 25

The principle of structured programming dictates that a con-

trol structure have a single point of entry and a single point of

exit.

34

Modularity

The hierarchical organization of a task or system into self-contained

subtasks or subsystems, each having a prescribed interface to the

others.

Benefits:

error detection and correction

modifiability and extensibility

portability and reuse

division of labor

Modularity is the essential feature of a well-designed program.

35

Recursion

To solve a hard or large problem, replace it by a sequence of

easier or smaller problems.

An algorithm is recursive if it solves a problem by reducing it to

a smaller instance of itself.

E.g., let sum(N) denote 1 + 2+ . . .+N for integers N > 0.

Then

sum(N) = N + sum(N − 1)
sum(1) = 1

is a recursive algorithm for calculating sum(N).

36

Syntactically Recursive Calculation of sum(N)

int sum(int N) {

if (N == 0)

return 0;

else

return N + sum(N-1); // sum() "calls itself" !

}

int main() {

int N;

cin >> N;

cout << "1+2+ ... +"<< N << " = " << sum(N);

return 0;

}

37

The Program Development Cycle

Specification

Design

Coding

Compiling

Debugging

Testing and Verification

Risk Analysis

Maintenance

Careful documentation of each stage is crucial!

38

