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I. Introduction 
 
Mmap and read are both fundamentally important system calls.  Both calls are used to 
access bytes on disk. Read uses the standard file descriptor access to files while mmap 
transparently maps files to locations in the process’s memory. Most operating systems 
also use mmap every time a program gets loaded into memory for execution. Even 
though it is important and often used, mmap can be slow and inconsistent in its timing. 
 
A. Background 

 
Mmap maps memory pages directly to bytes on disk. With mmap, whenever there is a 
pagefault, the kernel pulls the page directly from disk into the program’s memory space. 
In contrast, with the pread system call, the kernel reads the file into kernel space, and 
then proceeds by copying the memory over to userspace. This extra memory copy should 
make pread slower than mmap.  
 
Whenever there is a pagefault for a memory-mapped file, the hard drive seeks to the 
appropriate block and reads the data. Similarly, pread() atomically seeks and reads from 
disk, as opposed to using lseek() and read(). Because of this, both mmap and pread act 
similarly when reading files off disk, which makes pread a good comparison point to 
mmap. 
 
B. Problem description 
 
Preliminary testing showed various performance inconsistencies with mmap when 
compared to pread. Mmap was very inconstant with its timings; not only was mmap 
slower than pread, on successive runs of the same program, mmap’s times varied 100% 
from the average.  
 
Thus, the purpose of this research is to determine why mmap is slower than pread and 
why mmap timings are inconsistent. 



 
II. Approach 
 
The approach to figuring out the problem started with more in-depth testing. This testing 
showed that mmap could be faster than pread when reading files in reverse, but the 
timing inconsistencies made it slower on the average. This lead to instrumenting the linux 
kernel source. 
 
During various tests while intrumenting the linux source, the timing inconsistencies in 
mmap disappeared. This allowed mmap to be faster than pread on average when reading 
a file backwards. This happenstance was finally narrowed down to one print statement in 
a section of the mmap call that involved reading and readahead. Even though the timing 
inconsistencies were fixed, it was unknown the actual cause, and there was still the 
problem of the overall slowdown. Further instrumentation and testing lead to no more 
breakthroughs or interesting results.  
 
The next plan of attack was thorough testing and simulation. The testing suit was 
expanded to include patterns of file reading. This included big file reading, both forwards 
and backwards, multiple small file reading, forwards and backwards, and “random” file 
reading with big and small files. 
 
For simulation, the algorithms for pread and mmap were analyzed and simplified. 
Blocktraces were used to look at the different sequence of disk requests. This lead did not 
show much difference in the order of block requests, but it did show very interesting 
timing differences between the two system calls. 



 
III. Experimental results 
 
Preliminary testing showed both the inconsistency and slowdown of mmap versus pread. 
The following graph displays 100 consecutive runs of our test program. The program 
reads a 256MB file sequentially on a machine running with 128MB ram. The disk cache 
is flushed in between pread and mmap every iteration. 
 

 
 pread mmap 
avg 4.69813978 9.50363338 
min 4.67799 5.488 
max 4.740224 19.120515 
stdev 0.014100833 4.504765678 

 
The straight blue line shows the consistent times of pread, while the red line shows the 
inconsistent timing of mmap. The consistency of pread is showed by its low standard 
deviation, about .3% of the average. In contrast, mmap is very inconsistent, with a 
standard deviation of a little over 47%. It is worth noting that the minimum of mmap, 



5.488 seconds is comparable to the average time of pread, 4.698 seconds. This minimum 
speed of mmap is approached several times during the different iterations, showing the 
potential speed that mmap can achieve. 
 
 
The next graph displays 100 consecutive iterations of reading a 256MB file backwards. 
 

 
 pread mmap 
avg 19.4567397 17.51321265 
min 19.337841 11.757977 
max 19.59812 25.156444 
stdev 0.057198775 3.451290738 

 
 
This graph shows that mmap can be faster than pread in certain situations, but there is 
still highly fluctuating. The difference between the maximum and minimum time for 
mmap is a little over 200%. Mmap also has a slightly less standard deviation of about 
20%. Surprisingly, the average time of mmap is actually faster than pread. 
 



