Bilateral Cyclic Constraint and Adaptive Regularization for Unsupervised Monocular Depth Prediction

Alex Wong
alexw@cs.ucla.edu

Byung-Woo Hong
hong@cau.ac.kr

Stefano Soatto
soatto@cs.ucla.edu

University of California, Los Angeles
Chung-Ang University, Korea

UCLAVISIONLAB

Introduction

Goal: Learn a function \(f : I \rightarrow \alpha \) to recover the scene from a single image \(I \).

Recovering 3D geometry from a single image is an ill-posed problem. We must rely on a prior, e.g., piecewise smoothness. We formulate this as an energy minimization problem:

\[
\mathcal{L} = \mathcal{D}(\hat{d}) + \alpha \mathcal{R}(\hat{d})
\]

where \(\mathcal{D} \) denotes data fidelity, \(\mathcal{R} \) regularization, and \(\alpha \) a static scalar.

To better modulate the amount of regularity imposed: \(\alpha \) should be adaptive.

System Diagram

Exploiting stereo pairs and view synthesis loss for training.

Given a single image we predict its left and right disparities.

\(\mathcal{D} \) relies on data-fidelity residual. To ensure we have the necessary features to satisfy \(\mathcal{D} \), we

- Dedicate one branch to minimizing just the data-fidelity term
- Give its features and coarse prediction to a second branch to minimize entire loss

We use \(rdisp \) as our final output.

Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Approaches</th>
<th>Accuracy [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ours</td>
<td>-</td>
<td>0.0044</td>
</tr>
<tr>
<td>Godard</td>
<td>-</td>
<td>0.0045</td>
</tr>
</tbody>
</table>

This work is supported by NRF-2017R1A2B4006023, NRF-2016R1A4A1059573, ONR N00014-17-1-2072, ARO W911NF-17-1-0304.