Nearest Neighbor Classification

Professor Ameet Talwalkar

Slide Credit: Professor Fei Sha
Outline

1. Administration
2. First learning algorithm: Nearest neighbor classifier
3. More deep understanding about NNC
4. Some practical sides of NNC
5. What we have learned
Textbook

- *Machine Learning: A Probabilistic Perspective* not currently available at the library
- I’ve included a second optional textbook (*Elements of Statistical Learning*) that is free online
- Course website will include readings from both books
Registering for Course

- We can currently accommodate 75 students
- 120+ students want to take the course
- I’d like to bump up enrollment; I don’t know if this will happen
 - We’d need another TA and a bigger classroom
 - I expect an update shortly, and will post to Piazza
 - No updates to waitlist and no PTEs until this is resolved
- If enrollment does not go up, then priority will go to CS students who do well on the first problem set
 - Pre-req of CS180 will not be an issue
Homework 1

- I will upload it right after class to the course website
- Basic math questions, MATLAB coding assignment, Academic Integrity Form
 - Look on course website for details about getting access to MATLAB
- Due next Tuesday (10/6) at the beginning of class
 - Submission details are included in the assignment
 - Join Piazza if you haven’t already
Outline

1. Administration

2. First learning algorithm: Nearest neighbor classifier
 - Intuitive example
 - General setup for classification
 - Algorithm

3. More deep understanding about NNC

4. Some practical sides of NNC

5. What we have learned
Recognizing flowers

Types of Iris: setosa, versicolor, and virginica
Measuring the properties of the flowers

Features: the widths and lengths of sepal and petal
Often, data is conveniently organized as a table

Ex: Iris data (click here for all data)

- 4 features
- 3 classes

<table>
<thead>
<tr>
<th>Sepal length</th>
<th>Sepal width</th>
<th>Petal length</th>
<th>Petal width</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.2</td>
<td>l. setosa</td>
</tr>
<tr>
<td>4.9</td>
<td>3.0</td>
<td>1.4</td>
<td>0.2</td>
<td>l. setosa</td>
</tr>
<tr>
<td>4.7</td>
<td>3.2</td>
<td>1.3</td>
<td>0.2</td>
<td>l. setosa</td>
</tr>
<tr>
<td>4.6</td>
<td>3.1</td>
<td>1.5</td>
<td>0.2</td>
<td>l. setosa</td>
</tr>
<tr>
<td>5.0</td>
<td>3.6</td>
<td>1.4</td>
<td>0.2</td>
<td>l. setosa</td>
</tr>
<tr>
<td>5.4</td>
<td>3.9</td>
<td>1.7</td>
<td>0.4</td>
<td>l. setosa</td>
</tr>
<tr>
<td>4.6</td>
<td>3.4</td>
<td>1.4</td>
<td>0.3</td>
<td>l. setosa</td>
</tr>
<tr>
<td>5.0</td>
<td>3.4</td>
<td>1.5</td>
<td>0.2</td>
<td>l. setosa</td>
</tr>
<tr>
<td>4.4</td>
<td>2.9</td>
<td>1.4</td>
<td>0.2</td>
<td>l. setosa</td>
</tr>
<tr>
<td>4.9</td>
<td>3.1</td>
<td>1.5</td>
<td>0.1</td>
<td>l. setosa</td>
</tr>
</tbody>
</table>
Pairwise scatter plots of 131 flower specimens

Visualization of data helps to identify the right learning model to use

Each colored point is a flower specimen: setosa, versicolor, virginica
Different types seem well-clustered and separable

Using two features: petal width and sepal length
Labeling an unknown flower type

Closer to red cluster: so labeling it as setosa
Multi-class classification

Classify data into one of the multiple categories

- Input (feature vectors): \(x \in \mathbb{R}^D \)
- Output (label): \(y \in [C] = \{1, 2, \ldots, C\} \)
- Learning goal: \(y = f(x) \)

Special case: binary classification

- Number of classes: \(C = 2 \)
- Labels: \(\{0, 1\} \) or \(\{-1, +1\} \)
More terminology

Training data (set)
- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\}$
- They are used for learning $f(\cdot)$

Test (evaluation) data
- M samples/instances: $\mathcal{D}^{\text{TEST}} = \{(x_1, y_1), (x_2, y_2), \ldots, (x_M, y_M)\}$
- They are used for assessing how well $f(\cdot)$ will do in predicting an unseen $x \notin \mathcal{D}^{\text{TRAIN}}$

