
1

DIGITAL ARITHMETIC

Miloš D. Ercegovac and Tomás Lang
with contributions by Elisardo Antelo and Fabrizio Lamberti

Morgan Kaufmann Publishers, an imprint of Elsevier, c©2004

Chapter 3: Solutions to Exercises

Exercise 3.1

As explained in the text, for two’s complement representation the most-
significant bit of each operand is inverted and −m is added, with its least-
significant bit aligned with the most-significant bit of the operands. For m = 7
we add -7 = 1001. Moreover, to avoid an extra row, we evaluate 1001 + g′

0 =
10g′0g0. The resulting matrix is

a′

0. a1 a2 . . . an

b′0. b1 b2 . . . bn

c′0. c1 c2 . . . cn

d′0. d1 d2 . . . dn

e′0. e1 e2 . . . en

f ′

0. f1 f2 . . . fn

10g′0g0. g1 g2 . . . gn

Exercise 3.2

a) We obtain the arithmetic expression of w in terms of a, b and c indicated
in Fig. 3.5 where

– a is the modulo-2 sum of the four external inputs in position i − 1.

– b is an internal carry from position i − 1 to i when a = 0.

– c is the modulo-2 sum of the four external inputs in position i and
the carry hi,1 from position i − 1.

Therefore the arithmetic value of w relative to position i − 1 is

w = 2c + 2b + a ≤ 4

because ab = 0.

The largest value w = 4 is obtained for a = 0, b = 1 and c = 1. An input
pattern resulting in w = 4 is

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



2

i i − 1
1 1
1 0
1 0
0 1

c = 1 a = 0
h = 0 b = 1

b) Two columns must be considered because a carry can propagate up to two
positions. Note that the output c depends on a carry from the previous
position.

c) To show that the network in Fig. 3.5 implements a [4:2] carry-save adder
module, consider the following arithmetic function (this proof is similar
to that performed for Exercise 2.33):

vsi = (xi,3 + xi,2 + xi,1 + xi,0 + hi,1)mod2

(hi+1,1 + hi+1,2) = (xi,3 + xi,2 + xi,1 + xi,0 + hi,1)/2

where vsi is the module output corresponding to the output of the xor
gate.

Clearly, the network of XOR gates produces the correct vsi (odd parity
of xi,3, xi,2, xi,1, xi,0, hi,1).

Now for hi+1,1 we see that it corresponds to the MAJORITY function of
xi,3, xi,2 and xi,1 (make table). That is, if xi,3 + xi,2 + xi,1 = 2 or 3 then
hi+1,1 = 1

Moreover,

hi+1,2 = 1 if

i) (xi,3 + xi,2 + xi,1 = 1) and (xi,0 = 1 or hi,1 = 1)

In this case xi,3 + xi,2 + xi,1 + xi,0 + hi,1 = 2 or 3 and we get (hi+1,1 =
0, hi+1,2 = 1).

ii) (xi,3 + xi,2 + xi,1 = 2) and xi,0 = 1 and hi,1 = 1

In this case xi,3+xi,2+xi,1+xi,0+hi,1 = 4 and we get (hi+1,1 = 1, hi+1,2 =
1)

iii) (xi,3 + xi,2 + xi,1 = 3) and (xi,0 = 1 or hi,1 = 1)

In this case xi,3 + xi,2 + xi,1 + xi,0 + hi,1 = 4 or 5 and we get (hi+1,1 =
1, hi+1,2 = 1)

Consequently,

xi+3 + xi,2 + xi,1 + xi,0 + hi,1 = vsi + 2hi+1,1 + hi+1,2

and the module is a [4:2] module.

d) Since networks in positions i and i − 1 are identical, it is sufficient to
compare implementations of Fig. 3.5 and 2.41 for one position only.

The internal outputs hi,1 of Fig. 3.5 and ti+1 of Fig. 2.41 both correspond
to the majority function of three inputs. The implementation given in Fig.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



3

3.5 seems good since it shares an xor gate with the implementation of the
other two outputs (and it does not affect the critical path). The rest of
the network is the same in both implementations. Consequently, the two
networks have the same delay and the same number of equivalent gates.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



4

Exercise 3.3

FA

FA

FA

2 2

2

3
3.2

4.5

5

4.5

3

4.5

x y c

x y c

x y c

Figure E3.3a: The [5:2] module for Exercise 3.3.

A [5:2] module is shown in Figure E3.3a. and an array of these modules to
reduce five 8-bit operands in Figure E3.3b.

