
1

DIGITAL ARITHMETIC

Miloš D. Ercegovac and Tomás Lang
Morgan Kaufmann Publishers, an imprint of Elsevier Science, c©2004

Chapter 8: Solutions to Exercises

– with contributions by Fabrizio Lamberti –

Exercise 8.1

• Fixed-point representation

Planck’s constant:

6.63 × 10−27 → 0. 00000000000000000000000000663
︸ ︷︷ ︸

29

Avogadro’s number:

6.02 × 1023 → 602000000000000000000000
︸ ︷︷ ︸

24

.0

To represent the approximation of Planck’s constant 6.63×10−27, 29 radix-
10 fractional digit are needed, while representing the approximation of
Avogadro’s number 6.02 × 1023 requires 24 integer digits. In conclusion,
to represent the approximations of both Planck’s constant and Avogadro’s
number in a fixed-point number format, 29 + 54 = 53 radix-10 digits are
needed.

• Floating-point representation

In the considered radix-10 base-10 biased representation for the exponent
(such that Ebiased = E + 50), the exponent of both Planck’s constant
6.63×10−27 and Avogadro’s number 6.02×1023 can be represented using 2
digits, since −27+50 = 23 and 23+50 = 73. To represent the significands,
3 radix-10 digits are needed. Therefore, to represent the approximations of
both Planck’s constant and Avogadro’s number in a floating-point radix-
10 base-10 number format, 3 + 2 = 5 digits are needed.

Exercise 8.4

Since in a normalized representation the most significant digit of the signif-
icand is always different from zero, if we assume a floating point representation
with f digits for the significand and e digits for the exponent, the number of
values for the first digit of the significand depends on the base that is being con-
sidered. For instance, the first four bits (one hexadecimal digit) have 8 values

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 8: Solutions to Exercises

2

for radix 2, 12 values for radix 4 and 15 values for radix 16. The values that can
be represented using the remaining f − 4 digits of the significand and e digits
of the exponent remain unchanged for different bases. Therefore we have

(a) System A has base 16 and system B has base 2

Since the number of normalized significands for system A is 15 × 2f−4

and the number of normalized significands for system B is 8 × 2f−4, the
ratio between the number of floating-point numbers that are represented
by systems A and B is 15

8 .

(b) System A has base 16 and system B has base 4

Since the number of normalized significands for system A is 15 × 2f−4

and the number of normalized significands for system B is 12 × 2f−4, the
ratio between the number of floating-point numbers that are represented
by systems A and B is 15

12 .

Exercise 8.7

In a normalized base-64 floating-point representation, the number of values
that can be represented with the first digit is limited to 63. Therefore the
number of different significands that can be represented with 48-bit significands
is 63 × 248−6 = 63 × 242.

Exercise 8.10

Notice that for rounding toward zero only f fractional bits are required.
For rounding to nearest, one additional bit is required to take into account all
discarded bits (since the sticky bit T is not provided, we assume T = 0 for ties).
For rounding toward plus infinity it is necessary to know the sign as well as
when all the bits to be discarded are zero.

s exp fraction guard round mode

0 00011111 1111111111111 1
0 00100000 0000000000000 RNE
0 00011111 1111111111111 RNO
0 00011111 1111111111111 RZ
0 00100000 0000000000000 RPINF

s exp fraction guard round mode

0 11111110 1111111111111 1
0 11111111 0000000000000 RNE
0 11111110 1111111111111 RNO
0 11111110 1111111111111 RZ
0 11111111 0000000000000 RPINF

s exp fraction guard round mode

1 11111110 1111111111111 1
1 11111111 0000000000000 RNE
1 11111110 1111111111111 RNO
1 11111110 1111111111111 RZ
1 11111110 1111111111111 RPINF

