Spatial Distribution of Adipose Compartments Size, Shape and Orientation in a CT Breast Image of a Mastectomy Specimen

Abdullah-Al-Zubaer Imran*, Dr. Predrag R. Bakic** and Dr. David D. Pokrajac*

*Delaware State University, **University of Pennsylvania

Abstract

- High resolution anthropomorphic software phantoms have been developed to assist pre-clinical validation of breast imaging systems [1].
- The simulation algorithms require input parameters such as number of compartments, distribution, and size and shape of adipose compartments.
- To obtain more realistic phantoms the above parameters need to be inferred from clinical images.
- This work investigates the distribution and spatial placement of adipose compartments in reconstructed CT images of a Mastectomy Specimen.

CT Scanning Parameters

- Multi-slice CT system (Sensation 64, Siemens Medical Solutions USA, Malvern, PA).
- Tube Potential: 120 kVp.
- Tube Current: 400 mAs.
- Slice Thickness: 0.6 mm.
- In-slice Resolution: 0.72 mm x 0.72 mm.
- Acquisition Protocol: Head.
- Exposure Time: 1000 ms.
- Focal Spot Size: 1.2 mm.

Adipose Compartments Segmentation

- The adipose tissue compartments in the reconstructed high intensity CT slices were segmented manually using ITK-SNAP [2].
- We segmented 142 adipose compartments from the 619 slices of the mastectomy specimen.
- The compartments span 2863 slice segments in total and more than 20 slices on average.
- The segmented adipose tissue compartments covered approximately 14% volume of the total mastectomy specimen.

Results and Discussion

- We observed a significant correlation between compartment sizes and the barycenter y-coordinate (p-value ≤ 0.02), but not with x- and z-coordinates (p-value>0.05).
- The ellipsoidal semi-axes ratios ranged between 1.24 to 6.70 inclusive and were not correlated with the compartment sizes (p-values=0.56).
- The compartmental orientations And positions were not correlated since the p-value (>0.05) was not significant.

Future Work

- Automatic segmentation of adipose compartments would be preferred to accelerate the analysis and reduce operator bias.
- The extracted shape parameters of the compartments may be utilized to inform the simulation.
- The shape analysis in this work could be used as a benchmark in extracting the compartment parameters from clinical breast images.

Conclusions

- We successfully demonstrated a Proof Of Concept for segmentation and ellipsoidal fitting of adipose compartments from CT images of a mastectomy specimen.
- Since the mastectomy specimen does not fully reflect the real breast, this analysis would be required for clinical images of Healthy Breast Anatomy.
- Further, potential development of automatic tissue segmentation would provide a more objective and accelerated analysis.
- Finally, a similar approach to the analysis of the size, shape and orientation may be developed for other 3D Imaging Modalities.

References

Acknowledgements

This project was supported by a grant from the National Institute of General Medical Sciences (522 GM103449) from the National Institutes of Health. Also, the work was partially supported in part by the US Department of Defense Breast Cancer Research Program (HBCU Partnership Training Award #BC083539), the US National Science Foundation (CREST grant WRD-1242087), and the US Department of Defense-Department of Army (Award #W911NF-11-2-0046).

Extracted Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td># Compartment Slices</td>
<td>(6, 59)</td>
</tr>
<tr>
<td>Shape Ratio</td>
<td>(1.24, 6.70)</td>
</tr>
<tr>
<td>Size</td>
<td>(0.065, 3.97) cm³</td>
</tr>
<tr>
<td>Compartmental</td>
<td></td>
</tr>
<tr>
<td>Orientation</td>
<td>(-178, 178) deg</td>
</tr>
<tr>
<td>Ellipsoidal Fitting</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>(56, 88) %</td>
</tr>
</tbody>
</table>

Ellipsoidal Fitting

- Each compartment was characterized by its volume and the coordinates of the barycenter.
- An ellipsoid centered at the barycenter with the same moments of inertia as a compartment was determined [3].
- The goodness of elliptical fitting was assessed by Dice score measuring the overlapped volume between the fitted ellipsoid and each compartment.

Size, Shape and Orientation Distribution

- Fitted ellipsoids were characterized by the size and orientation (Euler’s angle) of their semi-axes.
- The ellipsoid shapes were quantified by the ratios of the largest and the smallest semi-axes.
- The sizes of the segmented compartments were measured by their volumes.
- The Adipose compartmental orientations were characterized by the Euler angles of the ellipsoid axes.
- The positions of the segmented compartments were determined by the coordinates of compartmental centers.

Future Work

- Automatic segmentation of adipose compartments would be preferred to accelerate the analysis and reduce operator bias.
- The extracted shape parameters of the compartments may be utilized to inform the simulation.
- The shape analysis in this work could be used as a benchmark in extracting the compartment parameters from clinical breast images.

Conclusions

- We successfully demonstrated a Proof Of Concept for segmentation and ellipsoidal fitting of adipose compartments from CT images of a mastectomy specimen.
- Since the mastectomy specimen does not fully reflect the real breast, this analysis would be required for clinical images of Healthy Breast Anatomy.
- Further, potential development of automatic tissue segmentation would provide a more objective and accelerated analysis.
- Finally, a similar approach to the analysis of the size, shape and orientation may be developed for other 3D Imaging Modalities.

References

Acknowledgements

This project was supported by a grant from the National Institute of General Medical Sciences (522 GM103449) from the National Institutes of Health. Also, the work was partially supported in part by the US Department of Defense Breast Cancer Research Program (HBCU Partnership Training Award #BC083539), the US National Science Foundation (CERST grant WRD-1242087), and the US Department of Defense-Department of Army (Award #W911NF-11-2-0046).