To determine the critical path we use the following delay model, simplified
from the model given in Table 2.2:

FA HA
from/to cout s cout s
(x, y) 2 0.7 1.2

x 2
y 1.5
c 1 1.2 - -

where the delay is normalized to the delay tc−c.
Figure E3.3a indicates the module delays using this model. Consequently,

the critical path delay is 5tc−c. The implementation uses 22 FAs and 2 HAs.
For comparison, an array of [3:2] modules to reduce 5 8-bit operands is

shown in Figure 3.3c.As shown, the critical path has a delay of 5.5tc−c. The
network cost is cost 22 FAs and 3 HAs. We conclude that both networks have
the same cost and that the network using [5:2] modules is somewhat faster than
the network using [3:2] modules.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



5

5

[5:2]

5

[5:2]

5

[5:2]

5

[5:2]

HA

01bit position: 7 6 5 4 3 2

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

HA

01bit position: 7 6 5 4 3 2

(b)

(c)

2222

3.22.7

22

43.543.5

5.255.554.74.2

22 22

43.5 43.5

x c y x c y x c y x c y x c y x c y

5.555.55

3

54.554.554.554.54.23.7

333

2222

FA

FA

HA

5

[5:2]

5

[5:2]

FA

FA

2222

3.23 3.23

4.23.9

33

54.554.5

22

5.55 5.55 5.55

HA

HA

x c y

4.43.9

Figure E3.3: (b) Network of [5:2] modules to reduce 5 8-bit operands. (c)
Network of [3:2] modules to reduce 5 8-bit operands.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



6

Exercise 3.4

To determine the critical path we use the following delay model, simplified
from the model given in Table 2.2:

FA
from/to cout s
(x, y) 2

x 2
y 1.5
c 1 1.2

where the delay is normalized to the delay tc−c.
A [6:2] module is shown in Figure E3.4. The delay in the critical path is

T = 6tc−c.

FA FA

FA

FA

2

2

2
2

2

2

4
4

4

5.5

6

5.5

y x c

Figure E3.4: The network of FAs for Exercise 3.4.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



7

Exercise 3.5

To determine the critical path we use the following delay model, simplified
from the model given in Table 2.2:

FA
from/to cout s
(x, y) 2

x 2
y 1.5
c 1 1.2

where the delay is normalized to the delay tc−c.
A [9:2] module is shown in Figure E3.5. The delay in the critical path is

T = 8tc−c.

FA FA

FA

2
2

2

4
4 4

7.5

6

FA

FAFA

FA

6
6

7.5 8

Figure E3.5: The network of FAs for Exercise 3.5.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



8

Exercise 3.6 A design based on a CAD tool - left to the reader.

Exercise 3.7

a) The network output delays, assuming L = 1, are

tq0
= tqB0

+ tXOR ≈ tqA0
+ tXOR = 0.748 + 0.329 = 1.08

tq1
= tqB0

+ tNAND2 + tXNOR = 0.748 + 0.136 + 0.329 = 1.21

tq2
= tAND−NOR + tNAND2 + tNAND2 + tXNOR + tNAND3 + tNAND3 =

0.192 + 0.136 + 0.106 + 0.36 + 0.119 + 0.119 = 1.03

The delay of the critical path is tq1
= 1.21

b) The cost of the gate network:

Cg−net = 7×1+3×2+1×2+1×2+1×2+8×3 = 43 equivalent gates.

c) The delay in the critical path of the (7:3] impelementation with FAs is

tFA−net = tx−s + ty−s + tc−s = 0.71 + 0.03 × 1.3 + 0.52 + 0.03 × 1.3 +
0.46 + 0.03 = 1.8

d) The cost of the FA network:

CFA−net = 4 × 7 = 28 equivalent gates.

e) The delay of the gate network is about 1.5 times smaller than the delay
of the FA network. The size of the gate network is about 1.5 times larger
than the size of the FA network.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



9

Exercise 3.8

A network of full-adders implementing a (15:4] counter is shown in Figure
E3.8.

FA FA FA

FA

FA FA

FA

FA FA

FA

FA

1212121212

1224

1224

24

48

(numbers indicate weights)

Figure E3.8: A network of FAs implementing (15:4] counter in Exercise 3.8.

Exercise 3.9

The reduction sequence produced by a (15:4] counter is

No. of levels: 1 2 3 ...
No. of operands: 15 48 180 ...

Therefore, 127 operands can be reduced to four using 3 levels of (15:4] coun-
ters.

Exercise 3.10

The maximum value of the sum is S = 32×127. Since 211 < S = 212 −25 <
212, 12 bits are necessary.

