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Chapter 2: Solutions to Exercises

Exercise 2.1

Assuming that ci is connected to the XOR input with load factor 1.1 (Fig.
2.5(c)), the average delay of the carry-out is

T1 = tNAND(1) + tNAND(2.1) = 0.07 + 0.033 + 0.07 + 0.033 × 2.1 = 0.242ns

Adding an inverter and changing the XOR into XNOR, we obtain for the
carry delay:

T2 = tNAND(1) + tNAND(2) = 0.239ns

This represents a 1.4% reduction in the carry delay. Note that the difference
is very small because of the XOR input with load factor 1.1. A larger reduction
would result if the XOR input load factors were symmetrical at 2.

Exercise 2.2

T32 = max(tc−c, txy−c)+30tc−c +max(tc−s, tc−c) where, according to Table
2.2,

tc−c = 0.38 + 0.03(1.3) = 0.419ns
where 1.3 is the load of the carry-out signal.
txy−c = 0.72 + 0.03(1.3) = 0.759ns
tc−cout = 0.38 and tc−s31

= 0.46 (L = 0 for both outputs)
T32 = 0.76 + 30 × 0.419 + 0.46 ≈ 13.8ns

Exercise 2.3

A radix-4 full adder satisfies xi + yi + ci = 4ci+1 + zi where xi, yi, zi ∈
{0, 1, 2, 3} and the carries are in {0,1}. The radix-4 digits are encoded on two bi-
nary variables as xi = (xi,1, xi,0), etc. For simplicity the x, y, z binary variables
are denoted as (x1, x0), etc.

The radix-4 full adder is defined by the following switching expressions.

pj = xj ⊕ yj ; j = 0, 1

gj = xjyj ; j = 0, 1

z0 = p0 ⊕ ci

z1 = p1 ⊕ (g0 p0ci) = p0 ⊕ g0 ⊕ p0ci

ci+1 = g1 p1g0 p1p0ci
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The radix-4 full adder and the radix-2 2-bit adder are compared with respect
to delays in the carry-in – carry-out path, and with respect to circuit size. The
following gates are used:

Type Avg. delay Eq. size
not NA 1
nand2 0.07 + 0.033L 1
nand3 0.08 + 0.039L 2
xor(xnor) NA 3

The carry path delays are:

T4 = tNAND3(L=1) + tNAND3(L=3.1) = 0.32ns

T2 = 2 × (tNAND2(L=1) + tNAND2(L=2.1)) = 0.48ns

where the loads are calculated as follows:
For T4: the second NAND goes to c input of the next digit so L = 1 + 1 +

1.1 = 3.1
For T2: the output NAND goes to a NAND and to an XOR in the next

bit-position so L = 1 + 1.1 = 2.1
The sizes in equivalent gates are:

S4 = 5 × XOR(XNOR) + NOT + AND2 + 3 × NAND2 + 2 × NAND3

= 5 × 3 + 1 + 2 + 3 × 1 + 2 × 2 = 25

S2 = 2 × (2 × (NAND2 + XOR(XNOR)) + NAND2)

= 2 × (2 × (1 + 3) + 1) = 18

Exercise 2.4

TSRA = tsw + (n − 1)tp + (n/m)tbuf + ts (Expression (2.27))
tsw = max(tgi, tki, tpi) + tNAND−2(L=2) = tpi + tNAND−2(L=2) = 0.329 +

0.136 = 0.465ns
where, assuming a switch has one standard load,

tgi = tAND−2 = 0.16 + 0.027 × 1 = 0.187ns

tki = tNOR−2 = 0.07 + 0.046 × 1 = 0.116ns

tpi = tXOR−2 = 0.30 + 0.029 × 1 = 0.329ns

tp = tNAND−2 = 0.07 + 0.033 × 2 = 0.136ns (L = 2)
tbuf = 1.5 × 0.136 = 0.204
ts = 0.46 + 0.03 × L = 0.46ns (Table 2.2, delay ci to si with L = 0)
Therefore,
TSRA = 0.465 + 31 × 0.136 + 8 × 0.204 + 0.46 ≈ 6.8ns
From Exercise 2.2, TCRA = 13.8ns so the SRA aproximately halves the

delay. Note that to reduce the load the network for computing the sum bits
uses separately obtained pi signals
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Exercise 2.5

Figure E2.5 shows the carry chains for the given operands.
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Figure E2.5: Carry chains in carry-skip adder (Exercise 2.5).
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Exercise 2.6

We use the same assumption as in Exercise 2.2: tpg = tc = tAND−OR = 1.
We assume cin = 0

Operation 1 x 0000 0111 0000 1111
y 1111 0000 1111 0001
P P3 = 1 P2 = 0 P1 = 1 P0 = 0
c 00000 1111 1111 111-

Operation 2 x 0000 0111 0000 1111
y 1111 0000 1111 0000
P P3 = 1 P2 = 0 P1 = 1 P0 = 1
c 00000 0000 0000 000-

1. Although P0 = 1 in second operation, it is necessary to wait for the
propagation of the new carries in the first group (t = 5 to set c4 = 0).
Propagation through the OR adds 1 unit delay and, therefore, t = 6.

2. The same occurs in the second group. Although P1 = 1, it is necessary to
wait 4 units until c8 = 0, so t = 10. Add 1 unit delay due to the OR gate
and t = 11.

3. A correct carry is propagated to the most significant group. Since there
are no changes in this group, there is no additional delay.

4. The carry chain propagates through the third group up to c11 (t = 14).
There is one additional delay to produce s11 (t = 15).

