Recursion — A problem-solving technique whereby an original problem is repeatedly reduced to smaller instances of itself until a base case is reached.

Two Ways to Classify Recursion

- 1. Chain Recursion vs. Tree Recursion
- 2. Incremental vs. Divide-and-Conquer

Typical Resource Usage			
	chain	tree	
incremental	N	2^N	
divide-and-conquer	$\log N$	$N \log N$	

Resource means memory or run-time.

2. Incremental vs. Divide-and-Conquer

Incremental: At each step, the size of the problem is reduced by *subtracting* a fixed amount from the given size. Example:

$$sum(1, N) = sum(1, N - 1) + N.$$

000

Divide and Conquer: At each step, the size of the problem is reduced by *dividing* the given size by at least 2.

Examples: binary search, merge sort, GCD.

000

1. Chain vs. Tree Recursion

Chain Recursion: At each step, the problem is reduced to *exactly one* smaller instance of itself, plus some trivial work. Example:

$$sum(1, N) = sum(1, N - 1) + N.$$

Tree Recursion: At each step, the problem is reduced to *at least two* smaller instances of itself, plus some trivial work. E.g.,

$$\operatorname{fib}(N) = \left\{ egin{array}{ll} \operatorname{fib}(N-1) + \operatorname{fib}(N-2) & ext{if} & N > 1 \\ & N & ext{if} & N \leq 1 \end{array}
ight.$$

