Nearest Neighbor Classification

Professor Ameet Talwalkar

Slide Credit: Professor Fei Sha

3

Outline

1 Administration

- 2 First learning algorithm: Nearest neighbor classifier
- 3 More deep understanding about NNC
- 4 Some practical sides of NNC
- 5 What we have learned

- A TE N - A TE

< 67 ▶

Textbook

- *Machine Learning: A Probabilistic Perspective* not currently available at the library
- I've included a second optional textbook (*Elements of Statistical Learning*) that is free online
- Course website will include readings from both books

Registering for Course

- We can currently accommodate 75 students
- 120+ students want to take the course
- I'd like to bump up enrollment; I don't know if this will happen
 - We'd need another TA and a bigger classroom
 - I expect an update shortly, and will post to Piazza
 - No updates to waitlist and no PTEs until this is resolved
- If enrollment does not go up, then priority will go to CS students who do well on the first problem set
 - Pre-req of CS180 will not be an issue

Homework 1

- I will upload it right after class to the course website
- Basic math questions, MATLAB coding assignment, Academic Integrity Form
 - Look on course website for details about getting access to MATLAB
- Due next Tuesday (10/6) at the beginning of class
 - Submission details are included in the assignment
 - Join Piazza if you haven't already

Outline

Administration

First learning algorithm: Nearest neighbor classifier

- Intuitive example
- General setup for classification
- Algorithm

3 More deep understanding about NNC

- 4 Some practical sides of NNC
- 5 What we have learned

Recognizing flowers

Types of Iris: setosa, versicolor, and virginica

< 67 ▶

Measuring the properties of the flowers

Features: the widths and lengths of sepal and petal

Often, data is conveniently organized as a table Ex: Iris data (click here for all data)

- 4 features
- 3 classes

Fisher's <i>Iris</i> Data				
Sepal length +	Sepal width +	Petal length +	Petal width +	Species +
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa
4.4	2.9	1.4	0.2	I. setosa
4.9	3.1	1.5	0.1	I. setosa

3

< (T) > <

Pairwise scatter plots of 131 flower specimens Visualization of data helps to identify the right learning model to use

Each colored point is a flower specimen: setosa, versicolor, virginica

10 / 49

Different types seem well-clustered and separable Using two features: petal width and sepal length

Labeling an unknown flower type

Closer to red cluster: so labeling it as setosa

Professor Ameet Talwalkar

CS260 Machine Learning Algorithms

September 29, 2015 12 / 49

Multi-class classification

Classify data into one of the multiple categories

- Input (feature vectors): $x \in \mathbb{R}^{\mathsf{D}}$
- Output (label): $y \in [\mathsf{C}] = \{1, 2, \cdots, \mathsf{C}\}$
- Learning goal: y = f(x)

Special case: binary classification

- Number of classes: C = 2
- Labels: $\{0,1\}$ or $\{-1,+1\}$

More terminology

Training data (set)

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$
- They are used for learning $f(\cdot)$

Test (evaluation) data

- M samples/instances: $\mathcal{D}^{\text{TEST}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{M}}, y_{\mathsf{M}})\}$
- They are used for assessing how well $f(\cdot)$ will do in predicting an unseen $x \notin \mathcal{D}^{\text{TRAIN}}$

Training data and test data should *not* overlap: $\mathcal{D}^{\text{TRAIN}} \cap \mathcal{D}^{\text{TEST}} = \emptyset$

- 4 個 ト 4 国 ト - 4 国 ト - 三日

Nearest neighbor classification (NNC)

Nearest neighbor

$$\boldsymbol{x}(1) = \boldsymbol{x}_{\mathsf{nn}(\boldsymbol{x})}$$

where $nn(x) \in [N] = \{1, 2, \cdots, N\}$, i.e., the index to one of the training instances

- 3

・ 同 ト ・ 三 ト ・ 三 ト

Nearest neighbor classification (NNC)

Nearest neighbor

$$\boldsymbol{x}(1) = \boldsymbol{x}_{\mathsf{nn}(\boldsymbol{x})}$$

where $nn(x) \in [N] = \{1, 2, \cdots, N\}$, i.e., the index to one of the training instances

$$\mathsf{nn}(\boldsymbol{x}) = \arg\min_{n \in [\mathsf{N}]} \|\boldsymbol{x} - \boldsymbol{x}_n\|_2^2 = \arg\min_{n \in [\mathsf{N}]} \sum_{d=1}^{\mathsf{D}} (x_d - x_{nd})^2$$

- 3

・ 同 ト ・ 三 ト ・ 三 ト

Nearest neighbor classification (NNC)

Nearest neighbor

$$\boldsymbol{x}(1) = \boldsymbol{x}_{\mathsf{nn}(\boldsymbol{x})}$$

where $nn(x) \in [N] = \{1, 2, \cdots, N\}$, i.e., the index to one of the training instances

$$\mathsf{nn}(\boldsymbol{x}) = \arg\min_{n \in [\mathsf{N}]} \|\boldsymbol{x} - \boldsymbol{x}_n\|_2^2 = \arg\min_{n \in [\mathsf{N}]} \sum_{d=1}^{\mathsf{D}} (x_d - x_{nd})^2$$

Classification rule

$$y = f(\boldsymbol{x}) = y_{\mathsf{nn}(\boldsymbol{x})}$$

- 3

・ 同 ト ・ 三 ト ・ 三 ト

Visual example

In this 2-dimensional example, the nearest point to x is a red training instance, thus, x will be labeled as red.

