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Abstract
The Nystr̈om method is an efficient technique to generate low-rank matrix approximations and is
used in several large-scale learning applications. A key aspect of this method is the procedure
according to which columns are sampled from the original matrix. In this work, we explore the
efficacy of a variety offixedandadaptivesampling schemes. We also propose a family ofensem-
ble-based sampling algorithms for the Nyström method. We report results of extensive experiments
that provide a detailed comparison of various fixed and adaptive sampling techniques, and demon-
strate the performance improvement associated with the ensemble Nystr̈om method when used in
conjunction with either fixed or adaptive sampling schemes.Corroborating these empirical find-
ings, we present a theoretical analysis of the Nyström method, providing novel error bounds guar-
anteeing a better convergence rate of the ensemble Nyström method in comparison to the standard
Nyström method.
Keywords: low-rank approximation, nyström method, ensemble methods, large-scale learning

1. Introduction

A common problem in many areas of large-scale machine learning involves deriving a useful and
efficient approximation of a large matrix. This matrix may be a kernel matrix usedwith support
vector machines (Cortes and Vapnik, 1995; Boser et al., 1992), kernel principal component analysis
(Scḧolkopf et al., 1998) or manifold learning (Platt, 2004; Talwalkar et al., 2008). Large matrices
also naturally arise in other applications, for example, clustering, collaborative filtering, matrix
completion, robust PCA, etc. For these large-scale problems, the number of matrix entries can be
in the order of tens of thousands to millions, leading to difficulty in operating on,or even storing
the matrix. An attractive solution to this problem involves using the Nyström method to generate a
low-rank approximation of the original matrix from a subset of its columns (Williams and Seeger,
2000). A key aspect of the Nyström method is the procedure according to which the columns are
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sampled. This paper presents an analysis of different sampling techniques for the Nystr̈om method
both empirically and theoretically.1

In the first part of this work, we focus on variousfixedsampling methods. The Nyström method
was first introduced to the machine learning community (Williams and Seeger, 2000) using uni-
form sampling without replacement, and this remains the sampling method most commonlyused
in practice (Talwalkar et al., 2008; Fowlkes et al., 2004; de Silva and Tenenbaum, 2003; Platt,
2004). More recently, the Nyström method has been theoretically analyzed assuming sampling
from fixed, non-uniform distributions over the columns (Drineas and Mahoney, 2005; Belabbas and
Wolfe, 2009; Mahoney and Drineas, 2009). In this work, we presentnovel experiments with several
real-world data sets comparing the performance of the Nyström method when used with uniform
versus non-uniform sampling distributions. Although previous studies have compared uniform and
non-uniform distributions in a more restrictive setting (Drineas et al., 2001; Zhang et al., 2008), our
results are the first to compare uniform sampling with the sampling technique forwhich the Nystr̈om
method has theoretical guarantees. Our results suggest that uniform sampling, in addition to being
more efficient both in time and space, produces more effective approximations. We further show
the benefits of sampling without replacement. These empirical findings help motivate subsequent
theoretical analyses.

The Nystr̈om method has also been studied empirically and theoretically assuming more sophis-
ticated iterative selection techniques (Smola and Schölkopf, 2000; Fine and Scheinberg, 2002; Bach
and Jordan, 2002). In the second part of this work, we provide a survey of adaptive techniques that
have been suggested for use with the Nyström method, and present an empirical comparison across
these algorithms. As part of this work, we build upon ideas of Deshpande et al. (2006), in which
an adaptive, error-driven sampling technique with relative error bounds was introduced for the re-
lated problem of matrix projection (see Kumar et al. 2009b for details). However, this technique
requires the full matrix to be available at each step, and is impractical for large matrices. Hence,
we propose a simple and efficient algorithm that extends the ideas of Deshpande et al. (2006) for
adaptive sampling and uses only a small submatrix at each step. Our empiricalresults suggest a
trade-off between time and space requirements, as adaptive techniques spend more time to find a
concise subset of informative columns but provide improved approximationaccuracy.

Next, we show that a new family of algorithms based on mixtures of Nyström approximations,
ensemble Nyström algorithms, yields more accurate low-rank approximations than the standard
Nyström method. Moreover, these ensemble algorithms naturally fit within distributed comput-
ing environments, where their computational costs are roughly the same as that of the standard
Nyström method. This issue is of great practical significance given the prevalence of distributed
computing frameworks to handle large-scale learning problems. We describe several variants of
these algorithms, including one based on simple averaging ofp Nyström solutions, an exponential
weighting method, and a regression method which consists of estimating the mixtureparameters of
the ensemble using a few columns sampled from the matrix. We also report the results of extensive
experiments with these algorithms on several data sets comparing different variants of the ensem-
ble Nystr̈om algorithms and demonstrating the performance improvements gained over thestandard
Nyström method.

1. Portions of this work have previously appeared in the Conference onArtificial Intelligence and Statistics (Kumar
et al., 2009a), the International Conference on Machine Learning (Kumar et al., 2009b) and Advances in Neural
Information Processing Systems (Kumar et al., 2009c).
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Finally, we present a theoretical analysis of the Nyström method, namely bounds on the recon-
struction error for both the Frobenius norm and the spectral norm. We first present a novel bound
for the Nystr̈om method as it is often used in practice, that is, using uniform sampling withoutre-
placement. We next extend this bound to the ensemble Nyström algorithms, and show these novel
generalization bounds guarantee a better convergence rate for these algorithms in comparison to the
standard Nystr̈om method.

The remainder of the paper is organized as follows. Section 2 introduces basic definitions,
provides a short survey on related work and gives a brief presentation of the Nystr̈om method. In
Section 3, we study various fixed sampling schemes used with the Nyström method. In Section 4,
we provide a survey of various adaptive techniques used for sampling-based low-rank approxima-
tion and introduce a novel adaptive sampling algorithm. Section 5 describes afamily of ensemble
Nyström algorithms and presents extensive experimental results. We present novel theoretical anal-
ysis in Section 6.

2. Preliminaries

Let T ∈ R
a×b be an arbitrary matrix. We defineT( j), j = 1. . .b, as the jth column vector ofT,

T(i), i = 1. . .a, as theith row vector ofT and ‖·‖ the l2 norm of a vector. Furthermore,T(i: j)

refers to theith through jth columns ofT and T(i: j) refers to theith through jth rows of T. If
rank(T) = r, we can write the thin Singular Value Decomposition (SVD) of this matrix asT =
UTΣTV⊤T whereΣT is diagonal and contains the singular values ofT sorted in decreasing order
andUT ∈ R

a×r andVT ∈ R
b×r have orthogonal columns that contain the left and right singular

vectors ofT corresponding to its singular values. We denote byTk the ‘best’ rank-k approximation
to T, that is,Tk=argminV∈Ra×b,rank(V)=k‖T−V‖ξ, whereξ ∈ {2,F} and‖·‖2 denotes the spectral
norm and‖·‖F the Frobenius norm of a matrix. We can describe this matrix in terms of its SVD as
Tk = UT,kΣT,kV⊤T,k whereΣT,k is a diagonal matrix of the topk singular values ofT andUT,k and
VT,k are the matrices formed by the associated left and right singular vectors.