Exercise 2.7

Expression (2.31) gives the worst-case delay of a carry-skip adder with fixed-
size groups as

TCSK = (2m − 1)tc + (n/m − 1)tmux + ts

Differentiating this expression with respect to m and making the derivative
equal to 0 we get

dTCSK

dm
= 2tc −

n

m2
tmux = 0

resulting in

mopt = (
ntmux

2tc
)1/2

and

Topt ≈ 2 × (2ntmuxtc)
1/2 = (8ntmuxtc)

1/2
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Exercise 2.8

a) m = 8

tCSKA = (2m − 1)tc + (n/m − 1)tMUX + ts

From Table 2.2:

tc = 0.38 + 0.03 ∗ L = 0.38 + 0.03(1.3) = 0.419ns

ts = 0.46 + 0.03 ∗ L = 0.46 assuming L = 0

From Table 2.4:

tMUX = 0.21+0.050∗L = 0.21+0.050(1.8) = 0.3ns where L = 0.5(MUX)+
1.3(cin) = 1.8

Therefore,

tCSKA = (15) ∗ 0.419 + 7 ∗ 0.3 + 0.46 = 6.285 + 2.1 + 0.46 = 8.85ns

b) mopt = ( tMUX

2tc

· n)1/2 = ( 0.3
2·0.419 · 64)1/2 = 4.78

To have a uniform block size which is a divisor of 64 and closest to mopt

we choose m = 4 (16 groups)

In this case, tCSKA = 7tc + 15 ∗ tMUX + ts = 7.9ns.

If we allow a non-uniform group size and choose m = 5 which is the integer
closest to mopt, we have 12 groups of 5 bits and one of 4 bits:

tCSKA = 5tc + tMUX + 10 ∗ tMUX + 4tc + ts = 7.53ns

c) Use, for instance, the following sequence: 445668866544. In this case the
delay is:

tCSKA = 4tc + tMUX + 10 ∗ tMUX + 3tc + ts = 6.70ns

Exercise 2.9

a) For a 9-bit adder we have two possible paths:

b1 → b2 → S1 → b3 → S1 → b6 → b7 → b8 = 8δ

b0 → S1 → b3 → S1 → b6 → b7 → b8 = 7δ

So, the worst-case delay is 8δ.

b) A 36-bit adder using blocks of 9-bit adders. The worst-case consists of the
worst-case to obtain the carry-out of the least-significant group plus the
maximum skip of intermediate groups plus the worst-case delay to obtain
the sums in the most-significant group. That is,

[9-bit adder] <-- [9-bit adder] <-- [9-bit adder] <-- [9-bit adder]

worst-case sums max-skip max-skip worst-case carry

Worst-case delay of carry-out of l.s. group: 4δ (several paths, i.e. b4, b5,MUX,MUX)

Delay of max-skip: b0 + MUX + MUX = 3δ

Worst-case sums (from cin of group) = 7δ.

Total delay: 7δ + 3δ + 3δ + 4δ = 17δ
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Exercise 2.10

(a) T = mtc + (s − 1)tmux + (p − 2)tmux + (s − 1)tmux + (m − 1)tc + ts.
(b) Let tc = tmux and m = s. T = (4m − 3 + n/m2)tc + ts and mopt =

(n/2)1/3.

Exercise 2.11

a) Cost and delay of CLG − 4 (m = 4)

a) Since there are two passes through the module we design so as to reduce
the critical path of both passes.

i) First pass:

The critical path goes from signals a,g to A,G. From Figure 2.14 we see
that the critical output is G. We implement as follows:

G = g3+a3g2+a3a2g1+a3a2a1g0 = [g3′.(a3g2)′.(a3a2g1)′.(a3a2a1a0)′]′

Since G is the input to the next level module, we buffer the output of the
NAND-4 with two NOT gates.

Moreover,
A = a3a2a1a0 = ((a3a2a1a0)′)′

The other parts of the ”upper” network are implemented in a similar way.

ii) For the second pass the critical path is c0 to c4. We implement is as

c4 = G + Ac0 = (G′.(Ac0)′)′

The other carries are implemented in a similar way

So,

maximum fanin = 4

maximum fanout = 7 (this corresponds to output A, which goes to a1 of
another module).

Equivalent gates:

NOT 1 (g3) + 1(G) + 1 (A) + 4(Gi, for ci) + 8 (ci) = 15 EQ=15

NAND-2 13 EQ=13

NAND-3 4 EQ=8

NAND-4 3 EQ=6

TOTAL EQ = 42

critical path (pass 1) ta1,G = NAND4(1) + NAND4(1) + NOT(1) +
NOT(5) = 0.16+0.16+0.07+0.18 = 0.57

critical path (pass 2) tc0,c4 = NAND2(1) + NAND2(1) + NOT(1) +
NOT(4) = 0.10+ 0.10+ 0.07+0.15 = 0.42

b) Cost and delay of CLG − 8 (m = 8). Following the same implementation
approach of part a) we get

maximum fanin = 8

maximum fanout = 2x7 + 1 = 15
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Equivalent gates

NOT = 1+1+1+8+16 = 27 EQ=27

NAND2 = 25 EQ=25

NAND3 = 8 EQ=16

NAND4 = 7 EQ=14

NAND5 = 6 EQ=24

NAND6 = 5 EQ=25

NAND7 = 4 EQ=24

NAND8 = 3 EQ=18

TOTAL= 173

critical path (pass 1) ta1,G = NAND8(1) + NAND8(1) + NOT(1) +
NOT(9) = 0.36+0.36+0.07+0.29 = 1.08

critical path (pass 2) tc0,c4 = NAND2(1) + NAND2(1) + NOT(1) +
NOT(8) = 0.10+0.10+0.07+0.26 = 0.53

As an illustration consider a 64-bit adder using 4-bit modules and 8-bit
modules. In the 4-bit module case, a 3-level CLA is used. The delay
corresponds to

t(a,g) + 2t(G) + 3t(c) + ts = 0.32 + 1.14 + 1.26 + 0.15 = 2.87

where t(a,g) is the delay of NOR2(1)+NOT(6)= 0.12 + 0.21 = 0.32 and
ts is delay of XOR(2) with L=0.

