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Registering for Course

As mentioned on Piazza, we found a second TA and will be able to
add roughly 45 more students

We will review HW1 submissions before enrolling additional students

We will send out PTEs later this week
I Please do not email me asking for PTEs!
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Introducing Amogh Param

Amogh is the second TA for this course

His office hours are:
I Monday 11:30 AM-12:30 PM
I Friday 2:30PM-3:30 PM

We have not yet decided whether he will hold a second section
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Homework 1 and 2

HW1

Due right now

We will not circulate an answer key

Nikos will review solutions in discussion section

HW2

Will be available online later today

Due next Thursday at beginning of class (pushed back two days)
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A tree partitions the feature space
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Learning a tree model

Three things to learn:

1 The structure of the tree.

2 The threshold values (θi).

3 The values for the leafs
(A,B, . . .).

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E
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First decision: at the root of the tree

Which attribute to split?

Idea:  use information gain to choose 
which attribute to split
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How to measure information gain?

Idea:	


Gaining information reduces 
uncertainty	


!

Use to entropy to measure uncertainty	


If a random variable X has K different values, a1, 
a2, ...aK, it is entropy is given by	


!
! H[X] = �

KX

k=1

P (X = ak) log P (X = ak)

the base can be 2 , 
though it is not essential	

(if the base is 2, the unit 
of the entropy is called 

“bit”)
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Examples of computing entropy

Entropy
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H(X) = 1.3863
H(X) = 0.8360

H(X) = 0

Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 6, 2015 11 / 41



Do we split on “Non” or “Some”?

!

No, we do not	


The decision is deterministic, as seen from the training data
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What is the optimal Tree Depth?

We need to be careful to pick an appropriate tree depth
I If the tree is too deep, we can overfit
I If the tree is too shallow, we underfit

Max depth is a hyperparameter that should be tuned by the data

Alternative strategy is to create a very deep tree, and then to prune it
(see Section 9.2.2 in ESL for details)

If leaves aren’t completely pure, we predict using majority vote
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Example

Example

We stop after the root (first node)	


!

!

!

!

!

!

!

Wait: yes Wait: noWait: no
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Computational Considerations

Numerical Features

We could split on any feature, with any threshold

However, for a given feature, the only split points we need to consider
are the the n values in the training data for this feature.

If we sort each feature by these n values, we can quickly compute our
impurity metric of interest (cross entropy or others)

I This takes O(dn log n) time

Categorical Features

Assuming q distinct categories, there are 2q−1 − 1 possible partitions
we can consider.

However, things simplify in the case of binary classification (or
regression), and we can find the optimial split (for cross entropy and
Gini) by only considering q − 1 possible splits (see Section 9.2.4 in
ESL for details).
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Summary of learning trees

Advantages of using trees

Easily interpretable by human (as long as the tree is not too big)

Computationally efficient

Handles both numerical and categorical data

It is parametric thus compact: unlike NNC, we do not have to carry
our training instances around

Building block for various ensemble methods (more on this later)

Disadvantages

Heuristic training techniques
I Finding partition of space that minimizes empirical error is NP-hard
I We resort to greedy approaches with limited theoretical underpinnings
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A daily battle

FROM THE DESK OF MR. AMINU SALEH
DIRECTOR, FOREIGN OPERATIONS DEPARTMENT
AFRI BANK PLC
Afribank Plaza,
14th Floormoney344.jpg
51/55 Broad Street,
P.M.B 12021 Lagos-Nigeria

 
 

Attention: Honorable Beneficiary,

IMMEDIATE PAYMENT NOTIFICATION VALUED AT US$10 MILLION

It is my modest obligation to write you this letter in regards to the authorization of your owed payment through our most 
respected financial institution (AFRI BANK PLC). I am Mr. Aminu Saleh, The Director, Foreign Operations Department, AFRI Bank 
Plc, NIGERIA. The British Government, in conjunction with the US GOVERNMENT, WORLD BANK, UNITED NATIONS 
ORGANIZATION on foreign payment matters, has empowered my bank after much consultation and consideration, to handle all 
foreign payments and release them to their appropriate beneficiaries with the help of a representative from Federal Reserve Bank.

