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Textbook

Machine Learning: A Probabilistic Perspective not currently available
at the library

I’ve included a second optional textbook (Elements of Statistical
Learning) that is free online

Course website will include readings from both books
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Registering for Course

We can currently accommodate 75 students

120+ students want to take the course

I’d like to bump up enrollment; I don’t know if this will happen
I We’d need another TA and a bigger classroom
I I expect an update shortly, and will post to Piazza
I No updates to waitlist and no PTEs until this is resolved

If enrollment does not go up, then priority will go to CS students who
do well on the first problem set

I Pre-req of CS180 will not be an issue
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Homework 1

I will upload it right after class to the course website

Basic math questions, MATLAB coding assignment, Academic
Integrity Form

I Look on course website for details about getting access to MATLAB

Due next Tuesday (10/6) at the beginning of class
I Submission details are included in the assignment
I Join Piazza if you haven’t already
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Recognizing flowers

Types of Iris: setosa, versicolor, and virginica
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Measuring the properties of the flowers

Features: the widths and lengths of sepal and petal
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Often, data is conveniently organized as a table
Ex: Iris data (click here for all data)

4 features

3 classes
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Pairwise scatter plots of 131 flower specimens
Visualization of data helps to identify the right learning model to
use

Each colored point is a flower specimen: setosa, versicolor, virginica
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Different types seem well-clustered and separable
Using two features: petal width and sepal length
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Labeling an unknown flower type
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Closer to red cluster: so labeling it as setosa
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Multi-class classification

Classify data into one of the multiple categories

Input (feature vectors): x ∈ RD

Output (label): y ∈ [C] = {1, 2, · · · ,C}
Learning goal: y = f(x)

Special case: binary classification

Number of classes: C = 2

Labels: {0, 1} or {−1,+1}
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More terminology

Training data (set)

N samples/instances: Dtrain = {(x1, y1), (x2, y2), · · · , (xN, yN)}
They are used for learning f(·)

Test (evaluation) data

M samples/instances: Dtest = {(x1, y1), (x2, y2), · · · , (xM, yM)}
They are used for assessing how well f(·) will do in predicting an
unseen x /∈ Dtrain

Training data and test data should not overlap: Dtrain ∩ Dtest = ∅
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Nearest neighbor classification (NNC)

Nearest neighbor
x(1) = xnn(x)

where nn(x) ∈ [N] = {1, 2, · · · ,N}, i.e., the index to one of the training
instances

nn(x) = arg minn∈[N] ‖x− xn‖22 = arg minn∈[N]

D∑
d=1

(xd − xnd)2

Classification rule
y = f(x) = ynn(x)
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Visual example

In this 2-dimensional example, the nearest point to x is a red training
instance, thus, x will be labeled as red.

x1

x2

(a)
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Example: classify Iris with two features

Training data

ID (n) petal width (x1) sepal length (x2) category (y)

1 0.2 5.1 setosa

2 1.4 7.0 versicolor

3 2.5 6.7 virginica

Flower with unknown category
petal width = 1.8 and sepal width = 6.4
Calculating distance =

√
x1 − xn1)2 + (x2 − xn2)2

ID distance

1 1.75

2 0.72

3 0.76

Thus, the category is versicolor (the real category is virginica)
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How to measure nearness with other distances?

Previously, we use the Euclidean distance

nn(x) = arg minn∈[N] ‖x− xn‖22

We can also use alternative distances
E.g., the following L1 distance (i.e., city
block distance, or Manhattan distance)

nn(x) = arg minn∈[N] ‖x− xn‖1

= arg minn∈[N]

D∑
d=1

|xd − xnd| Green line is Euclidean distance.

Red, Blue, and Yellow lines are

L1 distance
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Decision boundary

For every point in the space, we can determine its label using the NNC
rule. This gives rise to a decision boundary that partitions the space into
different regions.

x1

x2

(b)
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K-nearest neighbor (KNN) classification

Increase the number of nearest neighbors to use?

1-nearest neighbor: nn1(x) = arg minn∈[N] ‖x− xn‖22
2nd-nearest neighbor: nn2(x) = arg minn∈[N]−nn1(x) ‖x− xn‖22
3rd-nearest neighbor: nn2(x) = arg minn∈[N]−nn1(x)−nn2(x) ‖x− xn‖22

The set of K-nearest neighbor

knn(x) = {nn1(x), nn2(x), · · · , nnK(x)}

Let x(k) = xnnk(x), then

‖x− x(1)‖22 ≤ ‖x− x(2)‖22 · · · ≤ ‖x− x(K)‖22
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How to classify with K neighbors?

Classification rule

Every neighbor votes: suppose yn (the true label) for xn is c, then
I vote for c is 1
I vote for c′ 6= c is 0

We use the indicator function I(yn == c) to represent.