The following graph is similar to the first graph, the only difference is that we are 
running a modified kernel that slightly changes mmap’s timing. 
 

 pread mmap 
avg 4.69465562 6.84895584 
min 4.676946 5.56658 
max 4.749525 8.30888 
stdev 0.013176367 0.634541817 

 
The graph above shows a big difference from the first graph. Like before, pread is 
consistent with a small standard deviation of .3%. Even though here is still fluctuation in 
the timing of mmap, the standard deviation is only around 9%. In the unmodified kernel, 
the maximum time of mmap was over 300% greater than the minimum speed. On the 
modified kernel, the maximum is about 50% off the minimum. Also, the standard 
deviation is an order of magnitude less than the average time. 
 
Similarly, the next graph shows a backwards file read on the modified kernel. All other 
parameters are the same. 



 
 pread mmap 
avg 19.51153098 14.03146308 
min 19.379135 12.714086 
max 19.645147 14.999039 
stdev 0.048188733 0.518356679 

 
This graph shows a remarkable change when compared to the first two graphs. As usual, 
pread has a consistent time throughout all iterations, with a standard deviation of only 
.25%. The interesting part about this graph is that mmap is consistently faster than pread. 
By reading the file backwards, the effects of readahead of canceled out. Therefore, any 
speed advantage that pread had because of better readahead mechanisms are ruled out. 
That mean mmap is able to pull the same file from disk faster than pread. 
 
We modified the kernel by slowing down the mmap system call where it does its 
readahead calls. This slowdown helped the requests to disk come in at more consistent 
intervals. This probably allowed the disk buffer or the disk scheduler to more easily 
handle the repeated requests to disk. 
 



We also ran blocktraces on the same test program. The next graph shows the blocktrace 
from the first graph above. This trace if from a forward file read on the unmodified 
kernel. 

 
 
It is immediately apparent where the slowdown and inconsistencies are. The first solid 
positive sloping line is when pread is accessing the file. The rest of the graph is when 
mmap is accessing the file. Two important things to note are the gap in the second line, 
and the trailing tail. The first gap in mmap is about half a second in length. The second 
gap right before tail is a quarter of a second.  
 
From various different block traces, it became apparent that the trailing tail of the mmap 
read was the cause for the inconsistencies in timing. All the block traces had similar 
formats, with a compact solid line for read, and a segmented line for mmap with a long 
trailing tail. Depending on the fluctuations of the test, the tail grew and shrank in 
proportion to the how inconsistent the run was. 
 



Similarly, the next graph shows a block trace of a backwards file read on the unmodified 
kernel. 
 
 

 
This graph is similar to the first block trace. It contains a solid negative sloping line for 
pread, while mmap has a two gaps and a trailing tail.  
 
More interesting results come from the tests run on the modified kernel. The next graph 
shows a blocktrace of a forward file read running on the modified kernel. 
 



 
 
On this graph, the first solid positive sloping line is for pread, while the segmented line is 
for mmap. The interesting part is the gaps that are during the mmap read. These gaps 
account for almost the exact time difference between pread and mmap. Depending on 
how far off the times where, the gaps in mmap would shrink or grow. Some times there 
would be more than two gaps, but there were usually just two. The backwards file read on 
the modified kernel was very similar. 
 
From these graphs, there came two possible reasons for the gaps: either the process 
scheduler was sleeping the process, or the disk schedule was plugging this processes disk 
requests to allow other processes to have access to the disk. 
 
We addressed the possibility of the disk scheduler allowing other processes to access the 
disk by using a separate disk for our tests. In this way, there would be no other processes 
trying to access the disk, so our test process would have unrestricted access. Even after 
we moved our tests to a separate disk, the gaps still remained. 
 
To address the possibility of the process scheduler sleeping the process, we recoded our 
test program to have realtime scheduling priority. This would allow our test program to 
run unimpeded by the OS’s process scheduler. Yet, even with realtime scheduling, out 
block traces still looked the same. 



 
IV. Conclusion 
 
Overall, further tests are necessary to figure out the true cause of the slowdown. By 
changing the timing on the mmap system call, we were able to reduce the inconsistencies 
in runtime of mmap. By reducing the inconsistencies, we were able to see distinct gaps 
that were the cause of the slowdown. Running the process with realtime scheduling 
priority eliminated the process scheduler as the culprit for the random stops. What 
probably remains is some sort of bug or optimization in the disk io scheduler that effects 
mmap’s reading of the disk. Another possibility could be the way the memory subsystem 
handles various repeated pagefaults. 
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