To facilitate the process of this transaction, please kindly re-confirm the following information below:

1) Your full Name and Address:
2) Phones, Fax and Mobile No. :
3) Profession, Age and Marital Status:
4) Copy of any valid form of your Identification: 

I’m going to be rich!!
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How to tell spam from ham?

FROM THE DESK OF MR. AMINU SALEH
DIRECTOR, FOREIGN OPERATIONS DEPARTMENT
AFRI BANK PLC
Afribank Plaza,
14th Floormoney344.jpg
51/55 Broad Street,
P.M.B 12021 Lagos-Nigeria

Attention: Honorable Beneficiary,

IMMEDIATE PAYMENT NOTIFICATION VALUED AT US$10 MILLION

 
 

Dear Ameet,

Do you have 10 minutes to get on a videocall before 2pm?

Thanks,

Stefano



How might we create features?
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Intuition

Spam emails

we expect to see words like “money”, “free”, “bank account”, “viagra”

Ham emails

word usage is more spread out with few ‘spammy’ words

Q: How might a human solve this problem?  

A: Simple strategy would be to look for 
keywords that we often associate with spam



Simple strategy: count the words
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Weighted sum of those telltale words
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Our intuitive model of classification

Assign weight to each word

Compute compatibility score to “spam”  

# of “free” x afree + # of “account” x aaccount + # of “money” x amoney 

Compute compatibility  score to “ham”:

# of “free” x bfree + # of “account” x baccount + # of “money” x bmoney 

Make a decision:

if spam score > ham score  then spam

else  ham



How do we get the weights?
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How do we get the weights?

Learn from experience

get a lot of spams

get a lot of hams

But what to optimize?



A probabilistic modeling perspective

Naive Bayes model for identifying spam

Class label: binary

y = {spam, ham}

Features: word counts in the document (Bag-of-word)

Ex:  x = {(‘free’, 100), (‘lottery’, 10), (‘money’, 10), , (‘identification’, 1)...}

Each pair is in the format of
(wi, #wi), namely, a unique word in the dictionary, 
and the number of times it shows up
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Naive Bayes Model (Intuitively)

Features: word counts in the document

Ex:  x = {(‘free’, 100), (‘identification’, 2), (‘lottery’, 10), (‘money’, 10), ...}

Model: Naive Bayes (NB)

p(x|spam) = p(’free’|spam)100p(’identification’|spam)2

p(’lottery’|spam)10p(’money’|spam)10 · · ·
6= p(x|ham)
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Model: Naive Bayes (NB)

Parameters to be estimated are conditional probabilities: 
         p(‘free’|spam), p(‘free’|ham),etc
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Naive Bayes Model

Intuitively this makes some sense (even if it seems simple)

We’ll now discuss the following:
I Formal modeling assumptions for NB, and why it’s ‘naive’
I NB classification rule converges to Bayes Optimal under these

assumptions
I How to estimate model parameters
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Naive Bayes Model

These conditional probabilities are model parameters

Recall that each data point is a tuple (wi, #wi), namely, a 
unique dictionary word and the # of times it shows up

p(x|y) = p(w1|y)#w1p(w2|y)#w2 · · · p(wm|y)#wm

=
�

i

p(wi|y)#wi



What is naive about this?
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Strong assumption of conditional independence:  

 
Previous example:

 

This assumption makes estimation much easier (as we’ll see)

p(wi, wj |y) = p(wi|y)p(wj |y)

Why is this ‘Naive’

p(x|spam) = p(’free’|spam)100p(’identification’|spam)2

p(’lottery’|spam)10p(’money’|spam)10 · · ·
6= p(x|ham)



