DIGITAL ARITHMETIC

Miloš D. Ercegovac
Computer Science Department
University of California Los Angeles
and
Tomás Lang
Department of Electrical and Computer Engineering
University of California at Irvine

Viewgraphs Copyright © 2003 by the authors
Copyright © 2004 by Elsevier Science (USA)
ABOUT THE BOOK

1. Overview [Chapter 1]
2. Two-Operand Addition [Chapter 2]
3. Multi-operand Addition [Chapter 3]
4. Multiplication [Chapter 4]
5. Division by Digit Recurrence [Chapter 5]
6. Square Root by Digit Recurrence [Chapter 6]
7. Reciprocal, Division, Reciprocal Square Root, and Inverse Square Root by Iterative Approximation [Chapter 7]
8. Floating-point Representation, Algorithms, and Implementations
9. Digit-Serial Arithmetic [Chapter 9]
10. Function Evaluation [Chapter 10]
11. CORDIC Algorithm and Implementations [Chapter 11]
Chapter 1: Review of the Basic Number Representations and Arithmetic Algorithms

- General-purpose processors
 - Main use: numerical computations
 - Address calculations
 - basic operations
 - fixed point and floating point
 - IEEE standard
 - vector processors

- Special-purpose (application-specific) processors
 - for numerically intensive applications
 - single computation or classes of computations

Digital Arithmetic - Ercegovac/Lang 2003
Application-specific processor

- Areas of application:
 - signal processing
 - embedded systems
 - matrix computations
 - graphics, vision, multi-media
 - cryptography and security
 - robotics, instrumentation; others?

- Features:
 - better use of technology
 - improvement in speed, area, power
 - flexibility in
 - implementation; decomposition into modules
 - number systems and data formats; algorithms

- Need good design tools; difficult to change; FPGAs?

Digital Arithmetic - Ercegovac/Lang 2003
GENERAL-PURPOSE VS. APPLICATION-SPECIFIC

- Flexibility

- Matching specific applications

- Use of VLSI and special technology

- Use of hardware-level parallel processing

- Lower software overhead

Digital Arithmetic - Ercegovac/Lang 2003
ARITHMETIC PROCESSORS: USER’S VIEW

\[AP = (\text{operands, operation, results, conditions, singularities}) \]

- Numerical operands and results specified by
 - Set of numerical values \(x \in N \) (finite and ordered set)
 - Range \(V_{\text{min}} \leq x \leq V_{\text{max}} \)
 - Precision
 - Number representation system (NRS)
- Set of operations: addition, subtraction, multiplication, division
- Conditions: values of the results – zero, negative, etc.
- Singularities: Illegal results – overflow, underflow, Nan, etc.
- Numerical computations (applications)
- Algorithms
- Arithmetic operations

<table>
<thead>
<tr>
<th>Operations</th>
<th>Operands-Result</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical function</td>
<td>Numbers</td>
<td>Numerical Algorithm</td>
</tr>
<tr>
<td></td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td></td>
<td>Number System</td>
<td>Arithmetic design</td>
</tr>
<tr>
<td>Digit-vector function</td>
<td>Digit vector</td>
<td>Digit-vector Algorithm</td>
</tr>
<tr>
<td></td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td></td>
<td>Digit Coding</td>
<td>RTL design</td>
</tr>
<tr>
<td>Bit-vector function</td>
<td>Bit vector</td>
<td>Bit-vector Algorithm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Logic Design</td>
</tr>
</tbody>
</table>

Digital Arithmetic - Ercegovac/Lang 2003
value: $x \in \mathbb{N} \iff \text{NRS} \iff X \in V$: digit vector

• Digit Vector

$$X = (x_a, \ldots, x_i, \ldots, x_b)$$

– indexing:

Leftward Zero Origin (LZ) (integers)

$$X = (x_{n-1}, x_{n-2}, \ldots, x_0)$$

Rightward One Origin (RO) (fractions)

$$X = (x_1, x_2, \ldots, x_n)$$

– Digit set D_i - set of values for digit x_i (usually consecutive)
• Number of (unambiguously) representable numbers
 \[|N| \leq \Pi |D_i| \]

• Number representation system
 \[F : N \rightarrow V \]

• Choose NRS to
 – allow efficient computation(s)
 – suitable interface with other systems