Training data and test data should not overlap: $\mathcal{D}^{\text{TRAIN}} \cap \mathcal{D}^{\text{TEST}} = \emptyset$
Nearest neighbor classification (NNC)

Nearest neighbor

\[\mathbf{x}(1) = \mathbf{x}_{\text{nn}}(\mathbf{x}) \]

where \(\text{nn}(\mathbf{x}) \in [N] = \{1, 2, \ldots, N\} \), i.e., the index to one of the training instances.
Nearest neighbor classification (NNC)

Nearest neighbor

\[x(1) = x_{nn}(x) \]

where \(nn(x) \in [N] = \{1, 2, \cdots, N\} \), i.e., the index to one of the training instances

\[nn(x) = \arg\min_{n \in [N]} \|x - x_n\|^2 = \arg\min_{n \in [N]} \sum_{d=1}^{D} (x_d - x_{nd})^2 \]
Nearest neighbor classification (NNC)

Nearest neighbor

\[x(1) = x_{\text{nn}(x)} \]

where \(\text{nn}(x) \in \mathbb{N} = \{1, 2, \cdots, N\} \), i.e., the index to one of the training instances

\[\text{nn}(x) = \arg \min_{n \in \mathbb{N}} \| x - x_n \|_2^2 = \arg \min_{n \in \mathbb{N}} \sum_{d=1}^{D} (x_d - x_{nd})^2 \]

Classification rule

\[y = f(x) = y_{\text{nn}(x)} \]
Visual example

In this 2-dimensional example, the nearest point to x is a red training instance, thus, x will be labeled as red.
Example: classify Iris with two features

Training data

<table>
<thead>
<tr>
<th>ID (n)</th>
<th>petal width (x_1)</th>
<th>sepal length (x_2)</th>
<th>category (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>5.1</td>
<td>setosa</td>
</tr>
<tr>
<td>2</td>
<td>1.4</td>
<td>7.0</td>
<td>versicolor</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>6.7</td>
<td>virginica</td>
</tr>
</tbody>
</table>

Flower with unknown category
petal width = 1.8 and sepal width = 6.4
Calculating distance $= \sqrt{(x_1 - x_{1n})^2 + (x_2 - x_{2n})^2}$

ID distance
1 1.75
2 0.72
3 0.76

Thus, the category is versicolor (the real category is virginica)
Example: classify Iris with two features

Training data

<table>
<thead>
<tr>
<th>ID (n)</th>
<th>petal width (x_1)</th>
<th>sepal length (x_2)</th>
<th>category (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>5.1</td>
<td>setosa</td>
</tr>
<tr>
<td>2</td>
<td>1.4</td>
<td>7.0</td>
<td>versicolor</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>6.7</td>
<td>virginica</td>
</tr>
</tbody>
</table>

Flower with unknown category

petal width = 1.8 and sepal width = 6.4
Example: classify Iris with two features

Training data

<table>
<thead>
<tr>
<th>ID (n)</th>
<th>petal width (x_1)</th>
<th>sepal length (x_2)</th>
<th>category (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>5.1</td>
<td>setosa</td>
</tr>
<tr>
<td>2</td>
<td>1.4</td>
<td>7.0</td>
<td>versicolor</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>6.7</td>
<td>virginica</td>
</tr>
</tbody>
</table>

Flower with unknown category

petal width = 1.8 and sepal width = 6.4

Calculating distance $= \sqrt{(x_1 - x_{n1})^2 + (x_2 - x_{n2})^2}$

<table>
<thead>
<tr>
<th>ID</th>
<th>distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.75</td>
</tr>
<tr>
<td>2</td>
<td>0.72</td>
</tr>
<tr>
<td>3</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Thus, the category is *versicolor* (the real category is *virginica*)
How to measure nearness with other distances?