In the 8-bit module case, a 2-level CLA is used. The delay is

t(a,g) + t(G) + 2t(c) +ts = 0.39 + 1.08 + 1.06 + 0.15 = 2.68

where t(a,g) is NOR3(1)+NOT(5) = 0.21 + 0.18 = 0.39 (use 3 NOT gates
in parallel for the load of 14)

Exercise 2.12

The 32-bit adder consists of 32 PG modules to produce p’s and g’s, 8 BCLA
modules to produce carries c4i+4, i = 0, . . . , 7, and 8 4-bit CRA-4 modules to
produce the sum bits. Assuming the gates of Table 2.4, that a full-adder is
implemented using the design of Figure 2.3(c), the delays of these modules are:

Module PG (XOR,AND): tPG = 0.30 + 0.029 × 4 = 0.42ns

Module CRA-4 (4 FAs): tCPA−4 = 2tXOR+6tNAND = 0.672+6×0.107 =
1.31ns

Module BCLA (NAND-NAND): tBCLA = 0.359 + 0.34 + 0.019× 2 = 0.74

The worst case delay is

Tsum = 0.42 + 7 × 0.74 + 1.31 = 6.91ns

Tcout
= 0.42 + 8 × 0.74 = 6.34ns
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A 32-bit single-level carry-skip adder, with group size 4, has the following
worst-case delay: TCSK = 7 × tc + 7 × tmux + ts = 7 × 2 × 0.107 + 7 ×
0.272 + 0.336 = 3.74ns

This indicates that the BCLA 32-bit adder is slower 1.85 times than the
carry-skip alternative. Moreover, the BCLA module uses more gates than the
skip network in the 32-bit carry-skip adder with m = 4. In terms of equivalent
gates, this cost ratio is about 3.

Exercise 2.13

The gi and ai signals are

x 0 1 0 1
y 1 0 0 1
gi 0 0 0 1
ai 1 1 0 1

The expressions and values for the CLG-4 carries are

c0 = 1
c1 = g0 a0c0 = 1 1 · 1 = 1
c2 = g1 a1g0 a1a0c0 = 0 0 · 1 0 · 1 · 1 = 0
c3 = g2 a2g1 a2a1g0 a2a1a0c0 = 0 1 · 0 1 · 0 · 1 1 · 0 · 1 · 1 · 1 = 0
c4 = g3 a3g2 a3a2g1 a3a2a1g0 a3a2a1a0c0

= 0 1 · 0 1 · 1 · 0 1 · 1 · 0 · 1 1 · 1 · 0 · 1 · 1 = 0
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Exercise 2.14

X 0 1 1 0 1 1 1 0 1 0 1 1 1 0 0 1
Y 1 0 0 1 0 0 0 0 1 1 1 0 0 1 0 1
gi 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1
ai 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1
G 0 0 1 0
A 1 0 1 0

c16 c12 c8 c4 c0

0 0 1 0 0
ci, i 6= 16, 12, 8, 4, 0 0 0 0 0 0 0 1 1 0 0 0 1

Exercise 2.15

A 64-bit, three-level carry-lookahead adder is shown in Figure E2.15.
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Figure E2.15: 64-bit three-level carry-lookahead adder.

The critical path is

(x0, y0) → (A0, G0) → (A3−0, G3−0) → c48 → c60 → (A15, G15) → (A15−12, G15−12) → c64

Exercise 2.16

The number of CLGs is divided by m from one level to the next. Therefore,
at level i there are n/mi CLGs. The total number is obtained by adding from
i = 1 to L.

Exercise 2.17

n = 128, m = 4, tclg = tAG = 6tag = 3ts

T1−CLA = tag + (n/m)tclg + ts = 1 + 32 × 6 + 2 = 195tag

T2−CLA = tag + tAG +(n/m2)tclg + tclg + ts = 1+6+8×6+6+2 = 63tag

T3−CLA = tag +2tAG+(n/m3)tclg +2tclg +ts = 1+12+12+12+2 = 39tag

For the 4-level CLA we use another level with a group size of 2. Because of
the smaller size of this group the delay of this level is smaller, we assume
it to be tclg2 = 2ta,g.

T4−CLA = tag + 2tAG4 + tclg2 + 3tclg + ts = 1 + 12 + 2 + 18 + 2 = 35tag
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Exercise 2.18

a) From the definition hi = ci + ci+1 = gi + pici + ci = gi + ci. Moreover,
si = ti ⊕ hi + giti−1hi−1.

1st term: ti ⊕ hi = t′ihi tih
′

i = (xi yi)
′(xiyi ci) (xi yi)(xiyi ci)

′ =
x′

iy
′

ici (xi ⊕ yi)c
′

i

2nd term: giti−1hi−1 = gi(xi−1 yi−1)(xi−1yi−1 ci−1) = gi(gi−1 pi−1ci−1) =
gici = xiyici

Therefore,

si = x′

iy
′

ici (x′

iyi xiy
′

i)c
′

i xiyici

= x′

iy
′

ici x′

iyic
′

i xiy
′

ic
′

i xiyici

= c′i(xi ⊕ yi) ci(xi ⊕ yi)
′ = ci ⊕ pi

b) Note that tigi = (xi yi)(xiyi) = xiyi = gi. The switching expressions for
the carries in a 4-bit Ling adder we get

h0 = g0 cin

h1 = g1 g0 t0cin

h2 = g2 g1 t1g0 t1t0cin

h3 = (g3 g2) t2g1 t2t1g0 t2t1t0cin

Assuming a two-level implementation these expressions require the follow-
ing gates: 2 AND-2, 2 AND-3, 1 AND-4, 2 OR-2, 1 OR-3, 2 OR-4. The
largest fan-in is 4.