1. The logic diagram of a bit-slice showing only CSA and registers is given
in Figure E3.10(a).

2. The block diagram at the word level is shown in Figure E3.10(b).

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



10

(a)

To CPA to get S

PSj [i]

Xj[i]

Cj+1 [i]

PSj [i-1]

clk
FF C FF PS

Cj [i-1]

Bit-slice j

 FA

Cj [i]

(b)

PS[i]C[i]

PS[i-1]

clk
Reg. C Reg. PS

C[i-1]

X[i]

[3:2] Adder

CPA

S

7

12 12

1212

12 12

12

Figure E3.10: (a) Bit-slice of multi-operand adder. (b) Multi-operand adder of
Exercise 3.10.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



11

3. The critical path delay: ts + treg where ts is the delay of the sum output
of a FA.

4. The latency: 32 × (ts + treg) + tCPA = 32 × (ts + treg) + 11tc + ts where
tc is the delay of the carry output of a FA.

5. Use a CRA instead of the CSA. In this case the adder has 11 bits plus the
carry-out. The critical path is 10tc + ts + treg. Assume that ts = 2tc and
treg = ts. Then the ratio of cycle times in the two alternatives is:

(10tc + ts + treg)/(ts + treg) = 7ts/2ts = 3.5

The latency of the alternative with CRA is 32× (10tc + ts + treg) and the
ratio of latencies is

(32 × (10tc + ts + treg)/(32 × (ts + treg) + 12tc + ts)

= (32 × 7ts)/(32 × 2ts + 6.5ts) = 224/70.5 = 3.2

In terms of hardware, the alterantive with CRA uses only one register
and an 11-bit adder. The alternative with CSA uses two registers and two
adders. This is roughly twice as much hardware.

Exercise 3.11

1. X[i] ∈ [−31, 31], two’s complement. The number of bits is 11 because the
result is in the range

[32 × (−31), 32 × 31]

2. The logic diagram of a bit-slice showing only CSA and registers is given
in Figure E3.11(a) .

3. The block diagram at the word level is shown in Figure E3.10(b).

4. The critical path delay: ts + treg where ts is the delay of the sum output
of a FA.

5. The latency: 32× (ts + treg)+ tCRA−11 = 32× (ts + treg)+10tc + ts where
tc is the delay of the carry output of a FA.

6. Use a CRA instead of the CSA. In this case the adder has 11 bits plus the
carry-out. The critical path is 10tc + ts + treg. Assume that ts = 2tc and
treg = ts. Then the ratio of cycle times in the two alternatives is:

(10tc + ts + treg)/(ts + treg) = 7ts/2ts = 3.5

The latency of the alternative with CRA is 32× (10tc + ts + treg) and the
ratio of latencies is

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



12

(a)

To CPA to get S

PSj [i]

Xj[i]

Cj+1 [i]

PSj [i-1]

clk
FF C FF PS

Cj [i-1]

Bit-slice j

 FA

Cj [i]

(b)

PS[i]C[i]

PS[i-1]

clk
Reg. C Reg. PS

C[i-1]

X[i]

[3:2] Adder

CPA

S

5+6

11 11

1111

11 11

11

sign extension

Figure E3.11: (a) Bit-slice of multi-operand adder. (b) Multi-operand adder of
Exercise 3.11.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



13

(32 × (10tc + ts + treg)/(32 × (ts + treg) + 12tc + ts)

= (32 × 7ts)/(32 × 2ts + 6ts) = 224/70 = 3.2

In terms of hardware, the alternative with CRA uses only half as much as
the alternative with CSA.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



14

Exercise 3.12

The linear array networks are shown in Figure E3.12.

[3:2]

[3:2]

[3:2]

[3:2]

[3:2]

[4:2]

[4:2]

[3:2]

Figure E3.12: The adder networks for Exercise 3.12.

Exercise 3.13

To determine the critical path we use the following delay model, simplified
from the model given in Table 2.2:

FA HA
from/to cout s cout s
(x, y) 2 0.7 1.2

x 2
y 1.5
c 1 1.2 - -

where the delay is normalized to the delay tc−c.
The [5:2] module shown in Fig. E3.13a has a critical path of 5tc−c.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



15

FA

FA

FA

2 2

2

3
3.2

4.5

5

4.5

3

4.5

x y c

x y c

x y c

Figure E3.13a: [5:2] module.

To reduce the ten 4-bit operands we use an array of [5:2] modules (forming
two adders of 5 inputs each) followed by a [4:2] adder, as shown in Figure E3.13b.
The critical path delay is 8tc−c. The implementation uses 28 FAs and 6 HAs.