Previously, we use the Euclidean distance

$$\text{nn}(x) = \arg\min_{n \in [N]} \| x - x_n \|^2_2$$

We can also use alternative distances

E.g., the following L_1 distance (i.e., city block distance, or Manhattan distance)

$$\text{nn}(x) = \arg\min_{n \in [N]} \| x - x_n \|_1$$

$$= \arg\min_{n \in [N]} \sum_{d=1}^{D} |x_d - x_{nd}|$$

Green line is Euclidean distance. Red, Blue, and Yellow lines are L_1 distance.
Decision boundary

For every point in the space, we can determine its label using the NNC rule. This gives rise to a decision boundary that partitions the space into different regions.

\[x_1 \quad x_2 \]

(b)
K-nearest neighbor (KNN) classification

Increase the number of nearest neighbors to use?

- **1-nearest neighbor:** $\text{nn}_1(x) = \arg\min_{n \in [N]} \| x - x_n \|_2^2$
- **2nd-nearest neighbor:** $\text{nn}_2(x) = \arg\min_{n \in [N] - \text{nn}_1(x)} \| x - x_n \|_2^2$
- **3rd-nearest neighbor:** $\text{nn}_2(x) = \arg\min_{n \in [N] - \text{nn}_1(x) - \text{nn}_2(x)} \| x - x_n \|_2^2$
K-nearest neighbor (KNN) classification

Increase the number of nearest neighbors to use?

- 1-nearest neighbor: \(\text{nn}_1(x) = \arg \min_{n \in [N]} \| x - x_n \|_2^2 \)
- 2nd-nearest neighbor: \(\text{nn}_2(x) = \arg \min_{n \in [N] - \text{nn}_1(x)} \| x - x_n \|_2^2 \)
- 3rd-nearest neighbor: \(\text{nn}_2(x) = \arg \min_{n \in [N] - \text{nn}_1(x) - \text{nn}_2(x)} \| x - x_n \|_2^2 \)

The set of K-nearest neighbor

\[
\text{knn}(x) = \{ \text{nn}_1(x), \text{nn}_2(x), \cdots, \text{nn}_K(x) \}
\]

Let \(x(k) = x_{\text{nn}_k}(x) \), then

\[
\| x - x(1) \|_2^2 \leq \| x - x(2) \|_2^2 \leq \cdots \leq \| x - x(K) \|_2^2
\]
How to classify with K neighbors?

Classification rule:

- Every neighbor votes: suppose y_n (the true label) for x_n is c, then vote for c is 1.
- Vote for $c' \neq c$ is 0.

We use the indicator function $I(y_n = c)$ to represent.

Aggregate everyone's vote $v_c = \sum_{n \in \text{knn}(x)} I(y_n = c)$, $\forall c \in [C]$.

Label with the majority $y = f(x) = \arg \max_c v_c$.

Professor Ameet Talwalkar
CS260 Machine Learning Algorithms
September 29, 2015
How to classify with K neighbors?

Classification rule

- Every neighbor votes: suppose y_n (the true label) for x_n is c, then
 - vote for c is 1
 - vote for $c' \neq c$ is 0

 We use the *indicator function* $\mathbb{I}(y_n == c)$ to represent.

- Aggregate everyone’s vote

$$v_c = \sum_{n \in \text{knn}(x)} \mathbb{I}(y_n == c), \quad \forall \quad c \in [C]$$

- Label with the majority

$$y = f(x) = \arg \max_{c \in [C]} v_c$$
Example

K=1, Label: red

(a)
Example

K=1, Label: red

K=3, Label: red
Example

K=1, Label: red

K=3, Label: red

K=5, Label: blue
How to choose an optimal K?

When K increases, the decision boundary becomes smooth.
How to choose an optimal K?

When K increases, the decision boundary becomes smooth.
Mini-summary

Advantages of NNC

- Computationally, simple and easy to implement – just computing the distance
- Theoretically, has strong guarantees “doing the right thing”

Disadvantages of NNC

- Computationally intensive for large-scale problems: $O(ND)$ for labeling a data point
- We need to “carry” the training data around. Without it, we cannot do classification. This type of method is called nonparametric.
- Choosing the right distance measure and K can be involved.
Outline

1 Administration

2 First learning algorithm: Nearest neighbor classifier

3 More deep understanding about NNC
 - Measuring performance
 - The ideal classifier
 - Comparing NNC to the ideal classifier

4 Some practical sides of NNC

5 What we have learned
Is NNC too simple to do the right thing?

To answer this question, we proceed in 3 steps

1. We define a performance metric for a classifier/algorithm.
2. We then propose an ideal classifier.
3. We then compare our simple NNC classifier to the ideal one and show that it performs nearly as well.
How to measure performance of a classifier?