Now let K ∈ R
n×n be a symmetric positive semidefinite (SPSD) kernel or Gram matrix with

rank(K) = r ≤ n, that is, a symmetric matrix for which there exists anX ∈ R
N×n such thatK =

X⊤X. We will write the SVD ofK asK = UΣU⊤, where the columns ofU are orthogonal and

Σ = diag(σ1, . . . ,σr) is diagonal. The pseudo-inverse ofK is defined asK+ = ∑r
t=1 σ−1

t U(t)U(t)⊤,

andK+ =K−1 whenK is full rank. Fork< r, K k =∑k
t=1 σtU(t)U(t)⊤=UkΣkU⊤k is the ‘best’ rank-k

approximation toK , that is,K k=argminK ′∈Rn×n,rank(K ′)=k‖K −K ′‖ξ∈{2,F}, with ‖K −K k‖2 = σk+1

and‖K −K k‖F =
√

∑r
t=k+1 σ2

t (Golub and Loan, 1983).

We will be focusing on generating an approximationK̃ of K based on a sample ofl ≪ n of
its columns. For now, we assume that the sample ofl columns is given to us, though the focus of
this paper will be on various methods for selecting columns. LetC denote then× l matrix formed
by these columns andW the l × l matrix consisting of the intersection of thesel columns with the
correspondingl rows ofK . Note thatW is SPSD sinceK is SPSD. Without loss of generality, the
columns and rows ofK can be rearranged based on this sampling so thatK andC be written as
follows:

K =

[
W K⊤21
K21 K22

]
and C =

[
W
K21

]
. (1)
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2.1 Nyström Method

The Nystr̈om method usesW andC from (1) to approximateK . Assuming a uniform sampling of
the columns, the Nyström method generates a rank-k approximatioñK of K for k< n defined by:

K̃nys
k = CW+

k C⊤ ≈ K ,

whereWk is the bestk-rank approximation ofW with respect to the spectral or Frobenius norm and
W+

k denotes the pseudo-inverse ofWk. The Nystr̈om method thus approximates the topk singular
values (Σk) and singular vectors (Uk) of K as:

Σ̃
nys
k =

(n
l

)
ΣW,k and Ũnys

k =

√
l
n

CUW,kΣ
+
W,k. (2)

Whenk= l (or more generally, wheneverk≥ rank(C)), this approximation perfectly reconstructs
three blocks ofK , andK22 is approximated by the Schur Complement ofW in K :

K̃nys
l = CW+C⊤ =

[
W K⊤21
K21 K21W+K21

]
. (3)

Since the running time complexity of SVD onW is in O(kl2) and matrix multiplication withC takes
O(kln), the total complexity of the Nyström approximation computation is inO(kln).

2.2 Related Work

There has been a wide array of work on low-rank matrix approximation withinthe numerical lin-
ear algebra and computer science communities, much of which has been inspired by the celebrated
result of Johnson and Lindenstrauss (1984), which showed that random low-dimensional embed-
dings preserve Euclidean geometry. This result has led to a family of random projection algorithms,
which involves projecting the original matrix onto a random low-dimensional subspace (Papadim-
itriou et al., 1998; Indyk, 2006; Liberty, 2009). Alternatively, SVD canbe used to generate ‘optimal’
low-rank matrix approximations, as mentioned earlier. However, both the random projection and
the SVD algorithms involve storage and operating on the entire input matrix. SVDis more com-
putationally expensive than random projection methods, though neither arelinear inn in terms of
time and space complexity. When dealing with sparse matrices, there exist less computationally in-
tensive techniques such as Jacobi, Arnoldi, Hebbian and more recent randomized methods (Golub
and Loan, 1983; Gorrell, 2006; Rokhlin et al., 2009; Halko et al., 2009)for generating low-rank
approximations. These methods require computation of matrix-vector products and thus require op-
erating on every non-zero entry of the matrix, which may not be suitable forlarge, dense matrices.
Matrix sparsification algorithms (Achlioptas and Mcsherry, 2007; Arora et al., 2006), as the name
suggests, attempt to sparsify dense matrices to speed up future storage and computational burdens,
though they too require storage of the input matrix and exhibit superlinear processing time.

Alternatively, sampling-based approaches can be used to generate low-rank approximations.
Research in this area dates back to classical theoretical results that show, for any arbitrary matrix,
the existence of a subset ofk columns for which the error in matrix projection (as defined in Kumar
et al., 2009b) can be bounded relative to the optimal rank-k approximation of the matrix (Ruston,
1962). Deterministic algorithms such as rank-revealing QR (Gu and Eisenstat, 1996) can achieve
nearly optimal matrix projection errors. More recently, research in the theoretical computer science
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community has been aimed at deriving bounds on matrix projection error usingsampling-based
approximations, including additive error bounds using sampling distributionsbased on the squared
L2 norms of the columns (Frieze et al., 1998; Drineas et al., 2006; Rudelson and Vershynin, 2007);
relative error bounds using adaptive sampling techniques (Deshpandeet al., 2006; Har-peled, 2006);
and, relative error bounds based on distributions derived from the singular vectors of the input
matrix, in work related to the column-subset selection problem (Drineas et al.,2008; Boutsidis
et al., 2009). These sampling-based approximations all require visiting every entry of the matrix in
order to get good performance guarantees for any matrix. However, as discussed in Kumar et al.
(2009b), the task of matrix projection involves projecting the input matrix onto alow-rank subspace,
which requires superlinear time and space with respect ton and is not always feasible for large-scale
matrices.

There does exist, however, another class of sampling-based approximation algorithms that only
store and operate on a subset of the original matrix. For arbitrary rectangular matrices, these al-
gorithms are known as ‘CUR’ approximations (the name ‘CUR’ correspondsto the three low-rank
matrices whose product is an approximation to the original matrix). The theoretical performance of
CUR approximations has been analyzed using a variety of sampling schemes,although the column-
selection processes associated with these analyses often require operating on the entire input matrix
(Goreinov et al., 1997; Stewart, 1999; Drineas et al., 2008; Mahoney and Drineas, 2009).

In the context of symmetric positive semidefinite matrices, the Nyström method is a commonly
used algorithm to efficiently generate low-rank approximations. The Nyström method was initially
introduced as a quadrature method for numerical integration, used to approximate eigenfunction
solutions (Nystr̈om, 1928; Baker, 1977). More recently, it was presented in Williams and Seeger
(2000) to speed up kernel algorithms and has been studied theoretically using a variety of sampling
schemes (Smola and Schölkopf, 2000; Drineas and Mahoney, 2005; Zhang et al., 2008; Zhang and
Kwok, 2009; Kumar et al., 2009a,b,c; Belabbas and Wolfe, 2009; Belabbas and Wolfe, 2009; Cortes
et al., 2010; Talwalkar and Rostamizadeh, 2010). It has also been used for a variety of machine
learning tasks ranging from manifold learning to image segmentation (Platt, 2004; Fowlkes et al.,
2004; Talwalkar et al., 2008). A closely related algorithm, known as the Incomplete Cholesky
Decomposition (Fine and Scheinberg, 2002; Bach and Jordan, 2002, 2005), can also be viewed as a
specific sampling technique associated with the Nyström method (Bach and Jordan, 2005). As noted
by Cand̀es and Recht (2009) and Talwalkar and Rostamizadeh (2010), the Nyström approximation
is related to the problem of matrix completion (Candès and Recht, 2009; Candès and Tao, 2009),
which attempts to complete a low-rank matrix from a random sample of its entries. However,
the matrix completion attempts to impute a low-rank matrix from a subset of (possibly perturbed)
matrix entries, rather than a subset of matrix columns. This problem is related to, yet distinct from
the Nystr̈om method and sampling-based low-rank approximation algorithms in general, that deal
with full-rank matrices that are amenable to low-rank approximation. Furthermore, when we have
access to the underlying kernel function that generates the kernel matrixof interest, we can generate
matrix entries on-the-fly as desired, providing us with more flexibility accessing the original matrix.