Example: classify Iris with two features **Training data**

ID (n)	petal width (x_1)	sepal length (x_2)	category (y)
1	0.2	5.1	setosa
2	1.4	7.0	versicolor
3	2.5	6.7	virginica

< 一型

3

Example: classify Iris with two features Training data

ID (n)	petal width (x_1)	sepal length (x_2)	category (y)
1	0.2	5.1	setosa
2	1.4	7.0	versicolor
3	2.5	6.7	virginica

Flower with unknown category

petal width = 1.8 and sepal width = 6.4

Example: classify Iris with two features Training data

ID (n)	petal width (x_1)	sepal length (x_2)	category (y)
1	0.2	5.1	setosa
2	1.4	7.0	versicolor
3	2.5	6.7	virginica

Flower with unknown category

petal width = 1.8 and sepal width = 6.4 Calculating distance = $\sqrt{x_1 - x_{n1})^2 + (x_2 - x_{n2})^2}$

ID	distance
1	1.75
2	0.72
3	0.76

Thus, the category is versicolor (the real category is virginica)

Professor Ameet Talwalkar

How to measure nearness with other distances?

Previously, we use the Euclidean distance

$$\mathsf{nn}(x) = rg\min_{n \in [\mathsf{N}]} \|x - x_n\|_2^2$$

We can also use alternative distances E.g., the following L_1 distance (i.e., city block distance, or Manhattan distance)

$$\begin{aligned} \mathsf{nn}(\boldsymbol{x}) &= \arg\min_{n\in[\mathsf{N}]} \|\boldsymbol{x} - \boldsymbol{x}_n\|_1 \\ &= \arg\min_{n\in[\mathsf{N}]} \sum_{d=1}^{\mathsf{D}} |x_d - x_{nd}| \end{aligned}$$

Green line is Euclidean distance. Red, Blue, and Yellow lines are L_1 distance

September 29, 2015

Decision boundary

For every point in the space, we can determine its label using the NNC rule. This gives rise to a *decision boundary* that partitions the space into different regions.

K-nearest neighbor (KNN) classification

Increase the number of nearest neighbors to use?

- 1-nearest neighbor: $\mathsf{nn}_1(m{x}) = rg\min_{n\in[\mathsf{N}]} \|m{x} m{x}_n\|_2^2$
- 2nd-nearest neighbor: $\mathsf{nn}_2(m{x}) = rg\min_{n \in [\mathsf{N}] \mathsf{nn}_1(m{x})} \|m{x} m{x}_n\|_2^2$
- 3rd-nearest neighbor: $\mathsf{nn}_2(x) = rgmin_{n \in [\mathsf{N}]-\mathsf{nn}_1(x)-\mathsf{nn}_2(x)} \|x x_n\|_2^2$

K-nearest neighbor (KNN) classification

Increase the number of nearest neighbors to use?

- 1-nearest neighbor: $\mathsf{nn}_1(m{x}) = rg\min_{n\in[\mathsf{N}]} \|m{x} m{x}_n\|_2^2$
- 2nd-nearest neighbor: $\mathsf{nn}_2({m x}) = rg\min_{n\in [\mathsf{N}]-\mathsf{nn}_1({m x})} \|{m x}-{m x}_n\|_2^2$
- 3rd-nearest neighbor: $nn_2(x) = \arg \min_{n \in [N] nn_1(x) nn_2(x)} \|x x_n\|_2^2$ The set of K-nearest neighbor

$$\mathsf{knn}(\boldsymbol{x}) = \{\mathsf{nn}_1(\boldsymbol{x}), \mathsf{nn}_2(\boldsymbol{x}), \cdots, \mathsf{nn}_K(\boldsymbol{x})\}$$

Let $x(k) = x_{nn_k(x)}$, then $\|x - x(1)\|_2^2 \le \|x - x(2)\|_2^2 \dots \le \|x - x(K)\|_2^2$ How to classify with K neighbors?

Image: A match a ma

э

How to classify with K neighbors?

Classification rule

- Every neighbor votes: suppose y_n (the true label) for x_n is c, then
 - vote for c is 1
 - vote for $c' \neq c$ is 0

We use the *indicator function* $\mathbb{I}(y_n == c)$ to represent.