Intuition
We should compute accuracy — the percentage of data points being correctly classified, or the error rate — the percentage of data points being incorrectly classified.

Two versions: which one to use?
- Defined on the training data set
 \[
 A^{\text{TRAIN}} = \frac{1}{N} \sum_{n} \mathbb{I}[f(x_n) == y_n], \quad \varepsilon^{\text{TRAIN}} = \frac{1}{N} \sum_{n} \mathbb{I}[f(x_n) \neq y_n]
 \]
- Defined on the test (evaluation) data set
 \[
 A^{\text{TEST}} = \frac{1}{M} \sum_{m} \mathbb{I}[f(x_m) == y_m], \quad \varepsilon^{\text{TEST}} = \frac{1}{M} \sum_{M} \mathbb{I}[f(x_m) \neq y_m]
 \]
Example

Training data

What are A^TRAIN and $\varepsilon^\text{TRAIN}?$
What are A^{TRAIN} and $\varepsilon^{\text{TRAIN}}$?

$A^{\text{TRAIN}} = 100\%$, $\varepsilon^{\text{TRAIN}} = 0\%$
What are A^{TRAIN} and $\varepsilon^{\text{TRAIN}}$?

$A^{\text{TRAIN}} = 100\%$, $\varepsilon^{\text{TRAIN}} = 0\%$

What are A^{TEST} and $\varepsilon^{\text{TEST}}$?
Example

Training data

What are A^{TRAIN} and $\varepsilon^{\text{TRAIN}}$?

$A^{\text{TRAIN}} = 100\%$, $\varepsilon^{\text{TRAIN}} = 0\%$

Test data

What are A^{TEST} and $\varepsilon^{\text{TEST}}$?

$A^{\text{TEST}} = 0\%$, $\varepsilon^{\text{TEST}} = 100\%$
Leave-one-out (LOO)

Idea

- For each training instance x_n, take it out of the training set and then label it.
- For NNC, x_n’s nearest neighbor will not be itself. So the error rate would not become 0 necessarily.

What are the LOO-version of A^{TRAIN} and $\varepsilon^{\text{TRAIN}}$?
Leave-one-out (LOO)

Idea

- For each training instance x_n, take it out of the training set and then label it.
- For NNC, x_n’s nearest neighbor will not be itself. So the error rate would not become 0 necessarily.

What are the LOO-version of A_{TRAIN} and $\varepsilon_{\text{TRAIN}}$?

- $A_{\text{TRAIN}} = 66.67\%$ (i.e., $4/6$)
- $\varepsilon_{\text{TRAIN}} = 33.33\%$ (i.e., $2/6$)
Drawback of the metrics

They are dataset-specific

- Given a different training (or test) dataset, A^{TRAIN} (or A^{TEST}) will change.
- Thus, if we get a dataset “randomly”, these variables would be random quantities.

$$A_{D_1}^{\text{TEST}}, A_{D_2}^{\text{TEST}}, \cdots, A_{D_q}^{\text{TEST}}, \cdots$$
Drawback of the metrics

They are dataset-specific

- Given a different training (or test) dataset, A^{TRAIN} (or A^{TEST}) will change.
- Thus, if we get a dataset “randomly”, these variables would be random quantities.

$$A^{\text{TEST}}_{D_1}, A^{\text{TEST}}_{D_2}, \ldots, A^{\text{TEST}}_{D_q}, \ldots$$

These are called “empirical” accuracies (or errors).
Drawback of the metrics

They are dataset-specific

- Given a different training (or test) dataset, A^{TRAIN} (or A^{TEST}) will change.
- Thus, if we get a dataset “randomly”, these variables would be random quantities.

$$A_{D_1}^{\text{TEST}}, A_{D_2}^{\text{TEST}}, \ldots, A_{D_q}^{\text{TEST}}, \ldots$$

These are called “empirical” accuracies (or errors).