For comparison, Figure E3.13c shows an array of [3:2] adders to reduce 10
4-bit operands. At the full-adder level, this array is implemented as shown in
Figure E3.13d. The corresponding critical path delay is 9.2tc−c.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



16

01bit position: 3 2

FA

FA

HA

5

[5:2]

FA

FA

5

[5:2]

HA

[5:2] adder
Level 2

FA

FA

HA

5

[5:2]

FA

FA

5

[5:2]

HA

[5:2] adder
Level 2

abcdefghij

FA

HA

FA

FA

FA

FA

FA

FAFA

HA[4:2] adder
Level 1

a

b

c

d

e

f

gh

i

j

22 22

3.23 3.23

54.5

4.23.9

22

33

54.5

3.23 3.23 4.2

3.9

53.95

4.5

4.54.5

4.2

3.7 4.2

4.43.9

5.45.26.266.26.55.76.2

6.66.17.47.287.57.77.57.47.2

x c y x c y

54.554.5 4.23.9

4.23.7

4.23.7

Figure E3.13b: Network of [5:2] and [4:2] modules to reduce 10 4-bit operands.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



17

[3:2] [3:2] [3:2]

[3:2] [3:2]

[3:2]

[3:2]

[3:2]Level 1

Level 2

Level 3

Level 4

Level 5

Figure E3.13c: Network of [3:2] adders to reduce 10 4-bit operands.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



18

FA

FA

FA

FAFA

FA

FA

FA

FAFA

FA

FA

FA

FAFA

FA

FA

FA

FAFA

FAFAFAFA

FAFA

2
2

4444444444444444

66666666

87.587.5

Level 5

Level 5

Level 5

Level 4

Level 3

Level 2

FA HAHA

9.28.78.78.57.26.7

Level 1

Figure E3.13d: Network of FAs and HAs to reduce 10 4-bit operands.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



19

Exercise 3.14

The final sum is in the range [0,2040] so the result has 11 bits. We use the
following delays:

tc = tXOR = tmux = d = 2tgate, ts = 2tXOR = 2d = 4tgate, tbuf = 0.5d =
tgate (fanout = 4)

(a) With carry-ripple adder

There are seven CRAs, operating in an overlapped mode as indicated
below

CRA-1: xxxxxxxx dddddddd CRA-1

(8) xxxxxxxx dddddddddd CRA-2

------------ dddddddddd CRA-3

CRA-2: xxxxxxxxx ddddddddddd CRA-4

(9) xxxxxxxx ddddddddddd CRA-5

------------ ddddddddddd CRA-6

CRA-3: xxxxxxxxxx ddddddddddd CRA-7

(10) xxxxxxxx dddddddddddd Result

------------

CRA-4: xxxxxxxxxx Timing diagram of linear array

(10) xxxxxxxx with CRAs

------------

CRA-5: xxxxxxxxxxx

(11) xxxxxxxx

------------

CRA-6: xxxxxxxxxxx

(11) xxxxxxxx

------------

CRA-7: xxxxxxxxxxx

(11) xxxxxxxx

------------

Sum xxxxxxxxxxx

The delay of an n-bit CRA is TCRA(n) = (n − 1)tc + ts.

The delay of the linear array with CRAs is

TLA−CRA = 6ts + 10tc + ts = (12 + 10 + 2)d = 48tgate

(b) With single-level carry-skip adder, m = 4

A linear array of carry-skip adders is shown in Figure E3.14b. Note that
the delay of a skip signal of a group is determined by the latest arriving
input to the group. Consequently, the skip paths do not affect the worst-
case delay in the array. The reason for this behavior is that the first level
does not allow skipping. A different situation would occur, for example,
for 12-bit operands.

From the figure we get

TLA−CSK = 26d = 52tgate

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



20

12345678

234578910

345678910

45679101112

56789101112

678911121314

8

7891011121314

16

10

12

1314151617

18

20
21222324

26

91011121314

15

1516

111213

14

131415

17

18 151617

1819

1718

1920

20 19

2122

24 23 22

MUX FA (operands and skip paths not shown)

delays in d

Figure E3.14b: Linear array of carry-skip adders (Exercise 3.14(b))

(c) With parallel prefix adder (min. number of levels, fanout = 2) (Figure
2.20) TPPA(8) = tgap + 3tlevel + tXOR = (1 + 3 + 1)d = 5d = 10tgate

TPPA(10/11) = tgap + 4tlevel + tXOR = (1 + 4 + 1)d = 6d = 12tgate

The adders in the array cannot operate in an overlapped manner: all
inputs to a parallel prefix adder must arrive at the same time. Therefore,
the total delay for the linear array of seven parallel prefix adders is

TLA−PPA = (5 + 6 × 6)d = 41d = 82tgate

(d) With carry-select adder (Figure 2.22)

A linear array using carry-select adders is shown in Figure E3.14d.