The corresponding expressions for a conventional CLA described in the
text require more gates and a larger fan-in: 4 AND-2, 3 AND-3, 2 AND-4,
1 AND-5, 1 OR-2, 1 OR-3, 1 OR-4, and 1 OR-5. The largest fan-in is 5.
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Exercise 2.19

The 8-bit prefix adder without a carry-in is shown in Figure E2.19.
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Figure E2.19: Prefix adder for Exercise 2.19.

Exercise 2.20

i 8 7 6 5 4 3 2 1 0
xi 0 1 0 1 0 1 1 1
yi 1 1 1 0 0 1 1 1
gi 0 1 0 0 0 1 1 1
ai 1 1 1 1 0 1 1 1
pi 1 0 1 1 0 0 0 0

Level 1 outputs:
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g(0,−1) = 1 = c1

g(1,0) = g1 a1g0 = 1, a(1,0) = a1a0 = 1
g(2,1) = g2 a2g1 = 1, a(2,1) = a2a1 = 1
g(3,2) = g3 a3g2 = 0, a(3,2) = a3a2 = 0
g(4,3) = g4 a4g3 = 0, a(4,3) = a4a3 = 0
g(5,4) = g5 a5g4 = 0, a(5,4) = a5a4 = 1
g(6,5) = g6 a6g5 = 1, a(6,5) = a6a5 = 1
g(7,6) = g7 a7g6 = 1, a(7,6) = a7a6 = 1

Level 2 outputs:

g(1,−1) = g(1,0) a(1,0)c0 = 1 = c2

g(2,−1) = g(2,1) a(2,1)g(0,−1) = 1 = c3

g(3,0) = g(3,2) a(3,2)g(1,0) = 0, a(3,0) = a(3,2)a(1,0) = 0
g(4,1) = g(4,3) a(4,3)g(2,1) = 0, a(4,1) = a(4,3)a(2,1) = 0
g(5,2) = g(5,4) a(5,4)g(3,2) = 0, a(5,2) = a(5,4)a(3,1) = 0
g(6,3) = g(6,5) a(6,5)g(4,3) = 1, a(6,3) = a(6,5)a(4,3) = 0
g(7,4) = g(7,6) a(7,6)g(5,4) = 1, a(7,4) = a(7,6)a(5,4) = 1

Level 3 outputs:

c4 = g(3,0) a(3,0)c0 = 0
c5 = g(4,1) a(4,1)g(0,−1) = 0
c6 = g(5,2) a(5,2)g(1,−1) = 0
c7 = g(6,3) a(6,3)g(2,0) = 1

Level 4 outputs:

s0 = p0 ⊕ c0 = 1
s1 = p1 ⊕ c1 = 1
s2 = p2 ⊕ c2 = 1
s3 = p3 ⊕ c3 = 1
s4 = p4 ⊕ c4 = 1
s5 = p5 ⊕ c5 = 1
s6 = p6 ⊕ c6 = 0
s7 = p7 ⊕ c7 = 0
c8 = g(7,0) a(7,0)c0 = 1
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Exercise 2.21

The prefix adder shown in Figure E2.21 produces x + y and x + y + 1.
As before, for x + y the carry is c0

i = g(i−1,0). On the other hand, for the
x+y+1 case, the carry ci is 1 if a carry is generated in bits 0 to i-1 (g(i−1,0) = 1)
and if a carry is propagated from bit 0 to i-1 (p(i−1,0) = 1). Consequently,

c1
i = g(i−1,0) p(i−1,0) = g(i−1,0) a(i−1,0)
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Figure E2.21: Prefix adder for Exercise 2.21.
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Exercise 2.22

A diagram of a 16-bit prefix adder is shown in Figure E2.22.
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Exercise 2.23

A diagram of a 4-bit conditional-adder module is shown in Figure E2.23.

FA FA FA

HA HA HA

HA

NOT

x0 y0x1 y1x2 y2x3 y3

s0
0s0

1s0
2s0

3c0
4

s1
0s1

1s1
2s1

3c1
4

Figure E2.23: 4-bit conditional adder for Exercise 2.23.

Exercise 2.24

X 0111 1000 1010 1010
Y 1010 1011 1011 0010

(c1, S1) 10010 10100 10110 01101
(c0, S0) 10001 10011 10101 01100
(c, S) 10010 0100 0101 1100

Exercise 2.25

a) Assume delay of a k-bit CRA to be kδ. The optimum size for each adder
is obtained by requiring that the carry out is complete just at the time
the decision signal arrives. That is, this condition is

tk(i) = k(i)δ = tk(0) + (i − 1)tMUX (1)

where tk(i) is the delay of adder i.

Using m adders, the delay of the n-bit adder is

Ta = tk(m − 1) + tMUX = tk(0) + (m − 1)tMUX = k(0)δ + (m − 1)tMUX

The total length of adders must satisfy

m−1
∑

i=0

k(i) = n (2)
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Substituting (1) in (2) we get

n =
∑m−1

i=0 k(i) = 1
δ

∑m−1
i=0 (k(0)δ + (i − 1)tMUX)

=
∑m−1

i=0 (k(0) + (i − 1) tMUX

δ )

= mk(0) + (m−1)(m−2)
2 ( tMUX

δ )

From this expression we obtain k(0) in terms of m:

k(0) =
n − (m−1)(m−2)

2 ( tMUX

δ )

m

The delay of the n-bit adder in terms of m is

Ta(m) = k(0)δ + (m − 1)tMUX =
nδ − (m−1)(m−2)tMUX

2

m
+ (m − 1)tMUX

From dTa(m)/dm = 0 we obtain the following equation

(m − 1)2 − (m − 1) −
2

3
(n

δ

tMUX
+ 2) = 0

Solving for m we get

m =
2

3
+ (

1

4
+

2

3
(n

δ

tMUX
+ 2)1/2

For large n and tMUX = δ we have

m ≈ d(
2

3
(n + 2))1/2 +

3

2
e

After obtaining m we calculate k(0) and then k(i)’s. For example, for
n = 64 we get m = 9 and

k(0) = 4, k(i) = k(0) + i − 1, i = 1, . . . , 8

The delay is Ta(64) = 4δ + (9 − 1)tMUX = 12δ.

b) Since in this case all carries are computed in log time, the size of the
group is not very significant in the delay of the carry. Consequently, to
simplify the derivation we assume that the output carries of each block
are produced in constant time cδ and that the block size is constant (k)
so that for a n-bit adder there are m = n/k blocks. The delay for the sum
bits of each block is kδ.