Can we understand the algorithm itself in a “more certain” nature, by removing the uncertainty caused by the datasets?
Expected mistakes

Setup

- Assume our data \((x, y)\) is drawn from the joint and \textit{unknown} distribution \(p(x, y)\)
- Classification mistake on a single data point \(x\) with the ground-truth label \(y\)

\[
L(f(x), y) = \begin{cases}
0 & \text{if } f(x) = y \\
1 & \text{if } f(x) \neq y
\end{cases}
\]
Expected mistakes

Setup

- Assume our data \((x, y)\) is drawn from the joint and unknown distribution \(p(x, y)\).
- Classification mistake on a single data point \(x\) with the ground-truth label \(y\)
 \[
 L(f(x), y) = \begin{cases}
 0 & \text{if } f(x) = y \\
 1 & \text{if } f(x) \neq y
 \end{cases}
 \]
- Expected classification mistake on a single data point \(x\)
 \[
 R(f, x) = \mathbb{E}_{y \sim p(y|x)} L(f(x), y)
 \]
Expected mistakes

Setup

- Assume our data \((x, y)\) is drawn from the joint and unknown distribution \(p(x, y)\).
- Classification mistake on a single data point \(x\) with the ground-truth label \(y\)

\[
L(f(x), y) = \begin{cases}
0 & \text{if } f(x) = y \\
1 & \text{if } f(x) \neq y
\end{cases}
\]

- Expected classification mistake on a single data point \(x\)

\[
R(f, x) = \mathbb{E}_{y \sim p(y|x)} L(f(x), y)
\]

- The average classification mistake by the classifier itself

\[
R(f) = \mathbb{E}_{x \sim p(x)} R(f, x) = \mathbb{E}_{(x, y) \sim p(x, y)} L(f(x), y)
\]
Expected mistakes

Setup

- Assume our data \((x, y)\) is drawn from the joint and unknown distribution \(p(x, y)\).
- Classification mistake on a single data point \(x\) with the ground-truth label \(y\)
 \[
 L(f(x), y) = \begin{cases}
 0 & \text{if } f(x) = y \\
 1 & \text{if } f(x) \neq y
 \end{cases}
 \]
- Expected classification mistake on a single data point \(x\)
 \[
 R(f, x) = \mathbb{E}_{y \sim p(y|x)} L(f(x), y)
 \]
- The average classification mistake by the classifier itself
 \[
 R(f) = \mathbb{E}_{x \sim p(x)} R(f, x) = \mathbb{E}_{(x, y) \sim p(x, y)} L(f(x), y)
 \]
 (law of iterated expectations, tower property, smoothing)
Terminology

- $L(f(x), y)$ is called 0/1 loss function — many other forms of loss functions exist for different learning problems.
Terminology

- $L(f(x), y)$ is called 0/1 loss function — many other forms of loss functions exist for different learning problems.

- Expected conditional risk

$$R(f, x) = \mathbb{E}_{y \sim p(y|x)} L(f(x), y)$$
Terminology

- $L(f(x), y)$ is called 0/1 loss function — many other forms of loss functions exist for different learning problems.

- Expected conditional risk

\[R(f, x) = \mathbb{E}_{y \sim p(y|x)} L(f(x), y) \]

- Expected risk

\[R(f) = \mathbb{E}_{(x,y) \sim p(x,y)} L(f(x), y) \]
Terminology

- $L(f(x), y)$ is called 0/1 loss function — many other forms of loss functions exist for different learning problems.

- Expected conditional risk

$$R(f, x) = \mathbb{E}_{y \sim p(y|x)} L(f(x), y)$$

- Expected risk

$$R(f) = \mathbb{E}_{(x,y) \sim p(x,y)} L(f(x), y)$$

- Empirical risk

$$R_D(f) = \frac{1}{N} \sum_{n} L(f(x_n), y_n)$$

(This is our empirical error from earlier.)
Expected conditional risk of a single data point \(\mathbf{x} \)

\[
R(f, \mathbf{x}) = \mathbb{E}_{y \sim p(y | \mathbf{x})} L(f(\mathbf{x}), y) \\
= P(y = 1 | \mathbf{x}) \mathbb{I}[f(\mathbf{x}) = 0] + P(y = 0 | \mathbf{x}) \mathbb{I}[f(\mathbf{x}) = 1]
\]
Expected conditional risk of a single data point \(x \)

\[
R(f, x) = \mathbb{E}_{y \sim p(y|x)} L(f(x), y)
\]

\[
= P(y = 1|x) \mathbb{I}[f(x) = 0] + P(y = 0|x) \mathbb{I}[f(x) = 1]
\]