Naive Bayes classification rule

For any document x, we want to compare

p(spam|x) and p(ham|x)

Recall that Bayes Optimal classifier uses the posterior probability

f∗(x) =
{

1 if p(y = 1|x) ≥ p(y = 0|x)
0 if p(y = 1|x) < p(y = 0|x)

NB classification rule looks like the Bayes Optimal classifier under the
assumption of conditional independence we just described
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Naive Bayes classification rule

For any document x, we want to compare

p(spam|x) and p(ham|x)

Using Bayes rule, this gives rise to

p(spam|x) = p(x|spam)p(spam)

p(x)
, p(ham|x) = p(x|ham)p(ham)

p(x)

It is convenient to compute the logarithms, so we need only to compare

log[p(x|spam)p(spam)] versus log[p(x|ham)p(ham)]

as the denominators are the same
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Classifier in the linear form

log[p(x|spam)p(spam)] = log

[∏

i

p(wi|spam)#wip(spam)

]
(1)

=
∑

i

#wi log p(wi|spam) + log p(spam) (2)

Similarly, we have

log[p(x|ham)p(ham)] =
∑

i

#wi log p(wi|ham) + log p(ham)

Namely, we are back to the idea of comparing weighted sum of # of word
occurrences!
log p(spam) and log p(ham) are called “priors” (in our initial example we
did not include them but they are important!)
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Mini-summary

What we have shown
By assuming a probabilistic model (i.e., Naive Bayes), we are able to
derive a decision rule that is consistent with our intuition

Our next step is learn the parameters from data
What are the parameters to learn?
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Formal definition of Naive Bayes

General case
Given a random variable X ∈ RD and a dependent variable Y ∈ [C], the
Naive Bayes model defines the joint distribution

P (X = x, Y = c) = P (Y = c)P (X = x|Y = c) (3)

= P (Y = c)

D∏

d=1

P (Xd = xd|Y = c) (4)
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Special case (i.e., our model of spam emails)

Assumptions

All Xd are categorical variables from the same domain — xd ∈ [K],
for example, the index to the unique words in a dictionary.

P (Xd = xd|Y = c) depends only on the value of xd, not d itself,
namely, orders are not important (thus, we only need to count).

Simplified definition

P (X = x, Y = c) = P (Y = c)
∏

k

P (k|Y = c)zk = πc
∏

k

θzkck

where zk is the number of times k in x.

Note that we only need to enumerate in the product, the index to the xd’s
possible values. On the previous slide, however, we enumerate over d as
we do not have the assumption there that order is not important.
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Learning problem

Training data

D = {(xn, yn)}Nn=1 → D = {({znk}Kk=1, yn)}Nn=1

Goal
Learn πc, c = 1, 2, · · · ,C, and θck,∀c ∈ [C], k ∈ [K] under the constraints

∑

c

πc = 1

and ∑

k

θck =
∑

k

P (k|Y = c) = 1

as well as those quantities should be nonnegative.
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Our hammer: maximum likelihood estimation

Recall our joint probability

P (X = x, Y = c) = πc
∏

k

θzkck

where zk is the number of times k in x.

Likelihood of the training data

D = {(xn, yn)}Nn=1 → D = {({znk}Kk=1, yn)}Nn=1

L = P (D) =
N∏

n=1

πynP (xn|yn)
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Our hammer: maximum likelihood estimation
Log-Likelihood of the training data

L = logP (D) = log

N∏

n=1

πynP (xn|yn)

= log

N∏

n=1

(
πyn

∏

k

θznk
ynk

)

=
∑

n

(
log πyn +

∑

k

znk log θynk

)

=
∑

n

log πyn +
∑

n,k

znk log θynk

Optimize it!

(π∗c , θ
∗
ck) = argmax

∑

n

log πyn +
∑

n,k

znk log θynk
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n,k

znk log θynk

Optimize it!