The minimum delay is achieved when the delay of the sum of the last block
is equal to the delay of the select signal obtained from previous blocks:

cδ + (m − 2)tMUX = kδ
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For t + MUX = δ we get c + m − 2 = k. Since n = mk

m =
2 − c +

√

4n + (c − 2)2

2

The total delay is T = cδ + (m − 1)tMUX = (c + m − 1)δ. For example,
for n = 64 and c = 2, we get m = 8 and k = 8. The delay in this case is
T = (2 + 7)δ = 9δ.

Exercise 2.26

X 01 01 01 11
Y 10 10 11 11

S0 11 11 00 10
c0 0 0 1 1
S1 00 00 01 11
c1 1 1 1 1

S0 11 11 01 10
c0 0 1
S1 00 00 01 11
c1 1 1

S0 00 00 01 10
c0 1
S1 00 00 01 11
c1 1

The result is (c0, S0) because cin = 0.

Exercise 2.27

Scheme A: TA = tCRA(n/4) + 2tMUX = (n/4) × 2δ + 2 × δ = (2p−1 + 2)δ

Scheme B: TB = tCA + 4tMUX = (2δ + (p − 3)δ) + 4δ = (p + 3)δ

• TA < TB if 2p−1 + 2 < p + 3 which holds for p ≤ 2.

Exercise 2.28

(a) The initial conditional carries are obtained by CC-1 modules: c0
i+1 =

xiyi, c1
i+1 = xi + yi (Figure E2.28a). The stages are composed of modules

organized as shown in Figure E2.28b and c. An Mk module consists of 2k
2-input MUXes.

A 16-bit conditional-carry adder, shown in Figure E2.28c, consists of the
following stages:

Stage 0: obtain (c1
i , c

0
i ) using 16 (AND,OR) modules with delay tg and

p′is with 16 XORs (tXOR with delay 2tg.)

Stage 1: obtain conditional-carry bit-vectors of size 2: 7 × 2 + 1= 15
MUXes (2tg)

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 2: Solutions to Exercises
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Figure E2.28: (a) Generation of conditional carries. (b+c) Symbols and
implementation of MUX-based modules for conditional carries. (d) 16-bit

conditional-carry adder. (Exercise 2.28).
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Stage 2: obtain conditional-carry bit-vectors of size 4: 3 × 4 + 2= 14

Stage 3: obtain conditional-carry bit-vectors of size 8: 1 × 8 + 4= 12

Stage 4: obtain conditional-carry bit-vectors of size 8: 8 × 1 = 8

Stage 5: obtain the sum: 16× XOR: total 16; tXOR = 2tg

The delay: TCC−16 = tg + 4 × 2tg + 2tg = 11tg
The cost: 16 AND-2 + 16 OR-2 + 2× 16 XOR + 49 MUXes + 2 AND-3 +

OR-2.
From Table 2.4:
Total: 32 × 2 + 32 × 3 + 49 × 2 + 3 × 2 = 264 eqv. gates

(b) Using the conditional-sum adder of Fig.2.24. The COND-ADD-4 is made
of modified CLA-4 module: in the CLG-4 we duplicate the AND-OR subnetwork
at the bottom to generate conditional carries; we also in the CLA-4 we duplicate
XORs to get conditional sums.

The cost of the COND-ADD-4: 4 AND-2 + 4 OR-2 + 3× 4 XOR + CLG-4
+ 4 AND-2 + 4 OR-2 = 8 + 8 + 12 × 3 + 44 + 8 + 8 = 112 eqv. gates.

The delay: TCSUM−16 = tCOND−ADD−4 + 2 × 2tg = 5tg + 4tg = 9tg
The cost: 3 COND-ADD-4 + CLA-4 + (3 × 5 + 9) MUXes. Total: 3 ×

112 + 84 + 24 × 3 = 492 eqv.gates
The conditional-carry adder has a similar delay and a significantly lower cost

than a conditional-sum adder with 4-bit conditional adders.

Exercise 2.29

a) Type 1 adder:

x 1000 100 111
y 0111 000 110
c0
i 11111 110 011

c1
i 00000 001 100

ci 00000 001 100
si 01111 101 101

The actual delay, assuming critical path in producing F , is

TType1 = tXOR + tOR−2 + 10 × tc + tOR−2

where tc is the delay of producing a carry:

tc = tAND−2 + tOR−2

Given that tc has the same expression for the carry-ripple adder and that
the actual delay of tc is 15% smaller than its worst-case delay and assuming
the same variation for tXOR and tOR−2, we get:

TType1 ≈ 0.85TCRA
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b) Type 2 adder:

x 1000100111
y 0111000110

chains jihgfedcba
timing 6543211111

In this example, the longest chain is zero-carry chain efghij of 6 positions.

The actual delay is

TType2 = tXOR + tmax + tOR−2 + tAND−10

where tmax = 6tc.

Consequently, including the delay of AND-10, for this input pattern the
addition delay is rougly 70% of that of the adder of type I.

Exercise 2.30

a) Figure E2.30 shows an implementation of a 32-bit carry-select adder using
self-timed modules: 8-bit Type-1 adders and bit-vector multiplexers.