3. Fixed Sampling

Since the Nystr̈om method operates on a small subset ofK , that is,C, the selection of columns can
significantly influence the accuracy of the approximation. In the remainder of the paper, we will
discuss various sampling options that aim to select informative columns fromK . We begin with the
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most common class of sampling techniques that select columns using a fixed probability distribu-
tion. The most basic sampling technique involvesuniformsampling of the columns. Alternatively,
the ith column can be sampled non-uniformly with weight proportional to either its corresponding
diagonal elementK ii (diagonal sampling) or theL2 norm of the column (column-norm sampling)
(Drineas et al., 2006; Drineas and Mahoney, 2005). There are additional computational costs as-
sociated with these non-uniform sampling methods:O(n) time and space requirements for diago-
nal sampling andO(n2) time and space for column-norm sampling. These non-uniform sampling
techniques are often presented using sampling with replacement to simplify theoretical analysis.
Column-norm sampling has been used to analyze a general SVD approximation algorithm. Further,
diagonal sampling with replacement was used by Drineas and Mahoney (2005) and Belabbas and
Wolfe (2009) to bound the reconstruction error of the Nyström method.2 In Drineas and Mahoney
(2005) however, the authors suggest that column-norm sampling would be a better sampling as-
sumption for the analysis of the Nyström method. We also note that Belabbas and Wolfe (2009)
proposed a family of ‘annealed determinantal’ distributions for which multiplicative bounds on
reconstruction error were derived. However, in practice, these distributions cannot be efficiently
computed except for special cases coinciding with uniform and column-norm sampling. Similarly,
although Mahoney and Drineas (2009) present multiplicative bounds forthe CUR decomposition
(which is quite similar to the Nyström method) when sampling from a distribution over the columns
based on ‘leverage scores,’ these scores cannot be efficiently computed in practice for large-scale
applications.

In the remainder of this section we present novel experimental results comparing the perfor-
mance of these fixed sampling methods on several data sets. Previous studies have compared uni-
form and non-uniform in a more restrictive setting, using fewer types of kernels and focusing only
on column-norm sampling (Drineas et al., 2001; Zhang et al., 2008). However, in this work, we pro-
vide the first comparison that includes diagonal sampling, which is the non-uniform distribution that
is most scalable for large-scale applications and which has been used in some theoretical analyses
of the Nystr̈om method.

3.1 Data Sets

We used 5 data sets from a variety of applications, for example, computer vision and biology, as
described in Table 1. SPSD kernel matrices were generated by mean centering the data sets and
applying either a linear kernel or RBF kernel. The diagonals (respectively column norms) of these
kernel matrices were used to calculate diagonal (respectively column-norm) distributions. Note that
the diagonal distribution equals the uniform distribution for RBF kernels since diagonal entries of
RBF kernel matrices always equal one.

3.2 Experiments

We used the data sets described in the previous section to test the approximation accuracy for each
sampling method. Low-rank approximations ofK were generated using the Nyström method along
with these sampling methods, and we measured the accuracy of reconstruction relative to the optimal

2. Although Drineas and Mahoney (2005) claim to weight each column proportionally to K2
ii , they in fact use the

diagonal sampling we present in this work, that is, weights proportional toK ii (Drineas, 2008).
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Name Type n d Kernel
PIE-2.7K faces (profile) 2731 2304 linear
PIE-7K faces (front) 7412 2304 linear
MNIST digit images 4000 784 linear

ESS proteins 4728 16 RBF
ABN abalones 4177 8 RBF

Table 1: Description of the data sets and kernels used in fixed and adaptive sampling experiments
(Sim et al., 2002; LeCun and Cortes, 1998; Gustafson et al., 2006; Asuncion and Newman,
2007). ‘d’ denotes the number of features in input space.
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(a)

l/n Data Set Uniform+Rep Diag+Rep Col-Norm+Rep
PIE-2.7K 38.8 (±1.5) 38.3 (±0.9) 37.0 (±0.9)
PIE-7K 55.8 (±1.1) 46.4 (±1.7) 54.2 (±0.9)

5% MNIST 47.4 (±0.8) 46.9 (±0.7) 45.6 (±1.0)
ESS 45.1 (±2.3) - 41.0 (±2.2)
ABN 47.3 (±3.9) - 44.2 (±1.2)

PIE-2.7K 72.3 (±0.9) 65.0 (±0.9) 63.4 (±1.4)
PIE-7K 83.5 (±1.1) 69.8 (±2.2) 79.9 (±1.6)

20% MNIST 80.8 (±0.5) 79.4 (±0.5) 78.1 (±0.5)
ESS 80.1 (±0.7) - 75.5 (±1.1)
ABN 77.1 (±3.0) - 66.3 (±4.0)

(b)

Figure 1: (a) Nystr̈om relative accuracy for various sampling techniques on PIE-7K. (b) Nyström
relative accuracy for various sampling methods for two values ofl/n with k= 100. Values
in parentheses show standard deviations for 10 different runs for a fixedl . ‘+Rep’ denotes
sampling with replacement. No error (‘-’) is reported for diagonal samplingwith RBF
kernels since diagonal sampling is equivalent to uniform sampling in this case.
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rank-k approximation,K k, as:

relative accuracy=
‖K −K k‖F
‖K − K̃ k‖F

×100. (4)

Note that the relative accuracy is lower bounded by zero and will approach one for good approxi-
mations. We fixedk=100 for all experiments, a value that captures more than 90% of the spectral
energy for each data set. We first compared the effectiveness of the three sampling techniques using
sampling with replacement. The results for PIE-7K are presented in Figure 1(a) and summarized
for all data sets in Figure 1(b). The results across all data sets show thatuniform sampling outper-
forms all other methods, while being much cheaper computationally and space-wise. Thus, while
non-uniform sampling techniques may be effective in extreme cases wherea few columns ofK
dominate in terms of‖·‖2, this situation does not tend to arise with real-world data, where uniform
sampling is most effective.
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(a)

Data Set 5% 10% 15% 30%

PIE-2.7K 0.8 (±.6) 1.7 (±.3) 2.3 (±.9) 4.4 (±.4)
PIE-7K 0.7 (±.3) 1.5 (±.3) 2.1 (±.6) 3.2 (±.3)
MNIST 1.0 (±.5) 1.9 (±.6) 2.3 (±.4) 3.4 (±.4)

ESS 0.9 (±.9) 1.8 (±.9) 2.2 (±.6) 3.7 (±.7)
ABN 0.7 (±1.2) 1.3 (±1.8) 2.6 (±1.4) 4.5 (±1.1)

(b)

Figure 2: Comparison of uniform sampling with and without replacement measured by the differ-
ence in relative accuracy. (a) Improvement in relative accuracy for PIE-7K when sam-
pling without replacement. (b) Improvement in relative accuracy when sampling without
replacement across all data sets for variousl/n percentages.