Let \(\eta(x) = P(y = 1|x) \), we have

\[
R(f, x) = \eta(x) \mathbb{I}[f(x) = 0] + (1 - \eta(x)) \mathbb{I}[f(x) = 1]
\]

\[
= 1 - \{ \eta(x) \mathbb{I}[f(x) = 1] + (1 - \eta(x)) \mathbb{I}[f(x) = 0] \}
\]

expected conditional accuracy
Expected conditional risk of a single data point \(x \)

\[
R(f, x) = \mathbb{E}_{y \sim p(y|x)} L(f(x), y)
\]

\[
= P(y = 1|x) \mathbb{I}[f(x) = 0] + P(y = 0|x) \mathbb{I}[f(x) = 1]
\]

Let \(\eta(x) = P(y = 1|x) \), we have

\[
R(f, x) = \eta(x) \mathbb{I}[f(x) = 0] + (1 - \eta(x)) \mathbb{I}[f(x) = 1]
\]

\[
= 1 - \left\{ \eta(x) \mathbb{I}[f(x) = 1] + (1 - \eta(x)) \mathbb{I}[f(x) = 0] \right\}
\]

expected conditional accuracy

Exercise: please verify the last equality.
Bayes optimal classifier

Consider the following classifier, using the posterior probability

\[\eta(x) = p(y = 1|x) \]
Bayes optimal classifier

Consider the following classifier, using the posterior probability
\[\eta(x) = p(y = 1|x) \]
\[f^*(x) = \begin{cases} 1 & \text{if } \eta(x) \geq 1/2 \\ 0 & \text{if } \eta(x) < 1/2 \end{cases} \]
equivalently
\[f^*(x) = \begin{cases} 1 & \text{if } p(y = 1|x) \geq p(y = 0|x) \\ 0 & \text{if } p(y = 1|x) < p(y = 0|x) \end{cases} \]
Bayes optimal classifier

Consider the following classifier, using the posterior probability
\[\eta(x) = p(y = 1|x) \]

\[f^*(x) = \begin{cases} 1 & \text{if } \eta(x) \geq 1/2 \\ 0 & \text{if } \eta(x) < 1/2 \end{cases} \]
equivalently \[f^*(x) = \begin{cases} 1 & \text{if } p(y = 1|x) \geq p(y = 0|x) \\ 0 & \text{if } p(y = 1|x) < p(y = 0|x) \end{cases} \]

Theorem

For any labeling function \(f(\cdot) \), \(R(f^*, x) \leq R(f, x) \). Similarly, \(R(f^*) \leq R(f) \). Namely, \(f^*(\cdot) \) is optimal.
Proof

From definition

\[R(f, x) = 1 - \{\eta(x)I[f(x) = 1] + (1 - \eta(x))I[f(x) = 0]\} \]
\[R(f^*, x) = 1 - \{\eta(x)I[f^*(x) = 1] + (1 - \eta(x))I[f^*(x) = 0]\} \]

Thus,

\[R(f, x) - R(f^*, x) = \eta(x)\{I[f^*(x) = 1] - I[f(x) = 1]\} + (1 - \eta(x))\{I[f^*(x) = 0] - I[f(x) = 0]\} \]
Proof

From definition

\[R(f, x) = 1 - \{ \eta(x) I[f(x) = 1] + (1 - \eta(x)) I[f(x) = 0] \} \]
\[R(f^*, x) = 1 - \{ \eta(x) I[f^*(x) = 1] + (1 - \eta(x)) I[f^*(x) = 0] \} \]

Thus,

\[R(f, x) - R(f^*, x) = \eta(x) \{ I[f^*(x) = 1] - I[f(x) = 1] \} \]
\[+ (1 - \eta(x)) \{ I[f^*(x) = 0] - I[f(x) = 0] \} \]
\[= \eta(x) \{ I[f^*(x) = 1] - I[f(x) = 1] \} \]
\[+ (1 - \eta(x)) \left\{ \left(1 - I[f^*(x) = 1] \right) - \left(1 - I[f(x) = 1] \right) \right\} \]
Proof

From definition

\[
R(f, x) = 1 - \{\eta(x)\mathbb{I}[f(x) = 1] + (1 - \eta(x))\mathbb{I}[f(x) = 0]\}
\]

\[
R(f^*, x) = 1 - \{\eta(x)\mathbb{I}[f^*(x) = 1] + (1 - \eta(x))\mathbb{I}[f^*(x) = 0]\}
\]