The delay of this carry-select self-timed adder is

TCSST−32 = tXOR + tOR +

7
∑

i=0

tci +

3
∑

i=1

(tAND + tOR) + tOR ≈ 12tc

where tc is the average carry delay and tXOR + tOR + tOR ≈ 2tc.
b) The delay of the 32-bit self-timed adder based on a carry-ripple adder

(Fig. 2.27) is

TCRST−32 = tXOR + tOR +

31
∑

i=0

tci + tOR ≈ 33tc

Consequently, we estimate the variable-time adder based on the carry-select
scheme to be about 2.75 times faster than the one based on the carry-ripple
adder.

Comparing Figure E2.30 with Figure 2.27 shows that the number of adder
modules is multiplied by 1.75. Including the multiplexers, we estimate the cost
to be 2.5 times higher.

Exercise 2.31

The critical path in Fig. 2.20 is

g0 → g(1,0) → g(3,0) → g(7,0) → g(7,−1) → g(0,−1) → g(2,−1) → c7 → s7

Assuming delay t per (g,a) module, the delay is

TFig.2.20 = 8t + tXOR ≈ 9t

The critical path in Fig.2.29 is
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Figure E2.30: Carry-select adder with self-timed modules (Exercise 2.30).
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g0 → g(1,0) → g(3,0) → g(7,0) → c7 → s7

Assuming delay t per (g,a) module, the delay is

TFig.2.29 = 3t + tbuff + t + tXOR ≈ 6t

Exrecise 2.32

a)

X 0 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1
Y 1 1 1 0 0 0 1 0 0 1 1 0 1 1 0 1
W 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
S∗ 0 0 1 1 0 1 0 0 1 1 1 1 0 1 0 0
C∗ 1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0a
Z 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1
S 1 0 1 0 0 1 1 1 1 1 1 0 1 0 1 0 1
C 1 0 1 1 0 1 0 0 0 1 1 1 0 1 1 0

a carry in

b)

X 0 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1
Y 1 1 1 0 0 0 1 0 0 1 1 0 1 1 0 1
W 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Z 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 1
T 1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 0a
P 1 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1
S 1 0 1 0 0 1 1 1 1 1 1 0 1 0 1 0 1
C 1 0 1 1 0 1 0 0 0 1 1 1 0 1 1 0

a carry in; P output of Odd-parity module.

Exercise 2.33

a) Consider a [4:2] adder made of full adders, arranged in two levels as shown
in Figure 2.32 with one bit-slice repeated in Figure E2.33.

Since, according to Table 2.2, in the second FA the delays tc,s and tc,c

are smaller than the other delays, the overall delay is reduced if we connect
to pin c the output of the first FA with largest delay. However, for this FA
implementation the delays tx,s and tx,c are almost the same. So, assume that
we connect output s to input c (same result would be obtained by connecting
output c to input c). We get the critical path

T[4:2] = tx,c + tx,s = (0.72 + 0.04) + (0.71 + 0.03) = 1.50

This delay is roughly two times the delay of one full adder. This is due to the
implementation of the adder of Table 2.2 (an implementation based on two half
adders). A reduction in delay would be obtained if the full adder is implemented
with a separate network for the carry out signal (a two-level gate network). For
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FA

FA

xi yi ziwi

cin
cout

vsvc

a

Figure E2.33: [4:2] adder implemented with FAs.

instance, if the delay of this signal would be 0.38 + 0.03, we would get a total
delay of (0.72 + 0.04) + (0.38 + 0.04) = 1.18, roughly 1.5 the delay of a FA.

b) To show that the network in Fig.2.41 implements a [4:2] carry-save adder
module, consider the following arithmetic function:

vs = (xi + yi + wi + zi + ti)mod2

(ti+1 + ci+1) = (xi + yi + wi + zi + ti)/2

Clearly, the ODD PARITY module followed by the XOR produces the correct
vs (odd parity of x, y, w, z, t).

Now for ti+1, ci+1, we see that the implementation is symmetric with respect
to x, y, w so we can consider the sum (x + y + w). We have

If x + y + w = 2 or 3 then t = maj(x, y, w) = 1
Moreover,
c = 1 if
i) (x + y + w = 1) and (z = 1 or t = 1)
In this case x + y + w + z + t = 2 or 3 and we get (t = 0, c = 1).
ii) (x + y + w = 2) and z = 1 and t = 1
In this case x + y + w + z + t = 4 and we get (t = 1, c = 1)
iii) (x + y + w = 3) and (z = 1 or t = 1)
In this case x + y + w + z + t = 4 or 5 and we get (t = 1, c = 1)
In summary, if
x + y + w = 1 and z = 1 or t = 1 then SUM =2 or 3 and t = 0 and c = 1
x + y + w = 2 and z + t < 2 then SUM=2 or 3 and t = 1 and c = 0
x + y + w = 2 and z + t = 2 then SUM=4 and t = 1 and c = 1
x + y + w = 3 and z = 1 or t = 1 then SUM=4 or 5 and t = 1 and c = 1.
We now compute the delays of the [4:2] adder shown in Figure 2.41.

• Delay of si:

The module ODD PARITY consists of a two-level tree of XOR gates:
XOR2(XOR1,XOR1). The output si is produced by a level 3 XOR. As-
suming a unit load on si , the delay is
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tsi = tXOR1 + tXOR2 + tXOR3

tXOR1 = 0.3 + 0.029 × 1.1 = 0.33ns
tXOR2 = 0.3 + 0.029 × (2 + 0.5) = 0.38ns
tXOR3 = 0.15 + 0.028 × 1 = 0.188ns

si = 0.89ns

• Delay of ti+1: tt = tNAND1 + tNAND2:

ti+1 is produced by a majority network implemented by a two-level NAND
network as NAND2(NAND1, NAND1, NAND1).

tNAND1 = 0.07 + 0.033 × 1.1 = 0.10ns
tNAND2 = 0.08 + 0.039 × (1.1 + 0.5) = 0.14ns

tt = 0.24ns

• Delay of ci+1: tc = max(tt, tMUX−SEL) + tMUX)

tc = tMUX−SEL + tMUX

= tXOR1 + tXOR2 + tMUX

= 0.33 + 0.38 + 0.21 + 0.05 × 1 = 0.97ns

We conclude that the [4:2] adder in (b) is faster than the [4:2] adder in (a).