Next, we compared the performance of uniform sampling with and without replacement. Fig-
ure 2(a) illustrates the effect of replacement for the PIE-7K data set for different l/n ratios. Similar
results for the remaining data sets are summarized in Figure 2(b). The resultsshow that uniform
sampling without replacement improves the accuracy of the Nyström method over sampling with re-
placement, even when sampling less than 5% of the total columns. In summary, these experimental
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show that uniform sampling without replacement is the cheapest and most efficient sampling tech-
nique across several data sets (it is also the most commonly used method in practice). In Section 6,
we present a theoretical analysis of the Nyström method using precisely this type of sampling.

4. Adaptive Sampling

In Section 3, we focused on fixed sampling schemes to create low-rank approximations. In this
section, we discuss various sampling options that aim to select more informative columns fromK ,
while storing and operating on only O(ln) entries ofK . The Sparse Matrix Greedy Approximation
(SMGA) (Smola and Scḧolkopf, 2000) and the Incomplete Cholesky Decomposition (ICL) (Fine
and Scheinberg, 2002; Bach and Jordan, 2002) were the first suchadaptive schemes suggested for
the Nystr̈om method. SMGA is a matching-pursuit algorithm that randomly selects a new sample
at each round from a random subset ofs≪ n samples, withs= 59 in practice as per the suggestion
of Smola and Scḧolkopf (2000). The runtime to selectl columns is O(sl2n), which is of the same
order as the Nyström method itself whens is a constant andk= l (see Section 2.1 for details).

Whereas SMGA was proposed as a sampling scheme to be used in conjunctionwith the Nystr̈om
method, ICL generates a low-rank factorization ofK on-the-fly as it adaptively selects columns
based on potential pivots of the Incomplete Cholesky Decomposition. ICL is agreedy, deterministic
selection process that generates an approximation of the formK̃ icl = X̃X̃⊤ whereX̃ ∈ R

n×l is low-
rank. The runtime of ICL is O(l2n). Although ICL does not generate an approximate SVD ofK ,
it does yield a low-rank approximation ofK that can be used with the Woodbury approximation.
Moreover, whenk = l , the Nystr̈om approximation generated from thel columns ofK associated
with the pivots selected by ICL is identical tõK icl (Bach and Jordan, 2005). Related greedy adaptive
sampling techniques were proposed by Ouimet and Bengio (2005) and Liu et al. (2006) in the
contexts of spectral embedding and spectral mesh processing, respectively.

More recently, Zhang et al. (2008) and Zhang and Kwok (2009) proposed a technique to gen-
erate informative columns using centroids resulting fromK-means clustering, withK = l . This
algorithm, which uses out-of-sample extensions to generate a set ofl representative columns of
K , has been shown to give good empirical accuracy (Zhang et al., 2008). Finally, an adaptive
sampling technique with strong theoretical foundations (adaptive-full) was proposed in Deshpande
et al. (2006). It requires a full pass throughK in each iteration and is thus inefficient for largeK . In
the remainder of this section, we first propose a novel adaptive technique that extends the ideas of
Deshpande et al. (2006) and then present empirical results comparing the performance of this new
algorithm with uniform sampling as well as SMGA, ICL,K-means and theadaptive-fulltechniques.

4.1 Adaptive Nyström Sampling

Instead of sampling alll columns from a fixed distribution, adaptive sampling alternates between
selecting a set of columns and updating the distribution over all the columns. Starting with an initial
distribution over the columns,s< l columns are chosen to form a submatrixC′. The probabilities
are then updated as a function of previously chosen columns ands new columns are sampled and
incorporated inC′. This process is repeated untill columns have been selected. The adaptive
sampling scheme in Deshpande et al. (2006) is detailed in Figure 3. Note that the sampling step,
UPDATE-PROBABILITY-FULL, requires a full pass overK at each step, and hence O(n2) time
and space.
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Input : n×n SPSD matrix (K ), number columns to be chosen (l ), initial distribution over columns
(P0), number columns selected at each iteration (s)
Output : l indices corresponding to columns ofK

SAMPLE-ADAPTIVE(K ,n, l ,P0,s)

1 R← set ofs indices sampled according toP0

2 t← l
s−1 � number of iterations

3 for i ∈ [1. . .t] do
4 Pi ← UPDATE-PROBABILITY-FULL(R)
5 Ri ← set ofs indices sampled according toPi

6 R← R∪Ri

7 return R

UPDATE-PROBABILITY-FULL(R)

1 C′← columns ofK corresponding to indices inR
2 UC′ ← left singular vectors ofC′

3 E← K −UC′U⊤C′K
4 for j ∈ [1. . .n] do
5 if j ∈ R then
6 Pj ← 0
7 else Pj ← ||E j ||22
8 P← P

||P||2
9 return P

Figure 3: The adaptive sampling technique (Deshpande et al., 2006) thatoperates on the entire
matrixK to compute the probability distribution over columns at each adaptive step.

We propose a simple sampling technique (adaptive-partial) that incorporates the advantages
of adaptive sampling while avoiding the computational and storage burdens of the adaptive-full
technique. At each iterative step, we measure the reconstruction error for eachrow of C′ and the
distribution over correspondingcolumnsof K is updated proportional to this error. We compute the
error forC′, which is much smaller thanK , thus avoiding the O(n2) computation. As described in
(3), if k′ is fixed to be the number of columns inC′, it will lead to C′nys= C′ resulting in perfect
reconstruction ofC′. So, one must choose a smallerk′ to generate non-zero reconstruction errors
from which probabilities can be updated (we usedk′ = (# columns inC′)/2 in our experiments).
One artifact of using ak′ smaller than the rank ofC′ is that all the columns ofK will have a non-zero
probability of being selected, which could lead to the selection of previously selected columns in the
next iteration. However, samplingwithout replacement strategy alleviates this problem. Working
with C′ instead ofK to iteratively compute errors makes this algorithm significantly more efficient
than that of Deshpande et al. (2006), as each iteration takes O(nlk′+ l3) time and requires at most
the storage ofl columns ofK . The details of the proposed sampling technique are outlined in Figure
4.
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UPDATE-PROBABILITY-PARTIAL (R)

1 C′← columns ofK corresponding to indices inR

2 k′← CHOOSE-RANK() � low-rank (k) or |R|2
3 Σ̃

nys
k′ , Ũnys

k′ ← DO-NYSTRÖM (C′,k′) � see Equation (2)
4 C′nys← Spectral reconstruction using̃Σnys

k′ , Ũnys
k′

5 E← C′−C′nys

6 for j ∈ [1. . .n] do
7 if j ∈ R then
8 Pj ← 0 � sample without replacement
9 else Pj ← ||E( j) ||22

10 P← P
||P||2

11 return P

Figure 4: The proposed adaptive sampling technique that uses a small subset of the original matrix
K to adaptively choose columns. It does not need to store or operate onK .