A carry-select adder consists of two modules: the least-sgnificant part of
the result is obtained using a 4-bit CRA; the most-significant part of the
result is obtained by selecting one of the two conditional results produced
using c4.

The total delay obtained from the figure is

TLA−CS = 29d = 58tgate

Note that the critical path is determined by the conditional adders - not
by the carries controlling multiplexers. Therefore, the use of carry-select
adders is inappropriate in this case.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



21

CONDITIONAL ADDER

CONDITIONAL ADDER

CONDITIONAL ADDER

CONDITIONAL ADDER

CONDITIONAL ADDER

CONDITIONAL ADDER

CONDITIONAL ADDER

345

4567

567

6789

8

78910

10

12

13141516

9101112

1234

2345

FA
23456

55567

6789101112

operands not shown; delays in d

8910111213

8101112131415

111213141516

13141516171819

14

16

20

22

23

25

26

17

19

20

2228

29

11121314

131415

14151617
23

91011

111213

MUX

2425262728

Figure E3.14d: Linear array of carry-select adders (Exercise 3.14(d))

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



22

(e) With [4:2] adder followed by parallel prefix adder:

There are three levels of [4:2] adders, each with a delay of three XORs (3d),
followed by a 11-bit parallel prefix adder with a delay of 6d as described
in part (c), for a total of

TLA−[4:2]−PPA = 3 × 3d + 6d = 15d = 30tgate

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



23

Exercise 3.15

Figure E3.15 shows a linear array of [3:2] adders for producing the sum of 8
6-bit operands (two’s complement). To determine the critical path we use the
following delay model, simplified from the model given in Table 2.2:

FA HA
from/to cout s cout s
(x, y) 2 0.7 1.2

x 2
y 1.5
c 1 1.2 - -

where the delay is normalized to the delay tc−c.
The delay of the critical path is 19.2tc−c. The delay attributed to the CPA

is 7.2tc−c which corresponds to 38% of the total delay. Using a faster CPA such
as a prefix adder of Figure 2.20 with a delay of

tP A = tgap + 3tlevel + tXOR = (1.2 + 3 + 1.2)tc−c = 5.4tc−c

reduces the total delay to (12+5.4)tc−c = 17.4tc−c and the percentage attributed
to the CPA to 31%.

The speedup due to the use of a faster CPA is about 11%. It would be larger
for a larger n.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



24

m=8, n=6, [-32,31]x8 = [-256,248] --- 9 bits

Bit-matrix:

x’xxxxx

x’xxxxx

x’xxxxx

x’xxxxx

x’xxxxx

x’xxxxx

x’xxxxx

100x’xxxxx

8x (-1) = 1000

FAFA FAFAFAFA

HAFA FAFAFAFA

HAFA FAFAFAFA

HAFA FAFAFAFA

HAFA FAFAFAFA

HAFA FAFAFAFA

FA HAFAFAFAFAFA

FA

FA

2 22 22 22 22 22 2

3.22.7

4.4

5.6

6.8

8

3.9

5.1

6.3

7.51211.5

13.2
12.7

43.543.543.543.543.5

65.565.565.565.565.5

87.587.587.587.587.5

109.5109.5109.5109.5109.5

1211.51211.51211.51211.51211.5

13.714.715.716.717.718.7
1414.915.916.917.918.919.2

6.76.5

Figure E3.15: Bit-matrix and linear array of [3:2] adders (Exercise 3.15).

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



25

Exercise 3.16

a ) Since the operands are in the range [-8, 7], the range of the result is
[-48, 42] which requires 7 bits. The sign-extension simplification is shown in the
following bit-array:

a′

3 a2 a1 a0

b′3 b2 b1 b0

c′3 c2 c1 c0

d′3 d2 d1 d0

e′3 e2 e1 e0

101f ′

3 f2 f1 f0

A network of FAs and HAs is shown in Figure E3.16a. The CPA is of a
carry-ripple type.

F13

cF13
sF13

sF2

cH1

sF4

sF11

cF10

F14

cF14
sF14

sF3

cF9

H3

cH3

sF14

cF13

F16

cF16

sF15

cF14

F3

cF3 sF3
Level 3

Level 2

Level 1

Carry-ripple
 adder

sF10

d0

e0

f0

F2

cF2 sF2

F1

cF1 sF1

F5

cF5 sF5

a0

b0

c0

a1

b1

c1

a2

b2

c2

H2

cH2 sH2

d1

e1

f1

d2

e2

f2

F6

cF6 sF6

F7

cF7 sF7

a’3

b’3

c’3

F4

cF4 sF4

d’3

e’3

f’3

F8

cF8 sF8

sF1

sF5cF1

cF5

sF2

sF6

cF2

cF6

sF3

sF7

cF3

cF7

sF4

sF8

F10

cF10
sF10

F11

cF11
sF11

F15

cF15
sF15

cF11

sF12

cF4

cF8

H1

cH1 sH1

F9

cF9
sF9

1

10

F12

cF12
sF12

cF12

F17

cF17

sH2

cF15

F17

cF17

cF12

cH2

s0s1s2s3s4s5s6

sF9

2
6

1

1

1

2
0

2
1

2
2

2
3

2
4

2
5

Figure E3.16a: The network of FAs and HAs for Exercise 3.16.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