• Aggregate everyone's vote

$$v_c = \sum_{n \in \mathsf{knn}(\mathbf{x})} \mathbb{I}(y_n == c), \quad \forall \quad c \in [\mathsf{C}]$$

Label with the majority

$$y = f(\boldsymbol{x}) = \arg \max_{c \in [\mathsf{C}]} v_c$$

Example

< ₫

< ∃ >

э

22 / 49

Example

September 29, 2015

Example

September 29, 2015

22 / 49

How to choose an optimal K?

イロト イヨト イヨト イヨト

э

How to choose an optimal K?

When K increases, the decision boundary becomes smooth.

23 / 49

Mini-summary

Advantages of NNC

- Computationally, simple and easy to implement just computing the distance
- Theoretically, has strong guarantees "doing the right thing"

Disadvantages of NNC

- \bullet Computationally intensive for large-scale problems: $O({\rm N}D)$ for labeling a data point
- We need to "carry" the training data around. Without it, we cannot do classification. This type of method is called *nonparametric*.
- Choosing the right distance measure and K can be involved.

Outline

1 Administration

Pirst learning algorithm: Nearest neighbor classifier

3 More deep understanding about NNC

- Measuring performance
- The ideal classifier
- Comparing NNC to the ideal classifier

4 Some practical sides of NNC

5 What we have learned

Is NNC too simple to do the right thing?

To answer this question, we proceed in 3 steps

- We define a performance metric for a classifier/algorithm.
- We then propose an ideal classifier.
- We then compare our simple NNC classifier to the ideal one and show that it performs nearly as well.

How to measure performance of a classifier?

Intuition

We should compute accuracy — the percentage of data points being correctly classified, or the error rate — the percentage of data points being incorrectly classified.

Two versions: which one to use?

• Defined on the training data set

$$A^{\text{train}} = \frac{1}{\mathsf{N}} \sum_{n} \mathbb{I}[f(\boldsymbol{x}_n) == y_n], \quad \varepsilon^{\text{train}} = \frac{1}{\mathsf{N}} \sum_{n} \mathbb{I}[f(\boldsymbol{x}_n) \neq y_n]$$

• Defined on the test (evaluation) data set

$$A^{\text{TEST}} = \frac{1}{\mathsf{M}} \sum_{m} \mathbb{I}[f(\boldsymbol{x}_m) == y_m], \quad \varepsilon^{\text{TEST}} = \frac{1}{\mathsf{M}} \sum_{M} \mathbb{I}[f(\boldsymbol{x}_m) \neq y_m]$$
Training data

What are A^{TRAIN} and $\varepsilon^{\text{TRAIN}}$?

(本部)と 本語 と 本語を

3

Training data

What are $A^{\rm TRAIN}$ and $\varepsilon^{\rm TRAIN}?$ $A^{\rm TRAIN}=100\%, \quad \varepsilon^{\rm TRAIN}=0\%$

米部 とくほと くほとう ほ

Training data

What are $A^{\rm TRAIN}$ and $\varepsilon^{\rm TRAIN}?$ $A^{\rm TRAIN}=100\%, \quad \varepsilon^{\rm TRAIN}=0\%$

What are A^{TEST} and $\varepsilon^{\text{TEST}}$?

イロト イポト イヨト イヨト 二日

Training data

What are A^{TRAIN} and $\varepsilon^{\text{TRAIN}}$? $A^{\text{train}} = 100\%, \quad \varepsilon^{\text{train}} = 0\%$

What are A^{TEST} and $\varepsilon^{\text{TEST}}$? $A^{\text{TEST}} = 0\%, \quad \varepsilon^{\text{TEST}} = 100\%$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで September 29, 2015

Leave-one-out (LOO)

Idea

- For each training instance x_n , take it out of the training set and then label it.
- For NNC, x_n's nearest neighbor will not be itself. So the error rate would not become 0 necessarily.

Training data

What are the LOO-version of $A^{\rm TRAIN}$ and $\varepsilon^{\rm TRAIN}?$

Leave-one-out (LOO)

Idea

- For each training instance x_n , take it out of the training set and then label it.
- For NNC, x_n's nearest neighbor will not be itself. So the error rate would not become 0 necessarily.

Training data

What are the LOO-version of $A^{\rm TRAIN}$ and $\varepsilon^{\rm TRAIN}$?

$$\begin{split} A^{\rm train} &= 66.67\% ({\rm i.e.},4/6) \\ \varepsilon^{\rm train} &= 33.33\% ({\rm i.e.},2/6) \end{split}$$

Drawback of the metrics

They are dataset-specific

- Given a different training (or test) dataset, A^{TRAIN} (or A^{TEST}) will change.
- Thus, if we get a dataset "randomly", these variables would be random quantities.