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 8: Solutions to Exercises

3

Exercise 8.12

Hex-vector Value

00000000 0.0
80000000 −0.0
A73FF801 (1.01111111111100000000001)2 × 2−51

A6800000 −1.0 × 248

7F7FFFFF
(
2 − 2−23

)
× 2127

00800000 1.0 × 2−126

7F800000 +∞
FF800000 −∞
7FC00000 NAN

Exercise 8.16

Operation X Y
A Add 000110001001111000 000110011100011101
B Add 000110001001111000 100110011100011101
C Sub 000110001001111000 000110001001110111
D Sub 011111110111100011 111111100001010101

(A) EOP is ADD

Output of blocks in Fig. 8.5 Value

OUTPUTEXPONENT DIFFERENCE 2
OUTPUTMUX 00110011
INPUTR−SHIFTER 1.001111000
OUTPUTR−SHIFTER 0.01001111000
OUTPUTSM−ADD/SUB 1.11011101100
OUTPUTL/R1−SHIFTER 1.11011101100
OUTPUTROUND(RNE) 1.110111011
OUTPUTEXPONENT UPDATE(RNE) 00110011
OUTPUTROUND(RZ) 1.110111011
OUTPUTEXPONENT UPDATE(RZ) 00110011
OUTPUTROUND(RPINF) 1.110111011
OUTPUTEXPONENT UPDATE(RPINF) 00110011
OUTPUTROUND(RMINF) 1.110111011
OUTPUTEXPONENT UPDATE(RMINF) 00110011
OUTPUTSIGN 0

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 8: Solutions to Exercises

4

(B) EOP is SUB

Output of blocks in Fig. 8.5 Value

OUTPUTEXPONENT DIFFERENCE 2
OUTPUTMUX 00110011
INPUTR−SHIFTER 1.001111000
OUTPUTR−SHIFTER 0.01001111000
OUTPUTSM−ADD/SUB 1.00111111100
OUTPUTL/R1−SHIFTER 1.00111111100
OUTPUTROUND(RNE) 1.001111111
OUTPUTEXPONENT UPDATE(RNE) 00110011
OUTPUTROUND(RZ) 1.001111111
OUTPUTEXPONENT UPDATE(RZ) 00110011
OUTPUTROUND(RPINF) 1.001111111
OUTPUTEXPONENT UPDATE(RPINF) 00110011
OUTPUTROUND(RMINF) 1.001111111
OUTPUTEXPONENT UPDATE(RMINF) 00110011
OUTPUTSIGN 1

(C) EOP is SUB

Output of blocks in Fig. 8.5 Value

OUTPUTEXPONENT DIFFERENCE 0
OUTPUTMUX 00110001
INPUTR−SHIFTER 1.001110111
OUTPUTR−SHIFTER 1.001110111
OUTPUTSM−ADD/SUB 0.000000111
OUTPUTL/R1−SHIFTER 1.110000000
OUTPUTROUND(RNE) 1.110000000
OUTPUTEXPONENT UPDATE(RNE) 00101010
OUTPUTROUND(RZ) 1.110000000
OUTPUTEXPONENT UPDATE(RZ) 00101010
OUTPUTROUND(RPINF) 1.110000000
OUTPUTEXPONENT UPDATE(RPINF) 00101010
OUTPUTROUND(RMINF) 1.110000000
OUTPUTEXPONENT UPDATE(RMINF) 00101010
OUTPUTSIGN 0

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 8: Solutions to Exercises

5

(D) EOP is ADD

Output of blocks in Fig. 8.5 Value

OUTPUTEXPONENT DIFFERENCE 2
OUTPUTMUX 11111110
INPUTR−SHIFTER 1.001010101
OUTPUTR−SHIFTER 0.01001010101
OUTPUTSM−ADD/SUB 10.00111100001
OUTPUTL/R1−SHIFTER 1.000111100001
OUTPUTROUND(RNE) 1.000111100
OUTPUTEXPONENT UPDATE(RNE) 11111110
OUTPUTROUND(RZ) 1.000111100
OUTPUTEXPONENT UPDATE(RZ) 11111110
OUTPUTROUND(RPINF) 1.000111101
OUTPUTEXPONENT UPDATE(RPINF) 11111110
OUTPUTROUND(RMINF) 1.000111100
OUTPUTEXPONENT UPDATE(RMINF) 11111110
OUTPUTSIGN 0

