
NNC Recap, Decision Trees

Professor Ameet Talwalkar

Slide Credit: Professor Fei Sha

Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 1, 2015 1 / 42



Outline

1 Administration

2 Review of last lecture

3 Decision tree

Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 1, 2015 2 / 42



Registering for Course

No definitive update, though I am optimistic that we can increase the
class size.

If you are interested in taking the course but are not able to register,
please submit HW1 on Tuesday.
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Nikos’ Office Hours and Section

He had to slightly change them due to space conflicts.

New times are Monday 3:30p-4:30p and Wednesday 2:00p-3:00p.

First Discussion: Friday 12:00pm - 1:50pm, Kinsey Teaching Pavilion
1200B
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Homework 1

Available online

Octave will be accepted (along with MATLAB)
I Programming assignment is due next Tuesday

Join Piazza if you haven’t already
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Multi-class classification

Classify data into one of the multiple categories

Input (feature vectors): x ∈ RD

Output (label): y ∈ [C] = {1, 2, · · · ,C}
Learning goal: y = f(x)

Special case: binary classification

Number of classes: C = 2

Labels: {0, 1} or {−1,+1}
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More terminology

Training data (set)

N samples/instances: Dtrain = {(x1, y1), (x2, y2), · · · , (xN, yN)}
They are used for learning f(·)

Test (evaluation) data

M samples/instances: Dtest = {(x1, y1), (x2, y2), · · · , (xM, yM)}
They are used for assessing how well f(·) will do in predicting an
unseen x /∈ Dtrain

Training data and test data should not overlap: Dtrain ∩ Dtest = ∅
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Algorithm

Nearest neighbor

x(1) = xnn(x)

where nn(x) ∈ [N] = {1, 2, · · · ,N},

nn(x) = argminn∈[N] ‖x− xn‖22

Classification rule

y = f(x) = ynn(x)

Can extend to KNN classification

Every neighbor gets a vote;
return the majority vote

x1

x2

(a)
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Measuring quality of a learning algorithm

Assume data (x, y) drawn from unknown, joint distribution p(x, y)

0/1 loss function measures mistake on a single data point

L(f(x), y) =

{
0 if f(x) = y
1 if f(x) 6= y

Empirical risk (on test set)

RD(f) =
1

M

∑

m

L(f(xm), ym)

Expected risk
R(f) = E(x,y)∼p(x,y)L(f(x), y)
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Bayes binary classifier

It ‘cheats’ by using the posterior probability η(x) = p(y = 1|x)

f∗(x) =
{

1 if η(x) ≥ 1/2
0 if η(x) < 1/2 equivalently f∗(x) =

{
1 if p(y = 1|x) ≥ p(y = 0|x)
0 if p(y = 1|x) < p(y = 0|x)

Unsurprisingly, it is optimal

Theorem

For any labeling function f(·), R(f∗) ≤ R(f).
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Comparing NNC to Bayes optimal classifier

How well does NNC do asymptotically?

Theorem (Cover-Hart inequality)

For the NNC rule fnnc for binary classification, we have,

R(f∗) ≤ R(fnnc) ≤ 2R(f∗)

What does this tell us?

Shows that as n→∞, NNC’s expected risk is at worst twice that of
the Bayes optimal classifier

Provides theoretical justification, as NNC is nearly optimal
asymptotically
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Hypeparameters in NNC

Three practical issues about NNC

Choosing K, i.e., the number of nearest neighbors (default is 1)

Choosing the right distance measure (default is Euclidean distance)

Choosing the scale of each feature since distances depend on units
(default is to normalize to zero mean and unit variance)

Those are not specified by the algorithm itself — resolving them requires
empirical studies and are task/dataset-specific.
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Tuning by using a validation dataset

Training data (set)

N samples/instances: Dtrain = {(x1, y1), (x2, y2), · · · , (xN, yN)}
They are used for learning f(·)

Test (evaluation) data

M samples/instances: Dtest = {(x1, y1), (x2, y2), · · · , (xM, yM)}
They are used for assessing how well f(·) will do in predicting an
unseen x /∈ Dtrain

Validation (or development) data

L samples/instances: Ddev = {(x1, y1), (x2, y2), · · · , (xL, yL)}
They are used to optimize hyperparameter(s).

Training data, validation and test data should not overlap!
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Recipe

For each possible value of the hyperparameter (say
K = 1, 3, · · · , 100)

I Train a model using Dtrain

I Evaluate the performance of the model on Ddev

Choose the model with the best performance on Ddev

Evaluate the model on Dtest
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Cross-validation

What if we do not have validation data?

We split the training data into S
equal parts.

We use each part in turn as a
validation dataset and use the
others as a training dataset.

We choose the hyperparameter
such that on average, the model
performing the best

S = 5: 5-fold cross validation

Special case: when S = N, this will be leave-one-out.
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Recipe

Split the training data into S equal parts. Denote each part as Dtrain
s

For each possible value of the hyperparameter (say
K = 1, 3, · · · , 100)

I for every s ∈ [1,S]
F Train a model using Dtrain

\s = Dtrain −Dtrain
s

F Evaluate the performance of the model on Dtrain
s

I Average the S performance metrics

Choose the hyperparameter corresponding to the best averaged
performance

Use the best hyperparameter to train on a model using all Dtrain

Evaluate the model on Dtest
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Things you need to know

NNC

Advantages
I Computationally, simple and easy to implement – just computing the

distance
I Theoretically, has good guarantees

Disadvantages
I Computationally intensive for large-scale problems: O(ND) for labeling

a data point
I We need to “carry” the training data around to perform classification

(nonparametric).
I Choosing the right distance measure, scaling, and K can be involved.