Thus,

\[
R(f, x) - R(f^*, x) = \eta(x) \{\mathbb{I}[f^*(x) = 1] - \mathbb{I}[f(x) = 1]\}
\]

\[
+ (1 - \eta(x)) \{\mathbb{I}[f^*(x) = 0] - \mathbb{I}[f(x) = 0]\}
\]

\[
= \eta(x) \{\mathbb{I}[f^*(x) = 1] - \mathbb{I}[f(x) = 1]\}
\]

\[
+ (1 - \eta(x)) \left\{ \left(1 - \mathbb{I}[f^*(x) = 1]\right) - \left(1 - \mathbb{I}[f(x) = 1]\right) \right\}
\]

\[
= (2\eta(x) - 1) \{\mathbb{I}[f^*(x) = 1] - \mathbb{I}[f(x) = 1]\}
\]
Proof

From definition

\[
R(f, \mathbf{x}) = 1 - \{ \eta(\mathbf{x}) \mathbb{I}[f(\mathbf{x}) = 1] + (1 - \eta(\mathbf{x})) \mathbb{I}[f(\mathbf{x}) = 0] \}
\]

\[
R(f^*, \mathbf{x}) = 1 - \{ \eta(\mathbf{x}) \mathbb{I}[f^*(\mathbf{x}) = 1] + (1 - \eta(\mathbf{x})) \mathbb{I}[f^*(\mathbf{x}) = 0] \}
\]

Thus,

\[
R(f, \mathbf{x}) - R(f^*, \mathbf{x}) = \eta(\mathbf{x}) \{ \mathbb{I}[f^*(\mathbf{x}) = 1] - \mathbb{I}[f(\mathbf{x}) = 1] \}
+ (1 - \eta(\mathbf{x})) \{ \mathbb{I}[f^*(\mathbf{x}) = 0] - \mathbb{I}[f(\mathbf{x}) = 0] \}
= \eta(\mathbf{x}) \{ \mathbb{I}[f^*(\mathbf{x}) = 1] - \mathbb{I}[f(\mathbf{x}) = 1] \}
+ (1 - \eta(\mathbf{x})) \left\{ \left(1 - \mathbb{I}[f^*(\mathbf{x}) = 1] \right) - \left(1 - \mathbb{I}[f(\mathbf{x}) = 1] \right) \right\}
= (2\eta(\mathbf{x}) - 1) \{ \mathbb{I}[f^*(\mathbf{x}) = 1] - \mathbb{I}[f(\mathbf{x}) = 1] \}
\geq 0
\]
Bayes optimal classifier in general form

For multi-class classification problem

\[f^*(x) = \arg \max_{c \in [C]} p(y = c|x) \]

when \(C = 2 \), this reduces to detecting whether or not \(\eta(x) = p(y = 1|x) \) is greater than \(1/2 \).
Bayes optimal classifier in general form

For multi-class classification problem

\[f^*(x) = \arg \max_{c \in [C]} p(y = c | x) \]

when \(C = 2 \), this reduces to detecting whether or not \(\eta(x) = p(y = 1 | x) \) is greater than \(1/2 \).

Remarks

- The Bayes optimal classifier is generally not computable as it assumes the knowledge of \(p(x, y) \) or \(p(y | x) \).
- However, it is useful as a conceptual tool to formalize how well a classifier can do \textit{without} knowing the joint distribution.
Comparing NNC to Bayes optimal classifier

How well does our NNC do?

Theorem (Cover-Hart Inequality)

For the NNC rule \(f^{\text{NNC}} \) for binary classification, we have,

\[
R(f^*) \leq R(f^{\text{NNC}}) \leq 2R(f^*)(1 - R(f^*)) \leq 2R(f^*)
\]

Namely, the expected risk by the classifier is at worst twice that of the Bayes optimal classifier.

In short, NNC seems doing a reasonable thing
Mini-summary

Advantages of NNC

- Computationally, simple and easy to implement – just computing the distance

- Theoretically, has strong guarantees “doing the right thing”

Disadvantages of NNC

- Computationally intensive for large-scale problems: $O(ND)$ for labeling a data point

- We need to “carry” the training data around. Without it, we cannot do classification. This type of method is called nonparametric.