Exercise 2.34

A radix-8 carry-save cell and a 12-bit (4-octal digit) carry-save adder are
shown in Figure E2.34.

Exercise 2.35

101 110 110 011
1 1 0 1

011 100 111 011
001 011 101 111

1 1 1 0 0

Exercise 2.36

The addition of two radix-8 carry-save operands is performed in two stages:

1. A row of half-adders and full-adders as shown in Figure E2.36 reduces two
radix-8 carry-save operands to an intermediate result consisting of one
radix-8 carry-save and one conventional bit-vector.

2. The intermediate result is reduced to one radix-8 carry-save result using
CSA8 cells defined in Exercise 2.34.

Exercise 2.37

Radix-4 signed digit addition:
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    CSA8     CSA8      CSA8     CSA8    

    x  x  x     x  x  x     x  x  x     x  x  x
    x  x  x     x  x  x     x  x  x     x  x  x 
            x            x             x            x
___________________________
    x  x  x    x  x  x     x  x  x     x  x  x
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Input and output bit-vectors
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Figure E2.34: Radix-8 carry-save adder (Exercise 2.34).

HA HA FA HA HA FA
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sz sz sz
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Figure E2.36: Adder implementing addition of two radix-8 carry-save
operands and producing a radix-8 carry-save result. (Exercise 2.36)
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X 0 2̄ 1 3̄ 1 0 1 1̄

Y 1 0 1̄ 3̄ 1̄ 1 1 0

W 1 2̄ 0 2̄ 0 1 2 1̄

T 0 0 0 1̄ 0 0 0 0

S 0 1 2̄ 1̄ 2̄ 0 1 2 1̄

Exercise 2.38

The arithmetic expressions for a radix-4 signed-digit addition are

ai + bi = 4ti+1 + wi

si = wi + ti

where the intermediate variables are ti ∈ {−1, 0, 1} and wi ∈ {−2,−1, 0, 1, 2}.
The two-step algorithm is not possible since the condition a ≥ (r + 1)/2 is
not satisfied for a = 2 and r = 4. Therefore, a modified signed-digit addition
algorithm has to be used. We chose Method 2. Let

Pi =

{

1 if ai−1 ≥ 0 and bi−1 ≥ 0
0 otherwise

resulting in the following table:

ai + bi Pi ti+1 wi

4 - 1 0
3 - 1 -1
2 0 0 2

1 1 -2
1 - 0 1
0 - 0 0
-1 - 0 -1
-2 0 -1 2

1 0 -2
-3 - -1 -1
-4 - -1 0

The block diagram is shown in Figure E2.38. The delay in the critical path
is tP + tTW + ts.

On the other hand, a radix-4 signed-digit adder with a = 3 requires only
TW and S stages with the corresponding delays t∗TW and ts. The delay t∗TW

is larger than tTW since the digit sets are larger with a = 3 with a = 3. The
difference between tP and (t∗TW − tTW ) determines which adder is faster.
Exercise 2.39

Method 1:

X 0 1 1̄ 1 1̄ 0 1 1̄
Y 1 0 1 0 1 1̄ 1̄ 1
H 1 1 0 1 0 0 0 0
Z 1̄ 1̄ 0 1̄ 0 1̄ 0 0
Q 1 0 1̄ 1 1̄ 0 1̄ 0 0
T 0 0 1̄ 0 1̄ 0 1̄ 0 0
W 1 0 1 1 1 0 1 0 0
S 1 1̄ 1 0 1 1̄ 1 0 0
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Figure E2.38: Radix-4 signed digit adder scheme with a = 2. (Exercise 2.38)

Method 2:

X 0 1 1̄ 1 1̄ 0 1 1̄
Y 1 0 1 0 1 1̄ 1̄ 1
P 0 0 1 0 1 1 1 1
T 1 0 0 0 0 1̄ 0 0
W 1̄ 1 0 1 0 1 0 0
S 1 1̄ 1 0 1 1̄ 1 0 0

Exercise 2.40

• A high-level description of the double recoding approach resulting in the
redundant adder shown in Figure 2.38:

Recoding 1:

xi + yi = 2hi+1 + zi ∈ {−2,−1, 0, 1, 2} such that hi ∈ {0, 1} and zi ∈
{−2,−1, 0}

Recoding 2:

hi +zi = 2ti+1 +wi ∈ {−2,−1, 0, 1} such that ti ∈ {−1, 0} and wi ∈ {0, 1}

The output si = ti + wi ∈ {−1, 0, 1}

• A binary-level description:

The inputs and the output are coded as follows:

xi = x+
i − x−

i , yi = y+
i − y−

i , si = s+
i − s−i

The non-binary intermediate variable zi ∈ {−2,−1, 0} is coded as follows:

zi = −zai − zbi

All coding variables are binary. In terms of these binary variables we
express the high-level expressions as:
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x+
i − x−

i + y+
i − y−

i = 2hi+1 − zai − zbi

which is decomposed as

x+
i − x−

i + y+
i = 2hi+1 − zai, y−

i = zbi

The expression on the left is implemented by a full-adder in which signals
with a negative sign are inverted. This corresponds to FAs at the top level
of Figure 2.38. In the figure zai is denoted as vi.

Recoding 2 is desribed at the binary level by

−vi − y−

i + hi = −2ti+1 + wi

which is implemented by a full-adder in which signals with a negative sign
are inverted. This corresponds to the bottom level of full-adders in Figure
2.38. Finaly, the output si = s+

i − s−i is obtained as s+
i = wi and s−i = ti.