(π∗c , θ
∗
ck) = argmax

∑

n

log πyn +
∑

n,k

znk log θynk
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Details

Note the separation of parameters in the likelihood

∑

n

log πyn +
∑

n,k

znk log θynk

this implies that {πc} and {θck} can be estimated separately
Reorganize terms

∑

n

log πyn =
∑

c

log πc × (#of data points labeled as c)

and

∑

n,k

znk log θynk =
∑

c

∑

n:yn=c

∑

k

znk log θck =
∑

c

∑

n:yn=c,k

znk log θck

The later implies {θck and {θc′k for c 6= c′ can be estimated independently
(this is why our conditional independence assumption is so useful!).
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Estimating {πc}

We want to maximize

∑

c

log πc × (#of data points labeled as c)

Intuition

Similar to roll a dice (or flip a coin): each side of the dice shows up
with a probability of πc (total C sides)

And we have total N trials of rolling this dice

Solution

π∗c =
#of data points labeled as c

N
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Estimating {θck, k = 1, 2, · · · ,K}

We want to maximize

∑

n:yn=c,k

znk log θck

Intuition

Again similar to roll a dice: each side of the dice shows up with a
probability of θck (total K sides)

And we have total
∑

n:yn=c,k znk trials.

Solution

θ∗ck =
#of times side k shows up in data points labeled as c

#total trials for data points labeled as c
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Translating back to our problem of detecting spam emails

Collect a lot of ham and spam emails as training examples

Estimate the “prior”

p(ham) =
#of ham emails

#of emails
, p(spam) =

#of spam emails

#of emails

Estimate the weights (i.e., p(dollar|ham) etc)

p(funny word|ham) =
#of funny word in ham emails

#of words in ham emails
(5)

p(funny word|spam) =
#of funny word in spam emails

#of words in spam emails
(6)
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Classification rule

Given an unlabeled data point x = {zk, k = 1, 2, · · · ,K}, label it with

y∗ = argmaxc∈[C] P (y = c|x) (7)

= argmaxc∈[C] P (y = c)P (x|y = c) (8)

= argmaxc[log πc +
∑

k

zk log θck] (9)
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A short derivation of the maximum likelihood estimation
To maximize ∑

n:yn=c,k

znk log θck

We use the Lagrangian multiplier

∑

n:yn=c,k

znk log θck + λ

(∑

k

θck − 1

)

Taking derivatives with respect to θck and then find the stationary point
( ∑

n:yn=c

znk
θck

)
+ λ = 0→ θck = − 1

λ

∑

n:yn=c

znk

Apply constraint
∑

k θck = 1, plug in expression above for θck, solve for λ,
and plug back into expression for θck:

θck =

∑
n:yn=c znk∑

k

∑
n:yn=c znk
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Summary

You should know or be able to

What naive Bayes model is
I write down the joint distribution
I explain the conditional independence assumption implied by the model
I explain how this model can be used to classify spam vs ham emails

Be able to go through the short derivation for parameter estimation
I The model illustrated here is called discrete/multinomial Naive Bayes
I HW2 asks you to apply the same principle to Gaussian naive Bayes
I The derivation is very similar – except there you need to estimate

Gaussian continuous random variables (instead of estimating discrete
random variables like rolling a dice)
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Moving forward

Examine the classification rule for naive Bayes

y∗ = argmaxc log πc +
∑

k

zk log θck

For binary classification, we thus determine the label based on the sign of

log π1 +
∑

k

zk log θ1k −
(
log π2 +

∑

k

zk log θ2k

)

This is just a linear function of the features {zk}

w0 +
∑

k

zkwk

where we “absorb” w0 = log π1 − log π2 and wk = log θ1k − log θ2k.
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Naive Bayes is a linear classifier

Fundamentally, what really matters in deciding decision boundary is

w0 +
∑

k

zkwk

This motivates many new methods. One of them is logistic regression, to
be discussed in next lecture.
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