- Choosing the right distance measure and K can be involved.
Outline

1. Administration

2. First learning algorithm: Nearest neighbor classifier

3. More deep understanding about NNC

4. Some practical sides of NNC
 - How to tune to get the best out of it?
 - Preprocessing data

5. What we have learned
Hypeparameters in NNC

Two practical issues about NNC

- Choosing K, i.e., the number of nearest neighbors (default is 1)
- Choosing the right distance measure (default is Euclidean distance), for example, from the following generalized distance measure

$$\|\mathbf{x} - \mathbf{x}_n\|_p = \left(\sum_d |x_d - x_{nd}|^p \right)^{1/p}$$

for $p \geq 1$.

Those are not specified by the algorithm itself — resolving them requires empirical studies and are task/dataset-specific.
Tuning by using a validation dataset

Training data (set)
- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\}$
- They are used for learning $f(\cdot)$

Test (evaluation) data
- M samples/instances: $\mathcal{D}^{\text{TEST}} = \{(x_1, y_1), (x_2, y_2), \ldots, (x_M, y_M)\}$
- They are used for assessing how well $f(\cdot)$ will do in predicting an unseen $x \notin \mathcal{D}^{\text{TRAIN}}$

Development (or validation) data
- L samples/instances: $\mathcal{D}^{\text{DEV}} = \{(x_1, y_1), (x_2, y_2), \ldots, (x_L, y_L)\}$
- They are used to optimize hyperparameter(s).

Training data, validation and test data should not overlap!
Recipe

- for each possible value of the hyperparameter (say $K = 1, 3, \cdots, 100$)
 - Train a model using D^{TRAIN}
 - Evaluate the performance of the model on D^{DEV}
- Choose the model with the best performance on D^{DEV}
- Evaluate the model on D^{TEST}
Cross-validation

What if we do not have validation data?

- We split the training data into S equal parts.
- We use each part in turn as a validation dataset and use the others as a training dataset.
- We choose the hyperparameter such that on average, the model performing the best

$S = 5$: 5-fold cross validation

Special case: when $S = N$, this will be leave-one-out.
Recipe

- Split the training data into S equal parts. Denote each part as D_{s}^{TRAIN}
- for each possible value of the hyperparameter (say $K = 1, 3, \cdots, 100$)
 - for every $s \in [1, S]$
 - Train a model using $D_{s}^{\text{TRAIN}} = D^{\text{TRAIN}} - D_{s}^{\text{TRAIN}}$
 - Evaluate the performance of the model on D_{s}^{TRAIN}
 - Average the S performance metrics
- Choose the hyperparameter corresponding to the best averaged performance
- Use the best hyperparameter to train on a model using all D^{TRAIN}
- Evaluate the model on D^{TEST}
Yet, another practical issue with NNC

Distances depend on units of the features!
Preprocess data

Normalize data to have zero mean and unit standard deviation in each dimension

- Compute the means and standard deviations in each feature

\[
\bar{x}_d = \frac{1}{N} \sum_n x_{nd}, \quad s_d^2 = \frac{1}{N-1} \sum_n (x_{nd} - \bar{x}_d)^2
\]

- Scale the feature accordingly

\[
x_{nd} \leftarrow \frac{x_{nd} - \bar{x}_d}{s_d}
\]

Many other ways of normalizing data — you would need/want to try different ones and pick them using (cross)validation
Outline

1. Administration
2. First learning algorithm: Nearest neighbor classifier
3. More deep understanding about NNC
4. Some practical sides of NNC
5. What we have learned
Summary so far

- Described a simple learning algorithm
 - Used intensively in practical applications — you will get a taste of it in your homework
 - Discussed a few practical aspects, such as tuning hyperparameters, with (cross)validation
- Briefly studied its theoretical properties
 - Concepts: loss function, risks, Bayes optimal
 - Theoretical guarantees: explaining why NNC would work
Administration Summary

- I’ve included a second optional textbook (*Elements of Statistical Learning*) that is free online
 - Course website will include readings from both books
- I’d like to bump up enrollment; I don’t know if this will happen
 - No updates to waitlist and no PTEs until this is resolved
 - If enrollment does not go up, then priority will go to CS students who do well on the first problem set
- I will upload HW1 right after class to the course website
 - Due next Tuesday (10/6) at the beginning of class
 - Submission details are included in the assignment
 - Join Piazza if you haven’t already