Crucial theoretical concepts loss function, expected risk, empirical risk,
Bayes optimal
Crucial practical concepts hyperparameters, validation set, cross
validation
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Many decisions are tree structures

Medical treatment

Fever 

𝑇 > 100 𝑇 < 100 

Treatment #1 Muscle Pain 

Treatment #2 

High 

Treatment #3 

Low 

Salary in a company

Degree 

High School College Graduate 

Work Experience Work Experience Work Experience 

< 5yr > 5yr 

$𝑿𝟏 $𝑿𝟐 

< 5yr > 5yr 

$𝑿𝟑 $𝑿𝟒 

< 5yr > 5yr 

$𝑿𝟓 $𝑿𝟔 
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What is a Tree?

Node 

Edge 
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Special Names for Nodes in a Tree

Node 

Root 

Edge 

Leaf 
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A tree partitions the feature space

A

B

C D

E

θ1 θ4

θ2

θ3

x1

x2

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E
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Learning a tree model

Three things to learn:

1 The structure of the tree.

2 The threshold values (θi).

3 The values for the leafs
(A,B, . . .).

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E
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A tree model for deciding where to eat

Choosing a restaurant
(Example from Russell & Norvig, AIMA)
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First decision: at the root of the tree

Which attribute to split?
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First decision: at the root of the tree

Which attribute to split?

Idea:  use information gain to choose 
which attribute to split
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How to measure information gain?

Idea:	


Gaining information reduces 
uncertainty	


!

Use to entropy to measure uncertainty	


If a random variable X has K different values, a1, 
a2, ...aK, it is entropy is given by	


!
! H[X] = �

KX

k=1

P (X = ak) log P (X = ak)

the base can be 2 , 
though it is not essential	

(if the base is 2, the unit 
of the entropy is called 

“bit”)
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Examples of computing entropy

Entropy
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H(X) = 1.3863
H(X) = 0.8360

H(X) = 0

Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 1, 2015 29 / 42



Which attribute to split?

!
!
!
!
!
!
Patron vs. Type?	


By choosing Patron, we end up with a partition (3 branches) with smaller entropy, ie, 
smaller uncertainty (0.45 bit)	


By choosing Type, we end up with uncertainty of 1 bit.	


Thus, we choose Patron over Type.	
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Uncertainty if we go with  “Patron”

For “None” branch	


!
For “Some” branch	


!
For “Full” branch	


!
For choosing “Patrons”	


weighted average of each branch: this quantity is called conditional entropy	


!
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Conditional entropy

Definition. Given two random variables X and Y 	


!

!

In our example	


X:  the attribute to be split	


Y:   Wait or not	


Relation to information gain

H[Y |X] =
X

k

P (X = ak)H[Y |X = ak]

When H[Y] is fixed, we need only to	

compare conditional entropy

gain = H[Y ] � H[Y |X]

Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 1, 2015 32 / 42



Conditional entropy for Type

For “French” branch	


!
For “Italian” branch	


!
For “Thai” and “Burger” branches	


!
For choosing “Type”	


weighted average of each branch:	


!
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next split?
We will look only at the 6 instances with 

Patrons == Full
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Do we split on “Non” or “Some”?

!

No, we do not	


The decision is deterministic, as seen from the training data
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Greedily we build the tree and get this
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What is the optimal Tree Depth?

We need to be careful to pick an appropriate tree depth

If the tree is too deep, we can overfit

If the tree is too shallow, we underfit

Max depth is a hyperparameter that should be tuned by the data

Alternative strategy is to create a very deep tree, and then to prune it
(see Section 9.2.2 in ESL for details)
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Control the size of the tree

We would prune to have a smaller one

If we stop here, not all training sample would be classified correctly. 

More importantly,   how do we classify a new instance?
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Control the size of the tree

We would prune to have a smaller one

If we stop here, not all training sample would be classified correctly. 

More importantly,   how do we classify a new instance?

We label the leaves of this smaller tree with the majority 
of training samples’ labels
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Example

Example

We stop after the root (first node)	


!

!

!

!

!

!

!

Wait: yes Wait: noWait: no
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Computational Considerations

Numerical Features

We could split on any feature, with any threshold

However, for a given feature, the only split points we need to consider
are the the n values in the training data for this feature.

If we sort each feature by these n values, we can quickly compute our
impurity metric of interest (cross entropy or others)

I This takes O(dn log n) time

Categorical Features

Assuming q distinct categories, there are 2q−1 − 1 possible partitions
we can consider.

However, things simplify in the case of binary classification (or
regression), and we can find the optimial split (for cross entropy and
Gini) by only considering q − 1 possible splits (see Section 9.2.4 in
ESL for details).
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Summary of learning trees

Advantages of using trees

Easily interpretable by human (as long as the tree is not too big)

Computationally efficient

Handles both numerical and categorical data

It is parametric thus compact: unlike NNC, we do not have to carry
our training instances around

Building block for various ensemble methods (more on this later)

Disadvantages

Heuristic training techniques
I Finding partition of space that minimizes empirical error is NP-hard
I We resort to greedy approaches with limited theoretical underpinnings
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