Exercise 8.20

(a) Determine the delay of the floating-point adder in Fig. 8.5 for single and
double precision

Module Delay for Delay for
Single precision Double precision

Exponent difference 1.4 ns 1.7 ns
Swap (incl. buffer for control) 0.5 ns 0.5 ns
Right shift 1.0 ns 1.2 ns
Add significands (s+m) 2.5 ns 2.8 ns
LOD 1.5 ns 1.8 ns
Left shift (includes buffer) 1.7 ns 2 ns
Round 1.0 ns 1.2 ns
Right shift (one pos., incl. buf.) 0.5 ns 0.5 ns
Special cases 0.8 ns 0.8 ns

Delay 10.9 ns 12.5 ns

(b) Pipeline the floating-point adder (for single and double precision) for a
clock rate of 200 Mhz (stage delay should not be larger than 80% of the
clock cycle)

Since a clock rate of 200Mhz correspond to a clock cycle of 5 ns, stage
delay should not be larger that 4 ns. The floating-point adder for single
precision could be pipelined as follows (3 stages):

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 8: Solutions to Exercises

6

EXPONENT
UPDATE

MUX

EXPONENT
DIFFERENCE

SWAP

R-SHIFTER

SM-ADD/SUB

ROUND SPECIAL
CASES

exponent overflow/underflow,
zero, inexact, NAN

LOD

L/R1-SHIFTER

dd
0 1

SIGN

sgn(d)

sgn(d)

sgn(d)

Sx

Sy

EOP

Ss

ovf

Sz Ez

Mz

Ex Ey

EOP

Mx = 1.Fx

(fraction only)

ovf_rnd

My = 1.Fy

Figure E8.2: Pipelined implementation of the floating-point adder in
Figure 8.5 for single precision.

The floating-point adder for double precision could be pipelined as follows
(4 stages):

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 8: Solutions to Exercises

7

EXPONENT
UPDATE

MUX

EXPONENT
DIFFERENCE

SWAP

R-SHIFTER

SM-ADD/SUB

ROUND SPECIAL
CASES

exponent overflow/underflow,
zero, inexact, NAN

LODL/R1-SHIFTER

dd
0 1

SIGN

sgn(d)

sgn(d)

sgn(d)

Sx

Sy

EOP

Ss

ovf

Sz Ez

Mz

Ex Ey

EOP

Mx = 1.Fx

(fraction only)

ovf_rnd

My = 1.Fy

Figure E8.3: Pipelined implementation of the floating-point adder in
Figure 8.5 for double precision.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 8: Solutions to Exercises

8

Exercise 8.23

Operation X Y

A Add 000110001001111000 001001100100011101
B Sub 000110001001111000 101001100100011101
C Sub 000110001001111000 000110001001110111
D Sub 011111110111100011 111111100001010101

(A) EOP is ADD

Output of blocks in Fig. 8.8 Value

OUTPUTEXPONENT DIFFERENCE 27
OUTPUTMUX 01001100
INPUTR1−SHIFTER

OUTPUTR1−SHIFTER

INPUTR−SHIFTER 1.001111000
OUTPUTR−SHIFTER 0.000000000 001
OUTPUTCOND.BIT INV ERT 0.000000000 001
OUTPUTINV ERT,ADD,ROUND&INV ERT

OUTPUTL−SHIFTER

OUTPUTADD,ROUND&NORMALIZE 1.100011101 001
RNE(Sum) 1.100011101
RNE(Sum + one)
Normalized 1.100011101
OUTPUTMUX 1.100011101
OUTPUTEXPONENT UPDATE 01001100
OUTPUTSIGN 0

(B) EOP is SUB

Output of blocks in Fig. 8.8 Value

OUTPUTEXPONENT DIFFERENCE 27
OUTPUTMUX 01001100
INPUTR1−SHIFTER

OUTPUTR1−SHIFTER

INPUTR−SHIFTER 1.001111000
OUTPUTR−SHIFTER 0.000000000 001
OUTPUTCOND.BIT INV ERT 1.111111111 001
OUTPUTINV ERT,ADD,ROUND&INV ERT