26

b) The delay of the critical path, indicated on the figure, is

T = 3tFA(ab−s) + tH(ab−c) + 3tFA(c−c) + tINV

Using the following delay model (simplified from that of Table 2.2)

FA HA
from/to cout s cout s
(x, y) 2 0.7 1.2

x 2
y 1.5
c 1 1.2 - -

where the delay is normalized to the delay tc−c, we obtain

T = 3 × 2 + 0.7 + 3 × 1 + 0.5 = 10.2tc−c

c) The values of inputs to FAs and HAs for the given operands after the
sign-extension simplification are shown in Figure E3.16b.

Inputs to

0 0 0 1 -7 Level 3

1 0 1 0 2

0 1 1 0 -2

1 1 0 1 5

1 0 1 1 3

1 - 1 0 0 1 0 -6 (extended)

------------------

1 1 0 1 Level 2

0 0 1 0

1 0 1 0 0

1 - 1 0 1 1

------------------

1 1 0 1 Level 1

0 1 0 0

1 1 0 0 1 1

-----------------

1 0 0 0 1 1 CPA: Carry-ripple adder

1 0 1 1 0

-----------------

1 1 1 1 0 1 1 -5

Figure E3.16b: The bit arrays for Exercise 3.16(c).

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



27

Exercise 3.17

The two schemes are shown in Figure E3.17. If additions in level 1 and level
2 of Scheme A do not overlap, Scheme B is not faster than Scheme A if T4−2 >
TCPA. If additions in Scheme A overlap, then, for example, using carry-ripple
adders in both schemes, we get TA = ts + (n + 1)tc and TB = t4−2 + (n + 1)tc.
In this case Scheme A is faster because ts < t4−2.

[4:2]

n n n n

CPA

n+2

n+1 n+1

CPA

n n

CPA

n n

CPA

n+1 n+1

n+2

Level 2

Level 1

Scheme A Scheme B

Figure E3.17: Two schemes for reducing four n-bit operands.

Exercise 3.18

We use two [4:2] adders in the first level. Assuming that the range of each
operand is -128,127 we get a range of the output of each [4:2] adder of -512,508
requiring a width of 10 bits. Note that the sign extension could be simplified,
as done Section 3.1, reducing the width of the adders.

Performing the [4:2] addition using the modules of Figure 2.41, described by

ti+1 = MAJORITY (xi, yi, wi)

ci+1 =

{

ti if (xi + yi + wi + zi)mod 2 = 1
zi otherwise

si = (xi + yi + wi + zi + ti)mod 2

we get

73 0001001001 - 31 1111100001

- 52 1111001100 17 0000010001

22 0000010110 47 0000101111

-127 1110000001 -80 1110110000

--------- ---------

t 0010011000 t 0001000010

----------- ----------

s 0010001010 s 0000101101

c 1100100010 c 1110100100

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



28

Now one second-level[4:2] adder. The range of the result is -1024,1016, re-
quiring a width of 11 bits.

00010001010

11100100010

00000101101

11110100100

-----------

t 00001010100

-----------

s 00001110101

c 11100001000

-----------

11101111101 = -131

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



29

Exercise 3.19

a) The delay in the critical path of the scheme for reducing m = 6 n-bit
magnitudes, shown in Figure 3.26a, is

ta = 4tFA−s + (n − 1)tFA−c + 2tHA−c + tOR

The delay in the critical path of the scheme shown in Figure 3.26b is

tb = 4tFA−s + tCPA(n+2)

b) The scheme in Figure 3.26b is faster than the scheme in Figure 3.26a if

tCPA(n+2) < (n − 1)tFA−c + 2tHA−c + tOR

Exercise 3.20

A modification of Figure 3.21 for two’s complement representation is shown
in Figure E3.20.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



30

m=8, n=5, [-16,15]x8 = [-128,120] --- 8 bits

Bit-matrix:

x’xxxx

x’xxxx

x’xxxx

x’xxxx

x’xxxx

x’xxxx

x’xxxx

100x’xxxx

8x (-1) = 1000

m0=2

m3=6

m2=4

m1=3

CPA

Level 4

Level 3

Level 1

Level 2

(8FAs, 1HA)

(8FAs, 1HA)

(5FAs, 1HA)

(5FAs, 1HA)

complement all MS bits

1

1

1

1

Figure E3.20: Reduction by columns of eight 5-bit two’s complement numbers
(Exercise 3.20).