 $A_{\mathcal{D}_1}^{\text{TEST}}, A_{\mathcal{D}_2}^{\text{TEST}}, \cdots, A_{\mathcal{D}_q}^{\text{TEST}}, \cdots$

Drawback of the metrics

They are dataset-specific

- Given a different training (or test) dataset, A^{TRAIN} (or A^{TEST}) will change.
- Thus, if we get a dataset "randomly", these variables would be random quantities.

 $A_{\mathcal{D}_1}^{\text{TEST}}, A_{\mathcal{D}_2}^{\text{TEST}}, \cdots, A_{\mathcal{D}_q}^{\text{TEST}}, \cdots$

These are called "empirical" accuracies (or errors).

Drawback of the metrics

They are dataset-specific

- Given a different training (or test) dataset, A^{TRAIN} (or A^{TEST}) will change.
- Thus, if we get a dataset "randomly", these variables would be random quantities.

$$A_{\mathcal{D}_1}^{\text{TEST}}, A_{\mathcal{D}_2}^{\text{TEST}}, \cdots, A_{\mathcal{D}_q}^{\text{TEST}}, \cdots$$

These are called "empirical" accuracies (or errors).

Can we understand the algorithm itself in a "more certain" nature, by removing the uncertainty caused by the datasets?

Setup

- Assume our data (\pmb{x}, y) is drawn from the joint and unknown distribution $p(\pmb{x}, y)$
- $\bullet\,$ Classification mistake on a single data point ${\boldsymbol x}$ with the ground-truth label y

$$L(f(\boldsymbol{x}), y) = \begin{cases} 0 & \text{if } f(x) = y \\ 1 & \text{if } f(x) \neq y \end{cases}$$

3

- 4 当下 4 当下

Setup

- Assume our data (\pmb{x}, y) is drawn from the joint and unknown distribution $p(\pmb{x}, y)$
- $\bullet\,$ Classification mistake on a single data point ${\boldsymbol x}$ with the ground-truth label y

$$L(f(\boldsymbol{x}), y) = \begin{cases} 0 & \text{if } f(x) = y \\ 1 & \text{if } f(x) \neq y \end{cases}$$

ullet Expected classification mistake on a single data point x

$$R(f, \boldsymbol{x}) = \mathbb{E}_{y \sim p(y|\boldsymbol{x})} L(f(\boldsymbol{x}), y)$$

Setup

- Assume our data (\pmb{x}, y) is drawn from the joint and unknown distribution $p(\pmb{x}, y)$
- $\bullet\,$ Classification mistake on a single data point ${\boldsymbol x}$ with the ground-truth label y

$$L(f(\boldsymbol{x}), y) = \begin{cases} 0 & \text{if } f(x) = y \\ 1 & \text{if } f(x) \neq y \end{cases}$$

ullet Expected classification mistake on a single data point x

$$R(f, \boldsymbol{x}) = \mathbb{E}_{y \sim p(y|\boldsymbol{x})} L(f(\boldsymbol{x}), y)$$

• The average classification mistake by the classifier itself

$$R(f) = \mathbb{E}_{\boldsymbol{x} \sim p(\boldsymbol{x})} R(f, \boldsymbol{x}) = \mathbb{E}_{(\boldsymbol{x}, y) \sim p(\boldsymbol{x}, y)} L(f(\boldsymbol{x}), y)$$

Setup

- Assume our data (\pmb{x}, y) is drawn from the joint and unknown distribution $p(\pmb{x}, y)$
- $\bullet\,$ Classification mistake on a single data point ${\boldsymbol x}$ with the ground-truth label y

$$L(f(\boldsymbol{x}), y) = \begin{cases} 0 & \text{if } f(x) = y \\ 1 & \text{if } f(x) \neq y \end{cases}$$

ullet Expected classification mistake on a single data point x

$$R(f, \boldsymbol{x}) = \mathbb{E}_{y \sim p(y|\boldsymbol{x})} L(f(\boldsymbol{x}), y)$$

• The average classification mistake by the classifier itself

$$R(f) = \mathbb{E}_{\pmb{x} \sim p(\pmb{x})} R(f, \pmb{x}) = \mathbb{E}_{(\pmb{x}, y) \sim p(\pmb{x}, y)} L(f(\pmb{x}), y)$$

(law of iterated expectations, tower property, smoothing)

• L(f(x), y) is called 0/1 loss function — many other forms of loss functions exist for different learning problems.