OUTPUTL−SHIFTER

OUTPUTADD,ROUND&NORMALIZE 1.100011101 001
RNE(Sum) 1.100011101
RNE(Sum + one)
Normalized 1.100011101
OUTPUTMUX 1.100011101
OUTPUTEXPONENT UPDATE 01001100
OUTPUTSIGN 1

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 8: Solutions to Exercises

9

(C) EOP is SUB

Output of blocks in Fig. 8.8 Value

OUTPUTEXPONENT DIFFERENCE 0
OUTPUTMUX 00110001
INPUTR1−SHIFTER 1.001110111
OUTPUTR1−SHIFTER 1.001110111
INPUTR−SHIFTER

OUTPUTR−SHIFTER

OUTPUTCOND.BIT INV ERT

OUTPUTINV ERT,ADD,ROUND&INV ERT 0.000000001
OUTPUTL−SHIFTER 1.000000000
OUTPUTADD,ROUND&NORMALIZE

RNE(Sum)
RNE(Sum + one)
Normalized
OUTPUTMUX 1.000000000
OUTPUTEXPONENT UPDATE 00101000
OUTPUTSIGN 0

(D) EOP is ADD

Output of blocks in Fig. 8.8 Value

OUTPUTEXPONENT DIFFERENCE 2
OUTPUTMUX 11111110
INPUTR1−SHIFTER

OUTPUTR1−SHIFTER

INPUTR−SHIFTER 1.001010101
OUTPUTR−SHIFTER 0.010010101 010
OUTPUTCOND.BIT INV ERT 0.010010101
OUTPUTINV ERT,ADD,ROUND&INV ERT

OUTPUTL−SHIFTER

OUTPUTADD,ROUND&NORMALIZE 10.001111000
RNE(Sum) 10.001111000
RNE(Sum + one)
Normalized 1.000111100

Ez = 255 → Mz = 0
(overflow)

OUTPUTMUX 1.000111100
Ez = 255 → Mz = 0
(overflow)

OUTPUTEXPONENT UPDATE 11111111
OUTPUTSIGN 0

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 8: Solutions to Exercises

10

Exercise 8.25

Operation X Y
A 001010101010110011 101111111101110011
B 110011110101110010 111000111011111100

(A) Sz = 1

OUTPUTEXP. BIASED ADDITION : 01010101

OUTPUTm by m MULTIPLIER: P [−1, 2m− 2] = 10.010101000000110001

P [−1] = 1 ⇒ normalize by shifting right by one (exponent must be incre-
mented by one).

OUTPUTNORMALIZE : 1.00101010 0 01

L GT

Rounding: RNE (round down), RZ (round down), RPINF(round down),
RMINF(round up).

OUTPUTEXPONENT UPDATE : 01010110

(B) Sz = 0

OUTPUTEXP. BIASED ADDITION : 11100110

OUTPUTm by m MULTIPLIER: P [−1, 2m− 2] = 10.100100100000111000

P [−1] = 1 ⇒ normalize by shifting right by one (exponent must be incre-
mented by one).

OUTPUTNORMALIZE : 1.01001001 0 01

L GT

Rounding: RNE (round down), RZ (round down), RPINF(round up),
RMINF(round down).

OUTPUTEXPONENT UPDATE : 11100111

Exercise 8.29

Operation X Y
A 001010101010111000 001010101010010000
B 010000000001100000 001010101011000000

(A) Performing the computation of the multiplication using the basic imple-
mentation, the output of m by m MULTIPLIER block: is P [−1, 2m−2]
= 01.101111011110000000. Since P [−1] = 0, T = 1. To determine the
value of the sticky bit directly from the operands of the multiplier we have
to compute the sum of the number of trailing zeros of X and Y (that is,
3 + 4 = 7). Since no normalization is required, we can say that not all
the discarded bits are zeros and, as a consequence, T = 1, as expected.
If we want to compute the value of the sticky bit using the carry-save
representation of the second half of the product, we need

PC[−1 : 2m − 3] = 00.10111100000000000 and

PS[−1 : 2m − 2] = 01.000000011110000000.