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



31

Exercise 3.21

a) Magnitudes

l=4
ei 9 9 9 9 9 9
m3 6 6 6 6 6 6
hi 0 0 0 0 1 1
fi 3 3 3 3 2 1
l=3
ei 3 6 6 6 6 6 6
m2 4 4 4 4 4 4 4
hi 1 0 0 0 0 1 0
fi 0 2 2 2 2 1 1
l=2
ei 1 4 4 4 4 4 4 4
m1 3 3 3 3 3 3 3 3
hi 0 0 0 0 0 0 0 1
fi 0 1 1 1 1 1 1 0
l=1
ei 2 3 3 3 3 3 3 3
m0 2 2 2 2 2 2 2 2
hi 1 0 0 0 0 0 0 1
fi 0 1 1 1 1 1 1 0

Total: 37FA + 7HA
b) 2’s complement

l=4
ei 1 1 1 1 9 9 9 9 9 9
m3 6 6 6 6 6 6 6 6 6 6
hi 0 0 0 0 0 0 0 0 1 1
fi 0 0 0 0 3 3 3 3 2 1
l=3
ei 1 1 1 4 6 6 6 6 6 6
m2 4 4 4 4 4 4 4 4 4 4
hi 0 0 0 0 0 0 0 0 1 0
fi 0 0 0 1 2 2 2 2 1 1
l=2
ei 1 1 2 4 4 4 4 4 4 4
m1 3 3 3 3 3 3 3 3 3 3
hi 0 0 0 0 0 0 0 0 0 1
fi 0 0 0 1 1 1 1 1 1 0
l=1
ei 1 1 3 3 3 3 3 3 3 3
m0 2 2 2 2 2 2 2 2 2 2
hi 0 0 0 0 0 0 0 0 0 1
fi 0 0 1 1 1 1 1 1 1 0

TOTAL: 39FA + 5HA

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



32

Exercise 3.22

a) From the Figures we see that the reduction by columns (Figure 3.21) has
a CPA of 7 bits whereas the reduction by rows (Figure 3.27) has only 5 bits.

b) From the Figures, the critical path for reduction by columns is 4ts +
5tc + ts = 5tc + 5ts and that for reduction by rows is 5ts + 4tc.

c) Including the CPA, reduction by columns has 32 FA and 4 HA and re-
duction by rows has 32 FA and 3 HA.

Exercise 3.23

Critical paths for

1. Fig.3.21: T3.21 = 4tFA(ab−s) + tFA(ab−c) + 5tFA(c−c) + tFA(c−s) = 4 × 4 +
3 + 5 × 2 + 2 = 31τ

2. Fig. 3.27: T3.27 = 4tFA(ab−s) + tHA(ab−c) +3tFA(c−c) + tFA(c−s) = 4× 4+
1 + 3 × 2 + 2 = 25τ

Exercise 3.24

(a) The range of the result is −33 ≤ z ≤ 30. Therefore, the minimum
precision is 7 bits.

(b) z = a − 3b + 5c = a + b − 4b + 4c + c. The initial bit-matrix is shown in
Fig. E3.24a. The final matrix, after simplification of sign extension, is shown
in Fig. E3.24b.

a a′

2 a1 a0

−1
b′2 b1 b0

−1
(a) −4b b2 b′1 b′0 0 0

−1 1
4c c′2 c1 c0 0 0

−1
c c′2 c1 c0

−1
1 0 b2 b′1 a′

2 a1 a0

c′2 c1 b′2 b1 b0

(b) 1 1 c′2 c1 c0

b′0
c0

Figure E3.24:(a) The initial bit-matrix. (b) The simplified bit-matrix.

(c) To reduce the number of full adders and half adders, we use reduction
by columns. The reduction stages are shown in Fig. E3.24c.

The delay for the reduction to two operands is T = tHA + 2tFA The cost is
5FAs and 4HAs

d) To reduce the precision of the carry-propagate adder, reduction by rows
is performed, so that the least-significant bits are reduced early. This reduction
is shown in Figure E3.24d. The precision of the CPA is 5 bits.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



33

1 - b2 b′1 a′

2 a1 a0

c′2 c′1 b′2 b1 b0

1 1 c′2 c1 c0

b′0
c0

HA1
x x x x x x

x x x x x
x x x x x

x x
HA3 FA1 HA2

x x x x x x
x x x x x
x x x x x

FA5 FA4 FA3 FA2 HA4
x x x x x x x

x x x x x
Figure E3.24c: Reduction by columns.