l/n% Data Set Uniform ICL SMGA Adapt-Part K-means Adapt-Full
PIE-2.7K 39.7 (0.7) 41.6 (0.0) 54.4 (0.6) 42.6 (0.8) 61.3 (0.5) 44.2 (0.9)
PIE-7K 58.6 (1.0) 50.1 (0.0) 68.1 (0.9) 61.4 (1.1) 71.0 (0.7) -

5% MNIST 47.5 (0.9) 41.5 (0.0) 59.2 (0.5) 49.7 (0.9) 72.9 (0.9) 50.3 (0.7)
ESS 45.7 (2.6) 25.2 (0.0) 61.9 (0.5) 49.3 (1.5) 64.2 (1.6) -
ABN 47.4 (5.5) 15.6 (0.0) 64.9 (1.8) 23.0 (2.8) 65.7 (5.8) 50.7 (2.4)

PIE-2.7K 58.2 (1.0) 61.1 (0.0) 72.7 (0.2) 60.8 (1.0) 73.0 (1.1) 63.0 (0.3)
PIE-7K 72.4 (0.7) 60.8 (0.0) 74.5 (0.6) 77.0 (0.6) 82.8 (0.7) -

10% MNIST 66.8 (1.4) 58.3 (0.0) 72.2 (0.8) 69.3 (0.6) 81.6 (0.6) 68.5 (0.5)
ESS 66.8 (2.0) 39.1 (0.0) 74.7 (0.5) 70.0 (1.0) 81.6 (1.0) -
ABN 61.0 (1.1) 25.8 (0.0) 67.1 (0.9) 33.6 (6.7) 79.8 (0.9) 57.9 (3.9)

PIE-2.7K 75.2 (1.0) 80.5 (0.0) 86.1 (0.2) 78.7 (0.5) 85.5 (0.5) 80.6 (0.4)
PIE-7K 85.6 (0.9) 69.5 (0.0) 79.4 (0.5) 86.2 (0.3) 91.9 (0.3) -

20% MNIST 83.6 (0.4) 77.9 (0.0) 78.7 (0.2) 84.0 (0.6) 88.4 (0.5) 80.4 (0.5)
ESS 81.4 (2.1) 55.3 (0.0) 79.4 (0.7) 83.4 (0.3) 90.0 (0.6) -
ABN 80.8 (1.7) 41.2 (0.0) 67.2 (2.2) 44.4 (6.7) 85.1 (1.6) 62.4 (3.6)

Table 2: Nystr̈om spectral reconstruction accuracy for various sampling methods for all data sets for
k= 100 and threel/npercentages. Numbers in parenthesis indicate the standard deviations
for 10 different runs for eachl . Numbers in bold indicate the best performance on each
data set, that is, each row of the table. Dashes (‘-’) indicate experiments that were too
costly to run on the larger data sets (ESS, PIE-7K).

4.2 Experiments

We used the data sets in Table 1, and compared the effect of different sampling techniques on the
relative accuracy of Nyström spectral reconstruction fork = 100. All experiments were conducted
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l/n% Data Set Uniform ICL SMGA Adapt-Part K-means Adapt-Full
PIE-2.7K 0.03 0.56 2.30 0.43 2.44 22.54
PIE-7K 0.63 44.04 59.02 6.56 15.18 -

5% MNIST 0.04 1.71 7.57 0.71 1.26 20.56
ESS 0.07 2.87 62.42 0.85 3.48 -
ABN 0.06 3.28 9.26 0.66 2.44 28.49

PIE-2.7K 0.08 2.81 8.44 0.97 3.25 23.13
PIE-7K 0.63 44.04 244.33 6.56 15.18 -

10% MNIST 0.20 7.38 28.79 1.51 1.82 21.77
ESS 0.29 11.01 152.30 2.04 7.16 -
ABN 0.23 10.92 33.30 1.74 4.94 35.91

PIE-2.7K 0.28 8.36 38.19 2.63 5.91 27.72
PIE-7K 0.81 141.13 1107.32 13.80 12.08 -

20% MNIST 0.46 16.99 51.96 4.03 2.91 26.53
ESS 0.52 34.28 458.23 5.90 14.68 -
ABN 1.01 38.36 199.43 8.54 12.56 97.39

Table 3: Run times (in seconds) corresponding to Nyström spectral reconstruction results in Table
2. Dashes (‘-’) indicate experiments that were too costly to run on the larger data sets
(ESS, PIE-7K).

in Matlab on an x86−64 architecture using a single 2.4 Ghz core and 30GB of main memory. We
used an implementation of ICL from Cawley and Talbot (2004) and an implementation of SMGA
code from Smola (2000), using default parameters as set by these implementations. We wrote
our own implementation of theK-means method using 5 iterations ofK-means and employing an
efficient (vectorized) function to computeL2 distances between points and centroids at each iteration
(Bunschoten, 1999).3 Moreover, we used a random projection SVD solver to compute truncated
SVD, using code by Tygert (2009).

The relative accuracy results across data sets for varying values ofl are presented in Table 2,
while the corresponding timing results are detailed in Table 3. TheK-means algorithm was clearly
the best performing adaptive algorithm, generating the most accurate approximations in almost all
settings in roughly the same amount of time (or less) as other adaptive algorithms. Moreover,
the proposed Nyström adaptive technique, which is a natural extension of an important algorithm
introduced in the theory community, has performance similar to this original algorithm at a fraction
of the cost, but it is nonetheless outperformed by theK-means algorithm. We further note that ICL
performs the worst of all the adaptive techniques, and it is often worse than random sampling (this
observation is also noted by Zhang et al. 2008).

The empirical results also suggest that the performance gain due to adaptive sampling is in-
versely proportional to the percentage of sampled columns—random sampling actually outper-
forms many of the adaptive approaches when sampling 20% of the columns. These empirical re-
sults suggest a trade-off between time and space requirements, as noted by Scḧolkopf and Smola
(2002)[Chapter 10.2]. Adaptive techniques spend more time to find a concise subset of informa-
tive columns, but as in the case of theK-means algorithm, can provide improved approximation
accuracy.

3. Note that Matlab’s built-inK-means function is quite inefficient.
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5. Ensemble Sampling

In this section, we slightly shift focus, and discuss a meta algorithm called theensemble Nyström
algorithm. We treat each approximation generated by the Nyström method for a sample ofl columns
as anexpertand combinep≥ 1 such experts to derive an improved hypothesis, typically more
accurate than any of the original experts.

The learning set-up is defined as follows. We assume a fixed kernel function K : X×X→R that
can be used to generate the entries of a kernel matrixK . The learner receives a setSof l p columns
randomly selected from matrixK uniformly without replacement.S is decomposed intop subsets
S1,. . .,Sp. Each subsetSr , r ∈ [1, p], containsl columns and is used to define a rank-k Nyström
approximatioñK r .4 Dropping the rank subscriptk in favor of the sample indexr, K̃ r can be written
asK̃ r =CrW+

r C⊤r , whereCr andWr denote the matrices formed from the columns ofSr andW+
r is

the pseudo-inverse of the rank-k approximation ofWr . The learner further receives a sampleV of s
columns used to determine the weightµr∈R attributed to each expert̃K r . Thus, the general form of
the approximation,Kens, generated by the ensemble Nyström algorithm, withk≤ rank(Kens)≤ pk,
is

K̃ens=
p

∑
r=1

µr K̃ r

=




C1
. . .