3

・ 同 ト ・ ヨ ト ・ ヨ ト

- L(f(x), y) is called 0/1 loss function many other forms of loss functions exist for different learning problems.
- Expected conditional risk

$$R(f, \boldsymbol{x}) = \mathbb{E}_{y \sim p(y|\boldsymbol{x})} L(f(\boldsymbol{x}), y)$$

3

< 回 > < 三 > < 三 >

- L(f(x), y) is called 0/1 loss function many other forms of loss functions exist for different learning problems.
- Expected conditional risk

$$R(f, \boldsymbol{x}) = \mathbb{E}_{y \sim p(y|\boldsymbol{x})} L(f(\boldsymbol{x}), y)$$

Expected risk

$$R(f) = \mathbb{E}_{(\boldsymbol{x}, y) \sim p(\boldsymbol{x}, y)} L(f(\boldsymbol{x}), y)$$

3

A B F A B F

- L(f(x), y) is called 0/1 loss function many other forms of loss functions exist for different learning problems.
- Expected conditional risk

$$R(f, \boldsymbol{x}) = \mathbb{E}_{y \sim p(y|\boldsymbol{x})} L(f(\boldsymbol{x}), y)$$

Expected risk

$$R(f) = \mathbb{E}_{(\boldsymbol{x}, y) \sim p(\boldsymbol{x}, y)} L(f(\boldsymbol{x}), y)$$

Empirical risk

$$R_{\mathcal{D}}(f) = \frac{1}{\mathsf{N}} \sum_{n} L(f(\boldsymbol{x}_n), y_n)$$

(This is our empirical error from earlier.)

Professor Ameet Talwalkar

Ex: binary classification

Expected conditional risk of a single data point \boldsymbol{x}

$$\begin{split} R(f, \boldsymbol{x}) &= \mathbb{E}_{y \sim p(y|\boldsymbol{x})} L(f(\boldsymbol{x}), y) \\ &= P(y = 1|\boldsymbol{x}) \mathbb{I}[f(\boldsymbol{x}) = 0] + P(y = 0|\boldsymbol{x}) \mathbb{I}[f(\boldsymbol{x}) = 1] \end{split}$$

< 一型

Ex: binary classification

Expected conditional risk of a single data point \boldsymbol{x}

$$\begin{aligned} R(f, \boldsymbol{x}) &= \mathbb{E}_{y \sim p(y|\boldsymbol{x})} L(f(\boldsymbol{x}), y) \\ &= P(y = 1|\boldsymbol{x}) \mathbb{I}[f(\boldsymbol{x}) = 0] + P(y = 0|\boldsymbol{x}) \mathbb{I}[f(\boldsymbol{x}) = 1] \end{aligned}$$

Let $\eta(\boldsymbol{x}) = P(y = 1 | \boldsymbol{x})$, we have

$$\begin{split} R(f, \boldsymbol{x}) &= \eta(\boldsymbol{x}) \mathbb{I}[f(\boldsymbol{x}) = 0] + (1 - \eta(\boldsymbol{x})) \mathbb{I}[f(\boldsymbol{x}) = 1] \\ &= 1 - \underbrace{\{\eta(\boldsymbol{x}) \mathbb{I}[f(\boldsymbol{x}) = 1] + (1 - \eta(\boldsymbol{x})) \mathbb{I}[f(\boldsymbol{x}) = 0]\}}_{\text{expected conditional accuracy}} \end{split}$$

3

くほと くほと くほと

Ex: binary classification

Expected conditional risk of a single data point \boldsymbol{x}

$$\begin{split} R(f, \boldsymbol{x}) &= \mathbb{E}_{y \sim p(y|\boldsymbol{x})} L(f(\boldsymbol{x}), y) \\ &= P(y = 1|\boldsymbol{x}) \mathbb{I}[f(\boldsymbol{x}) = 0] + P(y = 0|\boldsymbol{x}) \mathbb{I}[f(\boldsymbol{x}) = 1] \end{split}$$

Let $\eta(\boldsymbol{x}) = P(y = 1 | \boldsymbol{x})$, we have

$$\begin{split} R(f, \boldsymbol{x}) &= \eta(\boldsymbol{x}) \mathbb{I}[f(\boldsymbol{x}) = 0] + (1 - \eta(\boldsymbol{x})) \mathbb{I}[f(\boldsymbol{x}) = 1] \\ &= 1 - \underbrace{\{\eta(\boldsymbol{x}) \mathbb{I}[f(\boldsymbol{x}) = 1] + (1 - \eta(\boldsymbol{x})) \mathbb{I}[f(\boldsymbol{x}) = 0]\}}_{\text{expected conditional accuracy}} \end{split}$$

Exercise: please verify the last equality.