• Different implementation-performance constraints
 \(\implies \) variety of NRS
SOME CHARACTERISTICS OF NRS

a) Range: finite set of digit-vector values

b) Unambiguity: two numbers should not have same representation

\[\text{If } x \in N, \ y \in N, \ x \neq y \text{ then } F(x) \neq F(y) \]

c) Nonredundant/redundant

Redundant: \[F^{-1}(X) = F^{-1}(Y) \]
Integer x represented by digit vector $X = (x_{n-1}, \ldots, x_0)$,

$$x = \sum_{i=0}^{n-1} x_i \cdot w_i$$

where

$$W = (w_{n-1}, \ldots, w_0) \text{ weight vector}$$

Define

$$R = (r_{n-1}, \ldots, r_0) \text{ radix vector}$$

so that

$$w_0 = 1 \quad w_i = w_{i-1}r_{i-1}$$
● Fixed-radix NRS

\[r_i = r \]

Then \(w_i = r^i \) so that

\[x = \sum_{i=0}^{n-1} x_i r^i \]

● Canonical digit set

\[D_i = \{0, 1, 2, \ldots, |r_i| - 1\} \]

● Conventional number system

 – Fixed radix positive
 – Canonical digit set

Digital Arithmetic - Ercegovac/Lang 2003
NON-CONVENTIONAL FIXED-RADIX SYSTEM

• Negative radix

\[r = -2, \ x = \sum_{i=0}^{n-1} x_i (-2)^i \]

1011 = (-8) + 0 + (-2) + 1 = -9

0111 = 0 + 4 + (-2) + 1 = 3

• Complex radix

\[r = 2j, \ j = \sqrt{-1}, \ x_i \in \{0, 1, 2, 3\} \ (Knuth’s \ quarter \ imaginary \ NRS) \]

\[W: -8j -4 +2j +1 \]

1231 \implies 1 \times (-8j) + 2 \times (-4) + 3 \times (2j) + 1 \times 1 = -7 - 2j

• Non-canonical digit set, \(r = 2, \ \{ -1,0,1 \} \) or \(\{ 0,1,2 \} \)

Example: radix 4 \(D = \{ -3, -2, -1, 0, 1, 2, 3 \} \)

\[x = 27 \ \text{represented by} \ (1, 2, 3) \ \text{or} \ (2, -2, 3) \]
• Fixed radix r

• Non-canonical digit set

$$D = \{-a, -a + 1, \ldots, -1, 0, 1, \ldots, b - 1, b\}$$

• Symmetric if $a = b$

• Redundant $a + b + 1 > r$ ($a, b \leq r - 1$)

 – "standard" $a, b \leq r - 1$
 – over-redundant $a, b > r - 1$

 – Redundancy factor

$$\rho = \frac{a}{r - 1}, \quad \rho > \frac{1}{2}$$
EXAMPLES OF REDUNDANT DIGIT SETS

<table>
<thead>
<tr>
<th>r</th>
<th>a</th>
<th>Digit set</th>
<th>ρ</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>${-1, 0, 1}$</td>
<td>1</td>
<td>minimally/maximally redundant</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>${-2, -1, 0, 1, 2}$</td>
<td>2/3</td>
<td>minimally redundant</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>${-3, -2, \ldots, 2, 3}$</td>
<td>1</td>
<td>maximally redundant</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>${-4, \ldots, 4}$</td>
<td>4/3</td>
<td>over-redundant</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>${-4, \ldots, 4}$</td>
<td>1/2</td>
<td>non-redundant</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>${-5, \ldots, 5}$</td>
<td>5/9</td>
<td>minimally redundant</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>${-6, \ldots, 6}$</td>
<td>2/3</td>
<td>redundant</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>${-9, \ldots, 9}$</td>
<td>1</td>
<td>maximally redundant</td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>${-13, \ldots, 13}$</td>
<td>13/9</td>
<td>over-redundant</td>
</tr>
</tbody>
</table>

Digital Arithmetic - Ercegovac/Lang 2003
MIXED-RADIX NUMBER SYSTEM

- \(r_i \neq r_j \)
- Example: Representation of time \(R = (31, 24, 60, 60) \)
- Example: Factorial number system

\[
\begin{align*}
 r_i & = i + 2, \quad i = 0, \ldots, n - 1 \\
 R & = (n + 1, n, \ldots, 3, 2) \\
 w_i & = (i + 1)! \\
\end{align*}
\]

Canonical digit set
Integers in range \(0 \leq x \leq (n + 1)! - 1 \)
• Base vector B of moduli m_i

$$B = (m_{n-1}, m_{n-2}, \ldots, m_0)$$

m_i positive integers and pairwise relatively prime

• Integer x is represented by vector

$$X = (x_{n-1}, x_{n-2}, \ldots, x_0)$$

where $x_i = x \mod m_i$

• Represents uniquely integers in the range

$$0 \leq x < \prod_{i=0}^{n-1} m_i$$

(more later)
A. Directly in the number representation
 Examples: Signed-Digit Number System
B. With an extra symbol: Sign-and-magnitude
C. Additional mapping on positive integers

\[
\text{Signed integers } x \\
\downarrow \\
\text{Positive integers } x_R \\
\downarrow \\
\text{Digit-vectors } X
\]