PC[m + 1 : 2m − 3] = 0000000 and

PS[m + 1 : 2m − 2] = 10000000.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 8: Solutions to Exercises

11

10000000 s

00000000 c

01111111 z

0000000 t

0111111 w

Therefore, T = NAND(wi) = 1 as expected.

(B) Performing the computation of the multiplication using the basic imple-
mentation, the output of m by m MULTIPLIER block: is P [−1, 2m−2]
=01.101000100000000000. Since P [−1] = 0, T = 0. To determine the
value of the sticky bit directly from the operands of the multiplier we
have to compute the sum of the number of trailing zeros of X and Y (that
is, 5 + 6 = 11). Since no normalization is required, we can say that all
the discarded bits are zeros and, as a consequence, T = 0, as expected.
If we want to compute the value of the sticky bit using the carry-save
reresentation of the second half of the product, we need

PC[−1 : 2m − 3] = 00.01001000000000000 and

PS[−1 : 2m − 2] = 01010110100000000000.

PC[m + 1 : 2m − 3] = 0000000 and

PS[m + 1 : 2m − 2] = 00000000.

00000000 s

00000000 c

11111111 z

0000000 t

1111111 w

Therefore, T = NAND(wi) = 0 as expected.

Exercise 8.31

(a) Round to zero

For rounding to zero, the result is simply truncated to m bits and no
additional operation is required.

(b) Round to plus infinity

Rpinf =

{
Mf + r−f if Md > 0 and S = 0
Mf if Md = 0 or S = 1

In this case, a 1 should be added to position R (bit m) if S = 0 (where
S is the sign of the result) and Md > 0 (that is if the sticky bit T = 1).
However, the result can be either normalized or unnormalized, while the
rounding if performed before knowing whether the result is normalized.
Therefore, the following quantities have to be calculated:

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 8: Solutions to Exercises

12

P0 = PM +
(
cm + S̄ · T

)
× 2−m

P1 = PM +
(
cm + S̄ · T + 1

)
× 2−m

up to position L (bit m − 1).

The rounded result is obtained by selecting

P =

{
P0 if P0[−1] = 0
2−1P1 if P0[−1] = 1

that is if there is no overflow, select P0, while if there is overflow, select
P1, shift right and truncate at resulting bit L.

Proof

In all cases cm needs to be added to position R (bit m). In case there is
no overflow the result is truncated at position L. In the following cases a
1 needs to be added to position L:

• S̄ · T = 1

• S̄ · T = 0 and bit of sum in position R = 1

Both cases are accounted for by adding S̄ ·T +1 in position R. In case there
is overflow the result is truncated at bit L − 1 and shifted one bit right.
Before shifting a 1 needs to be added to position L − 1 in the following
situations:

• S̄ · T = 1

• S̄ · T = 0 and bit of sum in position L or R = 1

All cases are accounted for by adding S̄ ·T +1 in position R and selection
P0+1 in case of overflow. This is because if S̄ ·T = 1 adding 2 to position
R corresponds to adding 1 to position L, so selection P0 + 1 corresponds
to adding 2 to position L or 1 to L − 1. On the contrary, if S̄ · T = 0,
if R = 1 then when 1 is added to R there is a carry to position L, so 1
is added to L, while if R = 0 and L = 1 then adding 1 to P0 produces
a carry to bit L − 1 so that P0 + 1 truncated to bit l − 1 corresponds to
adding 1 to bit L − 1.