33 / 49

Bayes optimal classifier

Consider the following classifier, using the posterior probability $\eta(\pmb{x}) = p(y=1|\pmb{x})$

- 3

(4月) (4日) (4日)

Bayes optimal classifier

Consider the following classifier, using the posterior probability $\eta(\pmb{x}) = p(y=1|\pmb{x})$

$$f^*(\boldsymbol{x}) = \left\{ \begin{array}{ll} 1 & \text{if } \eta(\boldsymbol{x}) \geq 1/2 \\ 0 & \text{if } \eta(\boldsymbol{x}) < 1/2 \end{array} \right. \text{ equivalently } f^*(\boldsymbol{x}) = \left\{ \begin{array}{ll} 1 & \text{if } p(y=1|\boldsymbol{x}) \geq p(y=0|\boldsymbol{x}) \\ 0 & \text{if } p(y=1|\boldsymbol{x}) < p(y=0|\boldsymbol{x}) \end{array} \right.$$

- 3

(4月) (4日) (4日)

Bayes optimal classifier

Consider the following classifier, using the posterior probability $\eta(\pmb{x}) = p(y=1|\pmb{x})$

$$f^*(\boldsymbol{x}) = \left\{ \begin{array}{ll} 1 & \text{if } \eta(\boldsymbol{x}) \ge 1/2 \\ 0 & \text{if } \eta(\boldsymbol{x}) < 1/2 \end{array} \right. \text{ equivalently } f^*(\boldsymbol{x}) = \left\{ \begin{array}{ll} 1 & \text{if } p(y=1|\boldsymbol{x}) \ge p(y=0|\boldsymbol{x}) \\ 0 & \text{if } p(y=1|\boldsymbol{x}) < p(y=0|\boldsymbol{x}) \end{array} \right.$$

Theorem

For any labeling function $f(\cdot)$, $R(f^*, x) \leq R(f, x)$. Similarly, $R(f^*) \leq R(f)$. Namely, $f^*(\cdot)$ is optimal.

From definition

$$R(f, \boldsymbol{x}) = 1 - \{\eta(\boldsymbol{x})\mathbb{I}[f(\boldsymbol{x}) = 1] + (1 - \eta(\boldsymbol{x}))\mathbb{I}[f(\boldsymbol{x}) = 0]\}$$
$$R(f^*, \boldsymbol{x}) = 1 - \{\eta(\boldsymbol{x})\mathbb{I}[f^*(\boldsymbol{x}) = 1] + (1 - \eta(\boldsymbol{x}))\mathbb{I}[f^*(\boldsymbol{x}) = 0]\}$$

Thus,

$$\begin{split} R(f, \boldsymbol{x}) - R(f^*, \boldsymbol{x}) &= \eta(\boldsymbol{x}) \left\{ \mathbb{I}[f^*(\boldsymbol{x}) = 1] - \mathbb{I}[f(\boldsymbol{x}) = 1] \right\} \\ &+ (1 - \eta(\boldsymbol{x})) \left\{ \mathbb{I}[f^*(\boldsymbol{x}) = 0] - \mathbb{I}[f(\boldsymbol{x}) = 0] \right\} \end{split}$$

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

From definition

$$R(f, \boldsymbol{x}) = 1 - \{\eta(\boldsymbol{x})\mathbb{I}[f(\boldsymbol{x}) = 1] + (1 - \eta(\boldsymbol{x}))\mathbb{I}[f(\boldsymbol{x}) = 0]\}$$
$$R(f^*, \boldsymbol{x}) = 1 - \{\eta(\boldsymbol{x})\mathbb{I}[f^*(\boldsymbol{x}) = 1] + (1 - \eta(\boldsymbol{x}))\mathbb{I}[f^*(\boldsymbol{x}) = 0]\}$$

Thus,

$$\begin{split} R(f, \boldsymbol{x}) - R(f^*, \boldsymbol{x}) &= \eta(\boldsymbol{x}) \left\{ \mathbb{I}[f^*(\boldsymbol{x}) = 1] - \mathbb{I}[f(\boldsymbol{x}) = 1] \right\} \\ &+ (1 - \eta(\boldsymbol{x})) \left\{ \mathbb{I}[f^*(\boldsymbol{x}) = 0] - \mathbb{I}[f(\boldsymbol{x}) = 0] \right\} \\ &= \eta(\boldsymbol{x}) \left\{ \mathbb{I}[f^*(\boldsymbol{x}) = 1] - \mathbb{I}[f(\boldsymbol{x}) = 1] \right\} \\ &+ (1 - \eta(\boldsymbol{x})) \left\{ \left(1 - \mathbb{I}[f^*(\boldsymbol{x}) = 1] \right) - \left(1 - \mathbb{I}[f(\boldsymbol{x}) = 1] \right) \right\} \end{split}$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

3

From definition

$$R(f, \boldsymbol{x}) = 1 - \{\eta(\boldsymbol{x})\mathbb{I}[f(\boldsymbol{x}) = 1] + (1 - \eta(\boldsymbol{x}))\mathbb{I}[f(\boldsymbol{x}) = 0]\}$$
$$R(f^*, \boldsymbol{x}) = 1 - \{\eta(\boldsymbol{x})\mathbb{I}[f^*(\boldsymbol{x}) = 1] + (1 - \eta(\boldsymbol{x}))\mathbb{I}[f^*(\boldsymbol{x}) = 0]\}$$

