Estimation of Adipose Compartment Volumes in CT Images of a Mastectomy Specimen

*Delaware State University, **University of Pennsylvania

INTRODUCTION

Virtual clinical trials (VCTs) based upon the computer simulation of breast anatomy, imaging, and image analysis, represent a viable preclinical alternative to the conventional clinical trials. Realistic simulation urges for the measurements of breast anthropometrics from real clinical breast images [1].

PURPOSE

Anatomical measurements of the breast tissue size and distribution of adipose compartments from High Resolution CT slices of a mastectomy specimen.

CT ACQUISITION & RECONSTRUCTION

- A total mastectomy specimen was imaged on a whole body, multi-slice CT system (Siemens Sensation 64) using the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition Time</td>
<td>72.318 s</td>
</tr>
<tr>
<td>Body Part Examined</td>
<td>Chest</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>0.6 mm</td>
</tr>
<tr>
<td>Tube Potential</td>
<td>120 kVp</td>
</tr>
<tr>
<td>Tube Current</td>
<td>400 mAs</td>
</tr>
<tr>
<td>Exposure Time</td>
<td>1000 ms</td>
</tr>
<tr>
<td>Focal Spot Size</td>
<td>1.2 mm</td>
</tr>
<tr>
<td>Reconstruction Diameter</td>
<td>500 mm</td>
</tr>
<tr>
<td>Gantry/Tilt</td>
<td>0</td>
</tr>
<tr>
<td>ROI Size</td>
<td>(0.72x0.72) mm</td>
</tr>
<tr>
<td>Distance from Source to Detector</td>
<td>1040 mm</td>
</tr>
<tr>
<td>Distance from Patient</td>
<td>570 mm</td>
</tr>
<tr>
<td>Number of Reconstructed Slice</td>
<td>619 (each of 512x512 pixels)</td>
</tr>
</tbody>
</table>

MASTECTOMY SPECIMEN CT SLICES

- CT slices were imported in ITK-SNAP software [2].
- 306 slices were analyzed; remaining slices did contain no tissue or had poor quality.
- Curve-based contrast adjustment was performed and slices were viewed in sequence for better understanding of the compartments in consecutive slices.
- Each compartment spanned in multiple slices.
- There were some compartments, clearly distinguishable from neighbors.

ADIPOSE COMPARTMENT SEGMENTATION

- The compartments were identified and then segmented from each slice manually with the boundary marking.
- 205 most discernible compartments were segmented from 619 input slices.
- The segmented compartments spanned 4082 slices, approx. 20 on average.
- The average estimated volume was 0.91 cm³ ± 0.87.
- Selection bias and small path sample may have caused high variance in volume data.

RESULTS: TIME VS. VOLUME

- Average time spent for segmenting a compartment was 8.75 minutes.
- The estimated volume was correlated to the segmentation time (p < 0.001).
- Standard deviation of residuals tends to increase with volume indicating heteroscedasticity.

RESULTS: DISTRIBUTION OF VOLUME

- Distribution of volume was not normal; rather left-skewed.
- Kolmogorov-Smirnov test, Lilliefors test, Jarque-Bera test, and visual cdf comparison (between empirical and standard) rejected the hypothesis of the normality of volume data.

RESULTS: CONFIDENCE VS. VOLUME

- Per slice segmentation confidence level was assigned in the scale of 5 (1-5).
- The average confidence for 205 segmented compartments was 3.88.
- The confidence level was assigned based upon operator’s visibility rather than the size of a compartment.

RESULTS: CONFIDENCE VS. VOLUME

- The segmented compartments spanned 4082 slices, approx. 20 on average.
- The segmented compartments spanned 4082 slices, approx. 20 on average.
- The segmented compartments spanned 4082 slices, approx. 20 on average.

REFERENCES

ACKNOWLEDGEMENT

This research was supported by a grant from the National Institute of General Medical Sciences (P20GM103446) from the National Institutes of Health. Also, the work was supported in part by the US Department of Defense Breast Cancer Research Program (HBCU Partnership Training Award W81XWH-08-2-0004), the US National Science Foundation (CREST grant IIS-1429673), the US Department of Defense/Department of Army Award W911NF-11-1-0046, the US National Institutes of Health (ROI grant 1CA154444), and the Komen Foundation (grant RIK13262248).

View of C1 slices in sagittal plane

Axial plane view of slices

Slice views in coronal plane

Segmentation marked slices in axial, sagittal and coronal planes

3-D visualizations of segmented compartments

Scatter plot of segmentation time Vs. volume

Histogram of estimated compartment volumes (cm³)

QQ plot of sample volume data and standard normal

Histogram of average confidence level (1-5)

Histogram of estimated compartment volumes (cm³)

Confidence level Vs. estimated volume

Volumes of the segmented adipose compartments (cm³)

Avg. confidence level of compartments (1-5)