The implementation consists of an array of HAs and FAs, which adds 1 to

3 to position R (that is, add
(
cm ⊕ S̄ · T

)
to bit R and

(
cm + S̄ · T

)
to bit

L), a compound adder producing P0 and P0 + 1, The complete process
then requires a row of HAs and FAs, a compound adder that computes
the sum P0 and the sum plus 1 and a multiplexer which selects P0 or the
normalized (shifted) P1 depending whether P0 overflows or not.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 8: Solutions to Exercises

13

MUX

rounded & normalized
fraction of the result significand

COMPOUND ADDER

FA FAm Half Adders

PS[-1..m-2]

PC[-1..m-2]

L G

P1[1..m] P0[1..m]

P[1..m]

m+2 m+2

PC[m-1] PC[m]

PS[m-1] PS[m]

m m

m-1

(shifted)

PC* PS*

Fz [1..m-1]

P0[-1] P0[0]
P1[0]

(cm+S T+1) 2-m

Figure E8.6: Alternative implementation modified to perform round to
plus infinity.

(c) Round to minus infinity

Rminf =

{
Mf + r−f if Md > 0 and S = 1
Mf if Md = 0 or S = 0

The algorithm for rounding to minus infinity is therefore the same used
for rounding to plus infinity, except that S should be substituted with S.

Exercise 8.34

X Y W
001010101010110011 101111111101110011 110011110101110010

Output of the m by m MULTIPLIER CS :

PS 01.101000001101101001
PC 00.101100110000000000

Computing d = −42 + 0 − 31 + m + 3 we get d = −60 (since m = 10).
Therefore no right shift is needed and the output of the RIGHT SHIFTER
block is 1.101110010.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 8: Solutions to Exercises

14

PS 01.101000001101101001

PC 00.101100110000000000

Addend 1.101110010 00

--

S 1.101110010 00 01 000100111101101001

C 0.000000000 00 01 010000000000000000

Adder output 1.101110010 00 10 010100111101101001

L GR T

The output of the adder does not require any realignement/normalization
left shift since it is already normalized (leading 1 in the left most position).

Rounding mode

RNE Round down
RZ Round down
RPINF Round down
RMINF Round up

The output of the EXPONENT UPDATE block is max(Ex + Ey, Ew) =
Ew. Finally, the result is negative (Sz = 1).

Exercise 8.38

X Y
A 001010101011010011 101111111110110011
B 110011110001011010 111000111101011101

(A) Let Q be the result. The sign and exponent of the result are then

Sq = Sx ⊗ Sd = 1
Eq = Ex − Ed + 127 = 01010101

The significand of the result is then calculated as

Mq =
Mx

Md
=

1.011010011

1.110110011
=

0.1011010011

0.1110110011

The last conversion is necessary in order to be able to use the quotient-
digit selection function of the implementation presented in Section 5.3.1.
Since n = 10, the number of iterations to be performed is n+2 = 12. The
initialization is as follows:

scaled residual 2w[0] = 2(x/2) = x, qcomputed = q/2

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 8: Solutions to Exercises

15

2WS[0] 000.1011010011
2WC[0] 000.0000000001 ŷ[0]=0.5 q1 = 1
−q1d 111.0001001100
2WS[1] 111.0100111100
2WC[1] 000.0100000100 ŷ[1]=-1/2 q2 = 0
−q2d 000.0000000000
2WS[2] 110.0001110000
2WC[2] 001.0000010000 ŷ[2]=-1 q3 = −1
−q3d 000.1110110011
2WS[3] 111.1110100110
2WC[3] 000.0011000001 ŷ[3]=0 q4 = 1
−q4d 111.0001001100
2WS[4] 001.1001010110
2WC[4] 100.1100010000 ŷ[4]=-1 q5 = −1
−q5d 000.1110110011
2WS[5] 011.0111101010
2WC[5] 011.0001001000 ŷ[5]=-2 q6 = −1
−q6d 000.1110110011
2WS[6] 001.0000100010
2WC[6] 101.1110101000 ŷ[6]=-1 q7 = −1
−q7d 000.1110110011
2WS[7] 000.0001110010
2WC[7] 111.1010001000 ŷ[7]=-1/2 q8 = 0
−q8d 000.0000000000
2WS[8] 111.0111110100
2WC[8] 000.0000000000 ŷ[8]=-1/2 q9 = 0
−q9d 000.0000000000
2WS[9] 110.1111101000
2WC[9] 000.0000000000 ŷ[9]=-3/2 q10 = −1
−q10d 000.1110110011
2WS[10] 100.0010110110
2WC[10] 011.1010000000 ŷ[10]=-1/2 q11 = 0
−q11d 000.0000000000
WS[11] 111.1000110110
WC[11] 000.0100000000 ŷ[11]=-1/2 q12 = 0