Aggregate everyone’s vote

vc =
∑

n∈knn(x)

I(yn == c), ∀ c ∈ [C]

Label with the majority

y = f(x) = arg maxc∈[C] vc
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Example

K=1, Label: red

x1

x2

(a)

K=3, Label: red

x1

x2

(a)

K=5, Label: blue

x1

x2

(a)
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How to choose an optimal K?
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When K increases, the decision boundary becomes smooth.
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Mini-summary

Advantages of NNC

Computationally, simple and easy to implement – just computing the
distance

Theoretically, has strong guarantees “doing the right thing”

Disadvantages of NNC

Computationally intensive for large-scale problems: O(ND) for
labeling a data point

We need to “carry” the training data around. Without it, we cannot
do classification. This type of method is called nonparametric.

Choosing the right distance measure and K can be involved.
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Is NNC too simple to do the right thing?

To answer this question, we proceed in 3 steps

1 We define a performance metric for a classifier/algorithm.

2 We then propose an ideal classifier.

3 We then compare our simple NNC classifier to the ideal one and show
that it performs nearly as well.
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How to measure performance of a classifier?

Intuition
We should compute accuracy — the percentage of data points being
correctly classified, or the error rate — the percentage of data points being
incorrectly classified.

Two versions: which one to use?

Defined on the training data set

Atrain =
1

N

∑
n

I[f(xn) == yn], εtrain =
1

N

∑
n

I[f(xn) 6= yn]

Defined on the test (evaluation) data set

Atest =
1

M

∑
m

I[f(xm) == ym], εtest =
1

M

∑
M

I[f(xm) 6= ym]
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Example

Training data

What are Atrain and εtrain?

Atrain = 100%, εtrain = 0%

Test data

What are Atest and εtest?

Atest = 0%, εtest = 100%
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Leave-one-out (LOO)

Idea

For each training instance xn,
take it out of the training set
and then label it.

For NNC, xn’s nearest neighbor
will not be itself. So the error
rate would not become 0
necessarily.

Training data

What are the LOO-version of Atrain

and εtrain?

Atrain = 66.67%(i.e., 4/6)

εtrain = 33.33%(i.e., 2/6)
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Drawback of the metrics

They are dataset-specific

Given a different training (or test) dataset, Atrain (or Atest) will
change.

Thus, if we get a dataset “randomly”, these variables would be
random quantities.

Atest
D1

, Atest
D2

, · · · , Atest
Dq

, · · ·

These are called “empirical” accuracies (or errors).

Can we understand the algorithm itself in a “more certain” nature, by
removing the uncertainty caused by the datasets?
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Expected mistakes
Setup

Assume our data (x, y) is drawn from the joint and unknown
distribution p(x, y)

Classification mistake on a single data point x with the ground-truth
label y

L(f(x), y) =

{
0 if f(x) = y
1 if f(x) 6= y

Expected classification mistake on a single data point x

R(f,x) = Ey∼p(y|x)L(f(x), y)

The average classification mistake by the classifier itself

R(f) = Ex∼p(x)R(f,x) = E(x,y)∼p(x,y)L(f(x), y)

(law of iterated expectations, tower property, smoothing)
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Terminology

L(f(x), y) is called 0/1 loss function — many other forms of loss
functions exist for different learning problems.

Expected conditional risk

R(f,x) = Ey∼p(y|x)L(f(x), y)

Expected risk
R(f) = E(x,y)∼p(x,y)L(f(x), y)

Empirical risk

RD(f) =
1

N

∑
n

L(f(xn), yn)

(This is our empirical error from earlier.)
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Ex: binary classification

Expected conditional risk of a single data point x

R(f,x) = Ey∼p(y|x)L(f(x), y)

= P (y = 1|x)I[f(x) = 0] + P (y = 0|x)I[f(x) = 1]

Let η(x) = P (y = 1|x), we have

R(f,x) = η(x)I[f(x) = 0] + (1− η(x))I[f(x) = 1]

= 1− {η(x)I[f(x) = 1] + (1− η(x))I[f(x) = 0]}︸ ︷︷ ︸
expected conditional accuracy

Exercise: please verify the last equality.
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Bayes optimal classifier

Consider the following classifier, using the posterior probability
η(x) = p(y = 1|x)

f∗(x) =
{

1 if η(x) ≥ 1/2
0 if η(x) < 1/2 equivalently f∗(x) =

{
1 if p(y = 1|x) ≥ p(y = 0|x)
0 if p(y = 1|x) < p(y = 0|x)

Theorem

For any labeling function f(·), R(f∗,x) ≤ R(f,x). Similarly,
R(f∗) ≤ R(f). Namely, f∗(·) is optimal.
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Proof

From definition

R(f,x) = 1− {η(x)I[f(x) = 1] + (1− η(x))I[f(x) = 0]}
R(f∗,x) = 1− {η(x)I[f∗(x) = 1] + (1− η(x))I[f∗(x) = 0]}

Thus,

R(f,x)−R(f∗,x) = η(x) {I[f∗(x) = 1]− I[f(x) = 1]}
+ (1− η(x)) {I[f∗(x) = 0]− I[f(x) = 0]}

= η(x) {I[f∗(x) = 1]− I[f(x) = 1]}

+ (1− η(x))
{(

1− I[f∗(x) = 1]
)
−
(

1− I[f(x) = 1]
)}

= (2η(x)− 1) {I[f∗(x) = 1]− I[f(x) = 1]}
≥ 0
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Bayes optimal classifier in general form

For multi-class classification problem

f∗(x) = arg maxc∈[C] p(y = c|x)

when C = 2, this reduces to detecting whether or not η(x) = p(y = 1|x)
is greater than 1/2.