1 - b2 b′1 a′

2 a1 a0

c′2 c′1 b′2 b1 b0

1 1 c′2 c1 c0

b′0
c0

FA5 FA4 FA3,HA1 FA2 FA1
x x x x x x x

x x x x
x

HA4 FA6 HA3 HA2
x x x x x x x

x x x

Figure E3.24c: Reduction by rows and final adder.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



34

Exercise 3.25

Because of the absolute values, we perform two separate sums, obtain the
absolute values and then add. To obtain these absolute values for the results in
carry-save format, we determine the sign and, if negative, complement both the
sum and the carry vectors. If this complementation is done in 2’s complement
representation, it is necessary to add two 1s in the least-significant position.
Since there is a problem in finding a place for these ones, we use 1s’ complement
representation instead. We comment later on the effect of this on the component
operations.

To reduce the width of the final addition, it would be possibe to saturate
each of the two operands before this addition; however, we choose the alternative
of saturating only the final sum.

The range of each of the two sums is from -1020 to 1-20, requiring 11 bits.
The bit array for each of the two multioperand sums (with complete sign

extension) is as follows:

x x x x x x x x

x x x x x x x x 0

x x x x x x x x

1 1 1 x’x’x’x’x’x’x’x’

1 1 x’x’x’x’x’x’x’x’1

1 1 1 x’x’x’x’x’x’x’x’

-------------------------

A possible implementation of the 6-to-2 reduction consists of a first level of two
[3:2] adders and a second level of one [4:2] adder. Because of the 1s’ complement
representation, the output carries of the adders have to be connected to the input
carries (one carry for the [3:2] adder and two carries for the [4:2] adder).

The addition of the two arrays produce two pairs of sum and carry vec-
tors of 11 bits. For each pair, a sign detector detects the sign and the pair
is complemented if the sign is negative. The sign detection is implemented in
the same way as for 2’s complement representation: obtain the carry into the
most-significant bit and xor with the xor of the most-significant bit of both
operands).

Since we use 1s’ complement representation, the complementation is done
by bit inversion of both vectors.

Finally, a [4:2] adder produces two vectors that are added by a CPA. The
(positive) result has 11 bits. Calling the bits si (0 ≤ i ≤ 10) the saturated value
z is obtained as follows:

zj = sj (s8 s9 s10) (0 ≤ j ≤ 7)

Exercise 3.26

A pipelined linear array of adders is shown in Figure E3.26. For the final
adder we use a CRA with four pipelined stages, each stage having a delay similar
to a [4:2] adder.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



35

m=8, n=6, [0,63]x8 = [0,504] --- 9 bits

Bit-matrix:

xxxxxx

xxxxxx Stage 1

xxxxxx

xxxxxx

----------

ooooooo

oooooo

xxxxxx Stage 2

xxxxxx

----------

ooooooo

oooooo

oxxxxxx Stage 3

oxxxxxx

----------

oooooooo

ooooooo (CPA with 4 pipelined stages)

----------

sssssssss

- latches

Prefix Adder - 1

[4:2] ADDER

[4:2] ADDER

[4:2] ADDER

X[8,j] X[1,j]

Stage 1

Stage 2

Stage 3

X[1,j-1]

X[1,j-2]

6 6 6 6 6 6 6 6

Stage 4

S[j-4]

S[j-3]

Stage 5

S[j-5]

Prefix Adder - 2

Prefix Adder - 1: "gap" modules
+2 levels of "ga" modules

Prefix Adder - 2: 2 levels of 
"ga" modules + XORs

(see Figure 2.20)

Figure E3.26: Pipelined linear array of [4:2] adders.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises



36

Exercise 3.27

A pipelined scheme for reducing six operands per iteration is shown in Figure
E3.27. The cycle time is

tcycle = 2tFA + treg

The time to add 24 operands is

T (24) = (2 + 4)tcycle + tCPA = 12tFA + 6treg + tCPA

A non-pipelined scheme for reducing six operands to two has a cycle time

tNPcycle = 4tFA + treg

The time to add 24 operands using a non-pipelined scheme is

TNP (24) = 4tNPcycle + tCPA = 16tFA + 4treg + tCPA

- latches

Reduction 6-to-2

s

[3:2]

[3:2]

[3:2]

Accumulation

6 operands

[3:2]

[3:2]

[3:2]

CPA

Figure E3.27: A pipelined scheme for reducing six operands per iteration.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 3: Solutions to Exercises