Cp







µ1W+
1

. ..
µpW+

p







C1
.. .

Cp




⊤

. (5)

As noted by Li et al. (2010), (5) provides an alternative description ofthe ensemble Nyström
method as a block diagonal approximation ofW+

ens, whereWens is the l p× l p SPSD matrix as-
sociated with thel p sampled columns. Moreover, Li et al. (2010) further argues that computing
W+

ens would be preferable to making this block diagonal approximation and subsequently uses a
random projection SVD solver to speed up computation ofW+

ens (Halko et al., 2009). However,
this analysis is misleading as these two orthogonal approaches should not be viewed as competing
methods. Rather, one can always use the ensemble based approachalong with fast SVD solvers.
This approach is most natural to improve performance on large-scale problems, and is precisely the
approach we adopt in our experiments.

The mixture weightsµr can be defined in many ways. The most straightforward choice consists
of assigning equal weight to each expert,µr =1/p, r ∈ [1, p]. This choice does not require the ad-
ditional sampleV, but it ignores the relative quality of each Nyström approximation. Nevertheless,
this simpleuniform methodalready generates a solution superior to any one of the approximations
K̃ r used in the combination, as we shall see in the experimental section.

Another method, theexponential weight method, consists of measuring the reconstruction er-
ror ε̂r of each expert̃K r over the validation sampleV and defining the mixture weight asµr =
exp(−ηε̂r)/Z, whereη>0 is a parameter of the algorithm andZ a normalization factor ensuring that
the vectorµ=(µ1, . . . ,µp) belongs to the unit simplex∆ of Rp: ∆={µ∈ R

p : µ≥ 0∧∑p
r=1µr = 1}.

The choice of the mixture weights here is similar to those used in the Weighted Majority algorithm

4. In this study, we focus on the class of base learners generated fromNyström approximation with uniform sampling
of columns or from the adaptiveK-means method. Alternatively, these base learners could be generatedusing other
(or a combination of) sampling schemes discussed in Sections 3 and 4.
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(Littlestone and Warmuth, 1994). LetKV denote the matrix formed by using the samples from
V as its columns and let̃KV

r denote the submatrix of̃K r containing the columns corresponding to
the columns inV. The reconstruction error̂εr =‖K̃V

r −KV‖ can be directly computed from these
matrices.

A more general class of methods consists of using the sampleV to train the mixture weightsµr

to optimize a regression objective function such as the following:

min
µ

λ‖µ‖22+‖
p

∑
r=1

µr K̃V
r −KV‖2F ,

whereλ>0. This can be viewed as a ridge regression objective function and admits aclosed form
solution. We will refer to this method as theridge regression method. Note that to ensure that the
resulting matrix is SPSD for use in subsequent kernel-based algorithms, theoptimization problem
must be augmented with standard non-negativity constraints. This is not necessary however for
reducing the reconstruction error, as in our experiments. Also, clearly,a variety of other regression
algorithms such as Lasso can be used here instead.

The total complexity of the ensemble Nyström algorithm isO(pl3+plkn+Cµ), whereCµ is
the cost of computing the mixture weights,µ, used to combine thep Nyström approximations.
The mixture weights can be computed in constant time for the uniform method, inO(psn) for the
exponential weight method, or inO(p3+p2ns) for the ridge regression method whereO(p2ns)
time is required to compute ap× p matrix andO(p3) time is required for inverting this matrix.
Furthermore, although the ensemble Nyström algorithm requiresp times more space and CPU
cycles than the standard Nyström method, these additional requirements are quite reasonable in
practice. The space requirement is still manageable for even large-scaleapplications given thatp is
typically O(1) andl is usually a very small percentage ofn (see Section 5.2 for further details). In
terms of CPU requirements, we note that the algorithm can be easily parallelized, as allp experts
can be computed simultaneously. Thus, with a cluster ofp machines, the running time complexity
of this algorithm is nearly equal to that of the standard Nyström algorithm withl samples.

5.1 Ensemble Woodbury Approximation

The Woodbury approximation is a useful tool to use alongside low-rank approximations to effi-
ciently (and approximately) invert kernel matrices. We are able to apply the Woodbury approxima-
tion since the Nystr̈om method represents̃K as the product of low-rank matrices. This is clear from
the definition of the Woodbury approximation:

(A+BCD)−1 = A−1−A−1B(C−1+DA−1B)−1DA−1, (6)

whereA = λI and K̃ = BCD in the context of the Nyström method. In contrast, the ensemble
Nyström method represents̃K as the sum of products of low-rank matrices, where each of thep
terms corresponds to a base learner. Hence, we cannot directly apply the Woodbury approximation
as presented above. There is however, a natural extension of the Woodbury approximation in this
setting, which at the simplest level involves running the approximationp times. Starting withp
base learners with their associated weights, that is,K̃ r andµr for r∈ [1, p], and definingT0 = λI , we
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perform the following series of calculations:

T−1
1 = (T0+µ1K̃1)

−1,

T−1
2 = (T1+µ2K̃2)

−1,

· · ·
T−1

p = (Tp−1+µpK̃ p)
−1 .

To computeT−1
1 , notice that we can use Woodbury approximation as stated in (6) since we can

expressµ1K̃1 as the product of low-rank matrices and we know thatT−1
0 = 1

λ I . More generally, for
1≤ i ≤ p, given an expression ofT−1

i−1 as a product of low-rank matrices, we can efficiently compute
T−1

i using the Woodbury approximation (we use the low-rank structure to avoid ever computing or
storing a fulln×n matrix). Hence, after performing this series ofp calculations, we are left with
the inverse ofTp, which is exactly the quantity of interest sinceTp = λI +∑p

r=1µr K̃ r . Although this
algorithm requiresp iterations of the Woodbury approximation, these iterations can be parallelized
in a tree-like fashion. Hence, when working on a cluster, using an ensemble Nystr̈om approximation
along with the Woodbury approximation requires only a log2(p) factor more time than using the
standard Nystr̈om method.5

5.2 Experiments

In this section, we present experimental results that illustrate the performance of the ensemble
Nyström method. We again work with the data sets listed in Table 1, and compare the perfor-
mance of various methods for calculating the mixture weights (µr ). Throughout our experiments,
we measure performance via relative accuracy (defined in (4)). For all experiments, we fixed the
reduced rank tok=100, and set the number of sampled columns tol =3%×n.6

5.2.1 ENSEMBLE NYSTRÖM WITH VARIOUS M IXTURE WEIGHTS

We first show results for the ensemble Nyström method using different techniques to choose the
mixture weights, as previously discussed. In these experiments, we focused on base learners gener-
ated via the Nystr̈om method with uniform sampling of columns. Furthermore, for the exponential
and the ridge regression variants, we sampled a set ofs=20 columns and used an additional 20
columns (s′) as a hold-out set for selecting the optimal values ofη and λ. The number of ap-
proximations,p, was varied from 2 to 25. As a baseline, we also measured the maximum relative
accuracy across thep Nyström approximations used to constructK̃ens. We also calculated the per-
formance when using the optimalµ, that is, we used least-square regression to find the best possible
choice of combination weights for a fixed set ofp approximations by settings=n. The results of
these experiments are presented in Figure 5.7 These results clearly show that the ensemble Nyström
performance is significantly better than any of the individual Nyström approximations. We further
note that the ensemble Nyström method tends to converge very quickly, and the most significant
gain in performance occurs asp increases from 2 to 10.