Examples:

- True-and-Complement (TC):
 - 2’s complement
 - 1s’ complement
- Biased representation

Digital Arithmetic - Ercegovac/Lang 2003
TRUE-AND-COMPLEMENT SYSTEM

• \(-k \leq x \leq k\) signed integer (implicit value)
• \(x_R\) positive integer (representation value)
• \(C\) – complementation constant
• Mapping \(x_R = x \mod C\)
• Unambiguous if \(k < C/2\)
• Equivalent to

\[
x_R = \begin{cases}
x & \text{if } x \geq 0 \\
C - |x| & \text{if } x < 0
\end{cases}
\]

• Converse mapping

\[
x = \begin{cases}
x_R & \text{if } x_R < C/2 \\
x_R - C & \text{if } x_R > C/2
\end{cases}
\]
\(x_R \) represented in any number system

- In fixed-radix system two common choices:
 - 2’s complement: \(C' = r^n \) (Range-complement system)
 - 1s’ complement: \(C' = r^n - 1 \) (Diminished-radix-complement system)
BIASED REPRESENTATION

- B – bias
- $-k \leq x \leq k$
- $x_R = x + B$
- $B \geq k$
TYPES OF ARITHMETIC ALGORITHMS

- Bottom-up development

Primitives
 + Addition/subtraction
 + Multioperand addition
 + Arithmetic shifts
 + Multiplication by digit
 + Result-digit selection (PLA)
 + Table look-up
 + Multiplication

- Algorithms

 + Composition of primitives

Digital Arithmetic - Ercegovac/Lang 2003
• (Digit) Recurrences (continued sums)

◦ Residual recurrence: \(R[i + 1] = f(R[i], X, Y, Z[i], z_{i+1}) \)

Uses: Add/sub, single-position shifts, multiplication by digit

◦ Output digit selection: \(z_{i+1} = g(R[i], X, Y, Z[i]) \)

(keep \(R[i + 1] \) bounded)

Uses: Comparisons, PLA

◦ Result recurrence

\[
Z[i + 1] = Z[i] + z_{i+1}r^{i+1} \text{ (continued sum)}
\]

Uses: Concatenation

• Examples:

◦ multiplication \(R[i + 1] = \frac{1}{r}(R[i] + X \cdot r^n y_i) \)

◦ division \(R[i + 1] = rR[i] - q_{i+1}Y \quad q_{i+1} = g(R[i + 1], Y) \)
Types of algorithms

- Continued product recurrences
 \[R[i + 1] = f(R[i], X, Y, Z[i], z_{i+1}) \]
 Uses: Add/sub, variable shifts, mult. by digit

 \[z_{i+1} = g(R[i], X, Y, Z[i])(\text{keep } R[i + 1] \text{ bounded}) \]
 Uses: Comparisons, PLA
 \[Z[i + 1] = Z[i](1 + z_{i+1}r^{-(i+1)}) \] (continued product)
 Uses: Variable shift, addition

- Example:
 - division

 \[
 R[i + 1] = rR[i](1 + q_{i+1}r^{-(i+1)}) + q_{i+1} \\
 q_{i+1} = g(R[i], Y) \\
 Q[i + 1] = Q[i](1 + q_{i+1}r^{-(i+1)})
 \]
• Iterative Approximations
 \[Z[i + 1] = f(Z[i], X, Y) \] until \(g(Z(i)) < \varepsilon \)

Example:
 ◇ reciprocal
 \[Z[i + 1] = Z[i](2 - Z[i]X) \]

• Polynomial Approximations
 \[z = a_0 + a_1x + a_2x^2 + \cdots \]
PERFORMANCE

- Measures
 + Execution time
 + Throughput

- Improving speed

 a) Arithmetic level
 + Reducing number of steps
 Example: higher radix
 Example: combinational instead of sequential
 + Reducing time of step
 Example: carry-save adder instead of carry-propagate
 + Overlap steps (concurrency/pipelining)
 Example: multiple generation and addition (in mult.)
 Example: simultaneous additions (in mult.)

 b) Implementation level
 + Reduce number of logic levels

Digital Arithmetic - Ercegovac/Lang 2003
POWER AND COST

• Measures
 + Packaging
 + Interconnection complexity
 + Number of pins
 + Number of chips and types of chips
 + Number of gates and types of gates
 + Area
 + Design cost; verification and testing cost
 + Power dissipation
 + Power consumption

• Reduction of cost

Digital Arithmetic - Ercegovac/Lang 2003