Since the last residual is negative, the last bit has to be corrected, therefore
q12 = −1. The computed result is then, which however has to be shifted
left 1 position since the computed result is q/2. The significand before
normalization and rounding is then Mq=0.11000011011.

After normalization (Mq=1.1000011011 and Eq=01010100) the result has
f +1 fractional bits. For round-to-nearest, 2−(f+1) has to be added to the
result; therefore the rounded significand is

1.1000011011 +

0.0000000001

1.1000011100

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 8: Solutions to Exercises

16

The final result expressed in the IEEE Standard format is

Q = 0|01010100|1000011100

(B) Let Q be the result. The sign and exponent of the result are then

Sq = Sx ⊗ Sd = 0
Eq = Ex − Ed + 127 = 11010110

The significand of the result is then calculated as

Mq =
Mx

Md
=

1.001011010

1.101011101
=

0.1001011010

0.1101011101

The last conversion is necessary in order to be able to use the quotient-
digit selection function of the implementation presented in Section 5.3.1.
Since n = 10, the number of iterations to be performed is n+2 = 12. The
initialization is as follows:

scaled residual 2w[0] = 2(x/2) = x, qcomputed = q/2

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 8: Solutions to Exercises

17

2WS[0] 000.1001011010
2WC[0] 000.0000000001 ŷ[0]=0.5 q1 = 1
−q1d 111.0010100010
2WS[1] 111.0111110010
2WC[1] 000.0000001000 ŷ[1]=-1/2 q2 = 0
−q2d 000.0000000000
2WS[2] 110.1111110100
2WC[2] 000.0000000000 ŷ[2]=-1 q3 = −1
−q3d 000.1101011101
2WS[3] 100.0101010010
2WC[3] 011.0101010000 ŷ[3]=-1/2 q4 = 0
−q4d 000.0000000000
2WS[4] 110.0000000100
2WC[4] 001.0101000000 ŷ[4]=-1/2 q5 = 0
−q5d 000.0000000000
2WS[5] 110.1010001000
2WC[5] 000.0000000000 ŷ[5]=-1 q6 = −1
−q6d 000.1101011101
2WS[6] 100.1110101010
2WC[6] 010.0000100000 ŷ[6]=-1 q7 = −1
−q7d 000.1101011101
2WS[7] 100.0110101110
2WC[7] 011.0010100000 ŷ[7]=-1/2 q8 = 0
−q8d 000.0000000000
2WS[8] 110.1000011100
2WC[8] 000.1010000000 ŷ[8]=-1/2 q9 = 0
−q9d 000.0000000000
2WS[9] 100.0100111000
2WC[9] 010.0000000000 ŷ[9]=-1 q10 = −1
−q10d 000.1101011101
2WS[10] 101.0011001010
2WC[10] 001.0001100000 ŷ[10]=-1 q11 = −1
−q11d 000.1101011101
WS[11] = 100.1111110111
WC[11] = 010.0010010000 ŷ[11]=-1 q12 = −1