5. Note that we can also efficiently obtain singular values and singular vectors of the low-rank matrixKens using
coherence-based arguments, as in Talwalkar and Rostamizadeh (2010).

6. Similar results (not reported here) were observed for other valuesof k andl as well.
7. Similar results (not reported here) were observed when measuringrelative accuracy using the spectral norm instead

of the Frobenium norm.
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Base Learner Method PIE-2.7K PIE-7K MNIST ESS ABN
Average Base Learner 26.9 46.3 34.2 30.0 38.1
Best Base Learner 29.2 48.3 36.1 34.5 43.6

Uniform Ensemble Uniform 33.0 57.5 47.3 43.9 49.8
Ensemble Exponential 33.0 57.5 47.4 43.9 49.8
Ensemble Ridge 35.0 58.5 54.0 44.5 53.6
Average Base Learner 47.6 62.9 62.5 42.2 60.6
Best Base Learner 48.4 66.4 63.9 47.1 72.0

K-means Ensemble Uniform 54.9 71.3 76.9 52.2 76.4
Ensemble Exponential 54.9 71.4 77.0 52.2 78.3
Ensemble Ridge 54.9 71.6 77.2 52.7 79.0

Table 4: Relative accuracy for ensemble Nyström method with Nystr̈om base learners generated
with uniform sampling of columns or via theK-means algorithm.

5.2.2 EFFECT OFRANK

As mentioned earlier, the rank of the ensemble approximations can bep times greater than the rank
of each of the base learners. Hence, to validate the results in Figure 5, weperformed a simple
experiment in which we compared the performance of the best base learner to the best rankk ap-
proximation of the uniform ensemble approximation (obtained via SVD of the uniform ensemble
approximation). We again used base learners generated via the Nyström method with uniform sam-
pling of columns. The results of this experiment, presented in Figure 6, suggest that the performance
gain of the ensemble methods is not due to this increased rank.

5.2.3 EFFECT OFRIDGE

Figure 5 also shows that the ridge regression technique is the best of the proposed techniques, and
generates nearly the optimal solution in terms of relative accuracy using the Frobenius norm. We
also observed that whens is increased to approximately 5% to 10% ofn, linear regression without
any regularization performs about as well as ridge regression for boththe Frobenius and spectral
norm. Figure 7 shows this comparison between linear regression and ridgeregression for varying
values ofs using a fixed number of experts (p= 10). In these experiments, we again used base
learners generated via the Nyström method with uniform sampling of columns.

5.2.4 ENSEMBLE K-MEANS NYSTRÖM

In the previous experiments, we focused on base learners generated via the Nystr̈om method with
uniform sampling of columns. In light of the performance of theK-means algorithm in Section 4,
we next explored the performance of this algorithm when used in conjunction with the ensemble
Nyström method. We fixed the number of base learners top= 10 and when using ridge regression
to learn weights, we sets= s′ = 20. As shown in Table 4, similar performance gains in comparison
to the average or best base learner can be seen when using an ensembleof base learners derived
from theK-means algorithm. Consistent with the experimental results of Section 4, the accuracy
values are higher forK-means relative to uniform sampling, though as noted in the previous section,
this increased performance comes with an added cost, as theK-means step is more expensive than
random sampling.

996



SAMPLING METHODS FOR THENYSTRÖM METHOD
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Figure 5: Relative accuracy for ensemble Nyström method using uniform (‘uni’), exponential
(‘exp’), ridge (‘ridge’) and optimal (‘optimal’) mixture weights as well as the best (‘best
b.l.’) of the p base learners used to create the ensemble approximations.

6. Theoretical Analysis

We now present theoretical results that compare the quality of the Nyström approximation to the
‘best’ low-rank approximation, that is, the approximation constructed fromthe top singular values
and singular vectors ofK . This work, related to work by Drineas and Mahoney (2005), provides
performance bounds for the Nyström method as it is often used in practice, that is, using uniform
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Figure 6: Relative accuracy for ensemble Nyström method using uniform (‘uni’) mixture weights,
the optimal rank-k approximation of the uniform ensemble result (‘uni rank-k’) as well as
the best (‘best b.l.’) of thep base learners used to create the ensemble approximations.

sampling without replacement, and holds for both the standard Nyström method as well as the
ensemble Nystr̈om method discussed in Section 5.

Our theoretical analysis of the Nyström method uses some results previously shown by Drineas
and Mahoney (2005) as well as the following generalization of McDiarmid’sconcentration bound
to sampling without replacement (Cortes et al., 2008).

Theorem 1 Let Z1, . . . ,Zl be a sequence of random variables sampled uniformly without replace-
ment from a fixed set of l+u elements Z, and letφ : Zl→R be a symmetric function such that for all
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Figure 7: Comparison of relative accuracy for the ensemble Nyström method withp=10 experts
with weights derived from linear (‘no-ridge’) and ridge (‘ridge’) regression. The dotted
line indicates the optimal combination. The relative size of the validation set equals
s/n×100.

i∈ [1, l ] and for all z1, . . . ,zl ∈Z and z′1, . . . ,z
′
l ∈Z, |φ(z1, . . . ,zl )−φ(z1, . . . ,zi−1,z′i ,zi+1, . . . ,zl )|≤c.

Then, for allε>0, the following inequality holds:

Pr
[
φ−E[φ]≥ ε

]
≤ exp

[ −2ε2

α(l ,u)c2

]
,

whereα(l ,u) = lu
l+u−1/2

1
1−1/(2max{l ,u}) .
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We define theselection matrixcorresponding to a sample ofl columns as the matrixS∈Rn×l

defined bySii =1 if the ith column ofK is among those sampled,Si j =0 otherwise. Thus,C=KS
is the matrix formed by the columns sampled. SinceK is SPSD, there existsX ∈ R

N×n such that
K = X⊤X. We shall denote byKmax the maximum diagonal entry ofK , Kmax=maxi K ii , and by
dK

max the distance maxi j
√

K ii +K j j −2K i j .

6.1 Standard Nystr̈om Method

The following theorem gives an upper bound on the norm-2 error of the Nyström approximation
of the form‖K − K̃‖2/‖K‖2≤ ‖K −K k‖2/‖K‖2+O(1/

√
l) and an upper bound on the Frobenius

error of the Nystr̈om approximation of the form‖K − K̃‖F/‖K‖F ≤ ‖K −K k‖F/‖K‖F +O(1/l
1
4 ).

Theorem 2 Let K̃ denote the rank-k Nyström approximation ofK based on l columns sampled
uniformly at random without replacement fromK , and K k the best rank-k approximation ofK .
Then, with probability at least1−δ, the following inequalities hold for any sample of size l:

‖K − K̃‖2≤ ‖K −K k‖2 + 2n√
l
Kmax

[
1+

√
n−l

n−1/2
1

β(l ,n) log 1
δ dK

max/K
1
2
max

]
,

‖K − K̃‖F ≤ ‖K −K k‖F +
[

64k
l

] 1
4 nKmax

[
1+

√
n−l

n−1/2
1

β(l ,n) log 1
δ dK

max/K
1
2
max

] 1
2
,

whereβ(l ,n) = 1− 1
2max{l ,n−l} .