Thus,

$$\begin{split} R(f, \boldsymbol{x}) - R(f^*, \boldsymbol{x}) &= \eta(\boldsymbol{x}) \left\{ \mathbb{I}[f^*(\boldsymbol{x}) = 1] - \mathbb{I}[f(\boldsymbol{x}) = 1] \right\} \\ &+ (1 - \eta(\boldsymbol{x})) \left\{ \mathbb{I}[f^*(\boldsymbol{x}) = 0] - \mathbb{I}[f(\boldsymbol{x}) = 0] \right\} \\ &= \eta(\boldsymbol{x}) \left\{ \mathbb{I}[f^*(\boldsymbol{x}) = 1] - \mathbb{I}[f(\boldsymbol{x}) = 1] \right\} \\ &+ (1 - \eta(\boldsymbol{x})) \left\{ \left(1 - \mathbb{I}[f^*(\boldsymbol{x}) = 1] \right) - \left(1 - \mathbb{I}[f(\boldsymbol{x}) = 1] \right) \right\} \\ &= (2\eta(\boldsymbol{x}) - 1) \left\{ \mathbb{I}[f^*(\boldsymbol{x}) = 1] - \mathbb{I}[f(\boldsymbol{x}) = 1] \right\} \end{split}$$

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

From definition

$$R(f, \boldsymbol{x}) = 1 - \{\eta(\boldsymbol{x})\mathbb{I}[f(\boldsymbol{x}) = 1] + (1 - \eta(\boldsymbol{x}))\mathbb{I}[f(\boldsymbol{x}) = 0]\}$$
$$R(f^*, \boldsymbol{x}) = 1 - \{\eta(\boldsymbol{x})\mathbb{I}[f^*(\boldsymbol{x}) = 1] + (1 - \eta(\boldsymbol{x}))\mathbb{I}[f^*(\boldsymbol{x}) = 0]\}$$

Thus,

$$\begin{split} R(f, \boldsymbol{x}) - R(f^*, \boldsymbol{x}) &= \eta(\boldsymbol{x}) \left\{ \mathbb{I}[f^*(\boldsymbol{x}) = 1] - \mathbb{I}[f(\boldsymbol{x}) = 1] \right\} \\ &+ (1 - \eta(\boldsymbol{x})) \left\{ \mathbb{I}[f^*(\boldsymbol{x}) = 0] - \mathbb{I}[f(\boldsymbol{x}) = 0] \right\} \\ &= \eta(\boldsymbol{x}) \left\{ \mathbb{I}[f^*(\boldsymbol{x}) = 1] - \mathbb{I}[f(\boldsymbol{x}) = 1] \right\} \\ &+ (1 - \eta(\boldsymbol{x})) \left\{ \left(1 - \mathbb{I}[f^*(\boldsymbol{x}) = 1] \right) - \left(1 - \mathbb{I}[f(\boldsymbol{x}) = 1] \right) \right\} \\ &= (2\eta(\boldsymbol{x}) - 1) \left\{ \mathbb{I}[f^*(\boldsymbol{x}) = 1] - \mathbb{I}[f(\boldsymbol{x}) = 1] \right\} \\ &\geq 0 \end{split}$$

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Bayes optimal classifier in general form

For multi-class classification problem

$$f^*(\boldsymbol{x}) = \arg \max_{c \in [\mathsf{C}]} p(y = c | \boldsymbol{x})$$

when C = 2, this reduces to detecting whether or not $\eta(x) = p(y = 1 | x)$ is greater than 1/2.

Bayes optimal classifier in general form

For multi-class classification problem

$$f^*(\boldsymbol{x}) = \arg \max_{c \in [\mathsf{C}]} p(y = c | \boldsymbol{x})$$

when C = 2, this reduces to detecting whether or not $\eta(x) = p(y = 1 | x)$ is greater than 1/2.

Remarks

- The Bayes optimal classifier is generally not computable as it assumes the knowledge of p(x, y) or p(y|x).
- However, it is useful as a conceptual tool to formalize how well a classifier can do *without* knowing the joint distribution.

Comparing NNC to Bayes optimal classifier

How well does our NNC do?

Theorem (Cover-Hart Inequality)

For the NNC rule f^{NNC} for binary classification, we have,

 $R(f^*) \le R(f^{\text{NNC}}) \le 2R(f^*)(1 - R(f^*)) \le 2R(f^*)$

Namely, the expected risk by the classifier is at worst twice that of the Bayes optimal classifier.

In short, NNC seems doing a reasonable thing

Mini-summary

Advantages of NNC

- Computationally, simple and easy to implement just computing the distance
- $\checkmark\,$ Theoretically, has strong guarantees "doing the right thing"

Disadvantages of NNC

- \bullet Computationally intensive for large-scale problems: $O({\rm N}D)$ for labeling a data point
- We need to "carry" the training data around. Without it, we cannot do classification. This type of method is called *nonparametric*.
- Choosing the right distance measure and K can be involved.