Remarks

The Bayes optimal classifier is generally not computable as it assumes
the knowledge of p(x, y) or p(y|x).

However, it is useful as a conceptual tool to formalize how well a
classifier can do without knowing the joint distribution.
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Comparing NNC to Bayes optimal classifier

How well does our NNC do?

Theorem (Cover-Hart Inequality)

For the NNC rule fnnc for binary classification, we have,

R(f∗) ≤ R(fnnc) ≤ 2R(f∗)(1−R(f∗)) ≤ 2R(f∗)

Namely, the expected risk by the classifier is at worst twice that of the
Bayes optimal classifier.

In short, NNC seems doing a reasonable thing
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Mini-summary

Advantages of NNC

Computationally, simple and easy to implement – just computing the
distance

X Theoretically, has strong guarantees “doing the right thing”

Disadvantages of NNC

Computationally intensive for large-scale problems: O(ND) for
labeling a data point

We need to “carry” the training data around. Without it, we cannot
do classification. This type of method is called nonparametric.

Choosing the right distance measure and K can be involved.
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Outline

1 Administration

2 First learning algorithm: Nearest neighbor classifier

3 More deep understanding about NNC

4 Some practical sides of NNC
How to tune to get the best out of it?
Preprocessing data

5 What we have learned
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Hypeparameters in NNC

Two practical issues about NNC

Choosing K, i.e., the number of nearest neighbors (default is 1)

Choosing the right distance measure (default is Euclidean distance),
for example, from the following generalized distance measure

‖x− xn‖p =

(∑
d

|xd − xnd|p
)1/p

for p ≥ 1.

Those are not specified by the algorithm itself — resolving them requires
empirical studies and are task/dataset-specific.
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Tuning by using a validation dataset

Training data (set)

N samples/instances: Dtrain = {(x1, y1), (x2, y2), · · · , (xN, yN)}
They are used for learning f(·)

Test (evaluation) data

M samples/instances: Dtest = {(x1, y1), (x2, y2), · · · , (xM, yM)}
They are used for assessing how well f(·) will do in predicting an
unseen x /∈ Dtrain

Development (or validation) data

L samples/instances: Ddev = {(x1, y1), (x2, y2), · · · , (xL, yL)}
They are used to optimize hyperparameter(s).

Training data, validation and test data should not overlap!
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Recipe

for each possible value of the hyperparameter (say K = 1, 3, · · · , 100)

I Train a model using Dtrain

I Evaluate the performance of the model on Ddev

Choose the model with the best performance on Ddev

Evaluate the model on Dtest

Professor Ameet Talwalkar CS260 Machine Learning Algorithms September 29, 2015 42 / 49



Cross-validation

What if we do not have validation data?

We split the training data into S
equal parts.

We use each part in turn as a
validation dataset and use the
others as a training dataset.

We choose the hyperparameter
such that on average, the model
performing the best

S = 5: 5-fold cross validation

Special case: when S = N, this will be leave-one-out.
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Recipe

Split the training data into S equal parts. Denote each part as Dtrain
s

for each possible value of the hyperparameter (say K = 1, 3, · · · , 100)

I for every s ∈ [1,S]
F Train a model using Dtrain

\s = Dtrain −Dtrain
s

F Evaluate the performance of the model on Dtrain
s

I Average the S performance metrics

Choose the hyperparameter corresponding to the best averaged
performance

Use the best hyerparamter to train on a model using all Dtrain

Evaluate the model on Dtest
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Yet, another practical issue with NNC

Distances depend on units of the features!
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Preprocess data

Normalize data to have zero mean and unit standard deviation in
each dimension

Compute the means and standard deviations in each feature

x̄d =
1

N

∑
n

xnd, s2d =
1

N − 1

∑
n

(xnd − x̄d)2

Scale the feature accordingly

xnd ←
xnd − x̄d

sd

Many other ways of normalizing data — you would need/want to try
different ones and pick them using (cross)validation
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Summary so far

Described a simple learning algorithm
I Used intensively in practical applications — you will get a taste of it in

your homework
I Discussed a few practical aspects, such as tuning hyperparameters,

with (cross)validation

Briefly studied its theoretical properties
I Concepts: loss function, risks, Bayes optimal
I Theoretical guarantees: explaining why NNC would work
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Administration Summary

I’ve included a second optional textbook (Elements of Statistical
Learning) that is free online

I Course website will include readings from both books

I’d like to bump up enrollment; I don’t know if this will happen
I No updates to waitlist and no PTEs until this is resolved
I If enrollment does not go up, then priority will go to CS students who

do well on the first problem set

I will upload HW1 right after class to the course website
I Due next Tuesday (10/6) at the beginning of class
I Submission details are included in the assignment
I Join Piazza if you haven’t already
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