Proof To bound the norm-2 error of the Nyström method in the scenario of sampling without re-
placement, we start with the following general inequality given by Drineas and Mahoney (2005)[Proof
of Lemma 4]:

‖K − K̃‖2≤ ‖K −K k‖2+2‖XX⊤−ZZ⊤‖2,
whereZ=

√n
l XS. We then apply the McDiarmid-type inequality of Theorem 1 toφ(S)=‖XX⊤−

ZZ⊤‖2. Let S′ be a sampling matrix selecting the same columns asS except for one, and letZ′

denote
√n

l XS′. Let z andz′ denote the only differing columns ofZ andZ′, then

|φ(S′)−φ(S)| ≤ ‖z′z′⊤−zz⊤‖2 = ‖(z′−z)z′⊤+z(z′−z)⊤‖2
≤ 2‖z′−z‖2max{‖z‖2,‖z′‖2}.

Columns ofZ are those ofX scaled by
√

n/l . The norm of the difference of two columns ofX
can be viewed as the norm of the difference of two feature vectors associated toK and thus can be
bounded bydK . Similarly, the norm of a single column ofX is bounded byK

1
2
max. This leads to the

following inequality:

|φ(S′)−φ(S)| ≤ 2n
l

dK
maxK

1
2
max. (7)

The expectation ofφ can be bounded as follows:

E[Φ] = E[‖XX⊤−ZZ⊤‖2]≤ E[‖XX⊤−ZZ⊤‖F ]≤
n√
l
Kmax, (8)

where the last inequality follows Corollary 2 of Kumar et al. (2009a). The inequalities (7) and (8)
combined with Theorem 1 give a bound on‖XX⊤−ZZ⊤‖2 and yield the statement of the theorem.
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The following general inequality holds for the Frobenius error of the Nyström method (Drineas
and Mahoney, 2005):

‖K − K̃‖2F ≤ ‖K −K k‖2F +
√

64k‖XX⊤−ZZ⊤‖2F nKmax
ii . (9)

Bounding the term‖XX⊤−ZZ⊤‖2F as in the norm-2 case and using the concentration bound of
Theorem 1 yields the result of the theorem.

6.2 Ensemble Nystr̈om Method

The following error bounds hold for ensemble Nyström methods based on a convex combination of
Nyström approximations.

Theorem 3 Let S be a sample of pl columns drawn uniformly at random without replacement from
K , decomposed into p subsamples of size l, S1, . . . ,Sp. For r ∈ [1, p], let K̃ r denote the rank-k
Nystr̈om approximation ofK based on the sample Sr , and letK k denote the best rank-k approxima-
tion of K . Then, with probability at least1−δ, the following inequalities hold for any sample S of
size pl and for any µ in the unit simplex∆ andK̃ens= ∑p

r=1µr K̃ r :

‖K − K̃ens‖2≤ ‖K −K k‖2+
2n√

l
Kmax

[
1+µmaxp

1
2

√
n−pl

n−1/2
1

β(pl,n) log 1
δ dK

max/K
1
2
max

]
,

‖K − K̃ens‖F ≤ ‖K −K k‖F +
[

64k
l

] 1
4 nKmax

[
1+µmaxp

1
2

√
n−pl

n−1/2
1

β(pl,n) log 1
δ dK

max/K
1
2
max

] 1
2
,

whereβ(pl,n) = 1− 1
2max{pl,n−pl} and µmax= maxp

r=1µr .

Proof For r ∈ [1, p], let Zr =
√

n/l XSr , whereSr denotes the selection matrix corresponding to
the sampleSr . By definition ofK̃ensand the upper bound on‖K − K̃ r‖2 already used in the proof of
theorem 2, the following holds:

‖K − K̃ens‖2 =
∥∥∥

p

∑
r=1

µr(K − K̃ r)
∥∥∥

2
≤

p

∑
r=1

µr‖K − K̃ r‖2

≤
p

∑
r=1

µr
(
‖K −K k‖2+2‖XX⊤−ZrZ⊤r ‖2

)

= ‖K −K k‖2+2
p

∑
r=1

µr‖XX⊤−ZrZ⊤r ‖2.

We apply Theorem 1 toφ(S)=∑p
r=1µr‖XX⊤−ZrZ⊤r ‖2. Let S′ be a sample differing fromSby only

one column. Observe that changing one column of the full sampleSchanges only one subsample
Sr and thus only one termµr‖XX⊤−ZrZ⊤r ‖2. Thus, in view of the bound (7) on the change to
‖XX⊤−ZrZ⊤r ‖2, the following holds:

|φ(S′)−φ(S)| ≤ 2n
l

µmaxd
K
maxK

1
2
max, (10)
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The expectation ofΦ can be straightforwardly bounded by:

E[Φ(S)] =
p

∑
r=1

µr E[‖XX⊤−ZrZ⊤r ‖2]≤
p

∑
r=1

µr
n√
l
Kmax=

n√
l
Kmax

using the bound (8) for a single expert. Plugging in this upper bound and the Lipschitz bound (10)
in Theorem 1 yields the norm-2 bound for the ensemble Nyström method.

For the Frobenius error bound, using the convexity of the Frobenius norm square‖·‖2F and the
general inequality (9), we can write

‖K − K̃ens‖2F =
∥∥∥

p

∑
r=1

µr(K − K̃ r)
∥∥∥

2

F
≤

p

∑
r=1

µr‖K − K̃ r‖2F

≤
p

∑
r=1

µr

[
‖K −K k‖2F +

√
64k‖XX⊤−ZrZ⊤r ‖F nKmax

ii

]
.

= ‖K −K k‖2F +
√

64k
p

∑
r=1

µr‖XX⊤−ZrZ⊤r ‖F nKmax
ii .

The result follows by the application of Theorem 1 toψ(S)=∑p
r=1µr‖XX⊤−ZrZ⊤r ‖F in a way

similar to the norm-2 case.

The bounds of Theorem 3 are similar in form to those of Theorem 2. However, the bounds for
the ensemble Nyström are tighter than those for any Nyström expert based on a single sample of
sizel even for a uniform weighting. In particular, forµi =1/p for all i, the last term of the ensemble
bound for norm-2 is smaller by a factor larger thanµmaxp

1
2 = 1/

√
p.

7. Conclusion

A key aspect of sampling-based matrix approximations is the method for the selection of repre-
sentative columns. We discussed both fixed and adaptive methods for sampling the columns of a
matrix. We saw that the approximation performance is significantly affected bythe choice of the
sampling algorithm and also that there is a tradeoff between choosing a more informative set of
columns and the efficiency of the sampling algorithm. Furthermore, we introduced and discussed
a new meta-algorithm based on an ensemble of several matrix approximations that generates fa-
vorable matrix reconstructions using base learners derived from eitherfixed or adaptive sampling
schemes, and naturally fits within a distributed computing environment, thus makingit quite effi-
cient even in large-scale settings. We concluded with a theoretical analysisof the Nystr̈om method
(both the standard approach and the ensemble method) as it is often used in practice, namely using
uniform sampling without replacement.
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