Exercise 2.41

Since zi, si ∈ {−2,−1, 0, 1, 2}, the radix 4 should be used also for x and y
operands so that xi, yi ∈ {0, 1, 2, 3} and xn−1, yn−1 ∈ {−2,−1, 0, 1}. Conse-
quently,

−2 ≤ xi + yi + zi ≤ 6

for 0 ≤ i ≤ n − 2. Moreover,

−6 ≤ xn−1 + yn−1 + zn−1 ≤ 4

The operation for digits 0 to n − 2 consists of the following three steps:
STEP 1 xi + yi + zi = 4hi+1 + vi where hi ∈ {−1, 0, 1, 2} and vi ∈ {−1, 0, 1, 2}
so that hi + vi ∈ {−2,−1, 0, 1, 2, 3, 4}

xi + yi + zi -2 -1 0 1 2 3 4 5 6 7 8
hi+1 -1 0 0 0 0 1 1 1 1 2 2
vi 2 -1 0 1 2 -1 0 1 2 -1 0

STEP 2 hi + vi = 4ti+1 + ui where ti ∈ {0, 1} and ui ∈ {−2,−1, 0, 1}

hi + vi -2 -1 0 1 2 3 4
ti+1 0 0 0 0 1 1 1
ui -2 -1 0 1 -2 -1 0

STEP 3 ti + ui = si ∈ {−2,−1, 0, 1, 2}
For the most-significant digit (i = n−1) the algorithm is modified as follows:

STEP 1 : xn−1 + yn−1 + zn−1 = 4hn + vn−1

Since hn−1 ∈ {−1, 0, 1, 2} (from algorithm for i ≤ n − 2) we make

vn−1 ∈ {−2,−1, 0, 1}, hn ∈ {−1, 0, 1}

STEP 2 : vn−1 + hn−1 ∈ {−3, ..., 3}
Since tn−1 ∈ {0, 1} (from algorithm for 0 ≤ i ≤ n − 2) we make

un−1 ∈ {−2,−1, 0, 1}, tn ∈ {−1, 0, 1}
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STEP 3 : sn−1 = un−1 + tn−1

Finally, sn = tn + hn with sn ∈ {−2, ..., 2}.
The critical path includes HV, TW, and S modules.

Exercise 2.42

The input operands x and y are in radix 4 with the digit set {0,1,2,3}. The
output s is in radix-4 with the signed-digit set {-2,-1,0,1,2}.

1. Method 1 - addition consists of two recodings and a carry-free addition.

Recoding 1: xi + yi = 4hi+1 + zi. The sum of input digits is in the range
[0,6]. The intermediate variables are hI ∈ {0, 1} and zi ∈ {−1, 0, 1, 2}.

xi + yi 0 1 2 3 4 5 6
hi+1 0 0 0 1 1 1 1
zi 0 1 2 -1 0 1 2

Recoding 2: hi+zi = 4ti+1+wi. The input to this recoding is in the range
[-1,3] and the intermediate variables are ti ∈ {0, 1} and wi ∈ {−2,−1, 0, 1}.

hi + zi -1 0 1 2 3
ti+1 0 0 0 1 1
wi -1 0 1 -2 -1

The sum is obtained by a carry-free addition: si = wi+ti, si ∈ {−2,−1, 0, 1, 2}

2. Method 2 - addition uses information from previous digit.

Consider the following recoding:

xi + yi 0 1 2 3 4 5 6
ti+1 0 0 1 1 1 1 2
wi 0 1 -2 -1 0 1 -2

This recoding produces an out-of-range output digit si = 3 if ti = 2 and
wi = 1. This can be avoided by using alternate recoding when xi + yi is
1 or 5, marked by (*). The choice depends on the value of xi−1 + yi−1.

di =

{

1 if xi−1 + yi−1 ≥ 5
0 otherwise

If di = 1, choose the recoding in ().

xi + yi 0 1(*) 2 3 4 5(*) 6
ti+1 0 0 (1) 1 1 1 1 (2) 2
wi 0 1 (-3) -2 -1 0 1 (-3) -2

This recoding guarantees that if ti = 2, wi cannot be 1. Consequently,
si = ti + wi ∈ {−2, 1, 0, 1, 2}. To simplify implementation, it is possible
to relax the condition when di = 1 to xi−1 + yi−1 ≥ 2.
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Exercise 2.43

Radix-2 signed digit addition of one conventional and one signed-digit operand:

X 0 1 1 1 0 1 1 0

Y + 1 0 1 0 0 0 1 1

Y − 0 1 0 0 0 1 0 0

W 1 0 0 1 0 0 0 1

T 1 0 1 1 0 0 1 1

S+ 1 0 1 1 0 0 1 1 0

S− 1 0 0 1 0 0 0 1

S 1 1̄ 1 1 1̄ 0 1 1 1̄
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Exercise 2.44

Radix-2 signed digit addition of two signed-digit operands:

X+ 0 1 0 0 0 1 0 0

X− 0 0 1 1 1 0 0 0

Y + 1 1 1 0 0 1 1 1

Z 1 0 0 1 1 0 1 1

H 1 1 0 0 0 1 1 1 0

Y − 0 0 0 1 1 0 0 0

S+ 1 0 0 0 0 1 1 0 0

S− 0 0 0 1 1 0 0 1 0

S 1 0 0 1̄ 1̄ 1 1 1̄ 1

Exercise 2.45

The adder output si is a switching function of 2i inputs (ignoring the carry-
in). It is a well known result that using modules of m binary inputs, the im-
plementation requires at least dlogm(2i)e levels. The proof of this is based on
building a tree of modules: the first level has d2i/me modules and outputs. For
the second level, group m outputs from the first level per module, and so on
until the last level has one module.
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