The computed result is then

q = .101̄001̄1̄001̄1̄1̄ = .010110011001

which has to be corrected by subtracting one in the last position since the
last residual is negative and thus

q = .010110011000

Moreover, the result has to be shifted left 1 position since the computed
result is q/2. The significand before normalization and rounding is then
Mq = 0.10110011000. After normalization (Mq = 1.0110011000 and Eq =
11010101) the result has f+1 fractional bits. For round-to-nearest,2−(f+1)

has to be added to the result; therefore the rounded significand is

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 8: Solutions to Exercises

18

1.0110011000 +

0.0000000001

1.0110011001

The final result expressed in the IEEE Standard format is

Q = 0|11010101|011001100

Exercise 8.41

X Y
A 001010101011010011 101111111110110011
B 110011110001011010 111000111101011101

(A) Let Q be the result. The sign and exponent of the result are then

Sq = Sx ⊗ Sd = 1
Eq = Ex − Ed + 127 = 10011111

The significand of the result is then calculated as

Mq =
Mx

Md
=

1.011010011

1.110110011

The method requires the calculation of an initial approximation of the
reciprocal of the divisor (of 4 bits in this case), which can be obtained, for
instance, by means of a lookup table. The initial approximation is 0.1000.
The number of iterations to be performed is then

m =
⌈

log2

(n

k

)⌉

=

⌈

log2

(
9

4

)⌉

= 2

Since this algorithm is not self-correcting, all multiplications are performed
using a 16 bits multiplier. The algorithm is as follows (assuming that mul-
tiplications are performed using a floating-point multiplier with rounding
to nearest):

1. P [0] = 0.1000 (initial approximation of 1/d)

2. d[0] = d × P [0] = 1.110110011000000 × 2−1

R[0] = x × P [0] = 1.011010011000000 × 2−1

3. P [1] = 2 − d[0] = 1.000100110100000 × 20

d[1] = d[0] × P [1] = 1.111111010001101 × 2−1

R[1] = R[0] × P [1] = 1.100001001010111 × 2−1

4. P [2] = 2 − d[1] = 1.000000010111010 × 20

R[2] = R[1] × P [2] = 1.100001101110001 × 2−1

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 8: Solutions to Exercises

19

The final q, rounded to the final number of bit, is then 1.100001110. The
final result expressed in the IEEE Standard format is

Q = 0|01010100|100001110

(B) Let Q be the result. The sign and exponent of the result are then

Sq = Sx ⊗ Sd = 0
Eq = Ex − Ed + 127 = 01111100

The significand of the result is then calculated as

Mq =
Mx

Md
=

1.001011010

1.101011101

The method requires the calculation of an initial approximation of the
reciprocal of the divisor (of 4 bits in this case), which can be obtained, for
instance, by means of a lookup table. The initial approximation is 0.1001.
The number of iterations to be performed is then

m =
⌈

log2

(n

k

)⌉

=

⌈

log2

(
9

4

)⌉

= 2

Since this algorithm is not self-correcting, all multiplications are performed
using a 16 bits multiplier. he algorithm is as follows (assuming that mul-
tiplications are performed using a floating-point multiplier with rounding
to nearest):

1. P [0] = 0.1001 (initial approximation of 1/d)

2. d[0] = d × P [0] = 1.111001000101000 × 2−1

R[0] = x × P [0] = 1.010100101010000 × 2−1

3. P [1] = 2 − d[0] = 1.000011011101100 × 20

d[1] = d[0] × P [1] = 1.111111101000000 × 2−1

R[1] = R[0] × P [1] = 1.011001001111000 × 2−1

4. P [2] = 2 − d[1] = 1.000000001100000 × 20

R[2] = R[1] × P [2] = 1.011001011111110 × 2−1

The final q, rounded to the final number of bit, is then 1.011001100. The
final result expressed in the IEEE Standard format is

Q = 0|11010101|011001100

Exercise 8.44

Round to nearest is performed by adding 2−(f+1) and truncating to f bit.
Overflow can occur if q + 2−(f+1) ≥ 2.

Since the normalized significand is in the range 1 ≤ 1.F ≤ 2 − 2−f , the

quotient is comprised in the range 1
2−2−f ≤ q ≤ 2−2−f

1 .

Therefore we obtain q ≤ 2 − 2−f ⇒ q + 2−(f+1) ≤ 2 − 2−f + 2−(f+1) =
2−2−(f+1) < 2. Since q +2−(f+1) < 2, the overflow condition is never satisfied.

Digital Arithmetic - Ercegovac & Lang 2004 Chapter 8: Solutions to Exercises