3

Outline

1 Administration

- 2 First learning algorithm: Nearest neighbor classifier
- 3 More deep understanding about NNC

Some practical sides of NNC

- How to tune to get the best out of it?
- Preprocessing data

What we have learned

Hypeparameters in NNC

Two practical issues about NNC

- Choosing K, i.e., the number of nearest neighbors (default is 1)
- Choosing the right distance measure (default is Euclidean distance), for example, from the following generalized distance measure

$$\|\boldsymbol{x} - \boldsymbol{x}_n\|_p = \left(\sum_d |x_d - x_{nd}|^p\right)^{1/p}$$

for $p \ge 1$.

Those are not specified by the algorithm itself — resolving them requires empirical studies and are task/dataset-specific.

Tuning by using a validation dataset

Training data (set)

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$
- They are used for learning $f(\cdot)$

Test (evaluation) data

- M samples/instances: $\mathcal{D}^{\text{TEST}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{M}}, y_{\mathsf{M}})\}$
- They are used for assessing how well $f(\cdot)$ will do in predicting an unseen $\pmb{x} \notin \mathcal{D}^{\text{TRAIN}}$

Development (or validation) data

- L samples/instances: $\mathcal{D}^{\text{DEV}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{L}}, y_{\mathsf{L}})\}$
- They are used to optimize hyperparameter(s).

Training data, validation and test data should *not* overlap!

- for each possible value of the hyperparameter (say $K=1,3,\cdots,100$)
 - Train a model using $\mathcal{D}^{\text{TRAIN}}$
 - \blacktriangleright Evaluate the performance of the model on $\mathcal{D}^{^{\mathrm{DEV}}}$
- $\bullet\,$ Choose the model with the best performance on $\mathcal{D}^{\rm \scriptscriptstyle DEV}$
- Evaluate the model on $\mathcal{D}^{^{\mathrm{TEST}}}$

Cross-validation

What if we do not have validation data?

- We split the training data into S equal parts.
- We use each part *in turn* as a validation dataset and use the others as a training dataset.
- We choose the hyperparameter such that *on average*, the model performing the best

S = 5: 5-fold cross validation

Special case: when S = N, this will be leave-one-out.

43 / 49
Recipe

- $\bullet\,$ Split the training data into S equal parts. Denote each part as $\mathcal{D}_s^{\rm TRAIN}$
- for each possible value of the hyperparameter (say $K=1,3,\cdots,100$)
 - ▶ for every $s \in [1, \mathsf{S}]$
 - $\star \ \, {\rm Train} \ \, {\rm a} \ \, {\rm model} \ \, {\rm using} \ \, {\cal D}_{\backslash s}^{\rm \scriptscriptstyle TRAIN} = {\cal D}^{\rm \scriptscriptstyle TRAIN} {\cal D}_{s}^{\rm \scriptscriptstyle TRAIN}$
 - \star Evaluate the performance of the model on $\mathcal{D}^{^{\mathrm{TRAIN}}}_s$
 - Average the S performance metrics
- Choose the hyperparameter corresponding to the best averaged performance
- \bullet Use the best hyerparamter to train on a model using all $\mathcal{D}^{^{\rm TRAIN}}$
- Evaluate the model on $\mathcal{D}^{^{\mathrm{TEST}}}$

Yet, another practical issue with NNC

Distances depend on units of the features!

Preprocess data

Normalize data to have zero mean and unit standard deviation in each dimension

• Compute the means and standard deviations in each feature

$$\bar{x}_d = \frac{1}{N} \sum_n x_{nd}, \qquad s_d^2 = \frac{1}{N-1} \sum_n (x_{nd} - \bar{x}_d)^2$$

• Scale the feature accordingly

$$x_{nd} \leftarrow \frac{x_{nd} - \bar{x}_d}{s_d}$$

Many other ways of normalizing data — you would need/want to try different ones and pick them using (cross)validation

46 / 49

Outline

1 Administration

- 2 First learning algorithm: Nearest neighbor classifier
- 3 More deep understanding about NNC
- 4 Some practical sides of NNC
- 5 What we have learned

Summary so far

- Described a simple learning algorithm
 - Used intensively in practical applications you will get a taste of it in your homework
 - Discussed a few practical aspects, such as tuning hyperparameters, with (cross)validation
- Briefly studied its theoretical properties
 - Concepts: loss function, risks, Bayes optimal
 - Theoretical guarantees: explaining why NNC would work

Administration Summary

- I've included a second optional textbook (*Elements of Statistical Learning*) that is free online
 - Course website will include readings from both books
- I'd like to bump up enrollment; I don't know if this will happen
 - No updates to waitlist and no PTEs until this is resolved
 - If enrollment does not go up, then priority will go to CS students who do well on the first problem set
- I will upload HW1 right after class to the course website
 - ▶ Due next Tuesday (10/6) at the beginning of class
 - Submission details are included in the assignment
 - Join Piazza if you haven't already