Perceptron and Linear Regresssion

Professor Ameet Talwalkar

Slide Credit: Professor Fei Sha

Outline

- Administration
- Review of last lecture
- Perceptron
- 4 Linear regression

A few announcements

- Homework 2: due now
- Homework 3 and 4 now available online
 - ▶ BOTH are due in two weeks

A few announcements

- Homework 2: due now
- Homework 3 and 4 now available online
 - BOTH are due in two weeks
- Read the book(s) to supplement content on slides!

Class Projects (2nd reminder)

- 1-2 students per project
- Grading
 - 30% of total class grade
 - ▶ Proposal will be short (roughly 1 page, details next week), but worth 1/4 of grade because planning ahead is important!
- You are responsible for proposing a project!
- You must briefly meet with one the TAs or myself before the proposal submission deadline

How to get started?

- Projects can be theoretical, algorithmic and/or applied in nature
 - Develop new learning algorithm
 - Theoretically analyze an existing or a new algorithm
 - Apply learning techniques on some problem of interest
- Get started by thinking about what you're interested in
 - Research you're already doing?
 - Some domain you've always been excited about (sports, politics, weather, movies, music, etc.)?
 - ▶ If you're doing an applied project, finding data is the crucial component. What questions can you ask of your data?

Class Project Timeline

- Before November 5th: Meet with a TA or me
- November 5th: Project Proposal is due
- December 11th: Poster Session; Project Report due

Outline

- Administration
- Review of last lecture
 - Generative vs Discriminative
 - Multiclass classification
- Perceptron
- 4 Linear regression

Generative vs Discriminative

Discriminative

- Requires only specifying a model for the conditional distribution p(y|x), and thus, maximizes the *conditional* likelihood $\sum_n \log p(y_n|\boldsymbol{x}_n)$.
- Models that try to learn mappings directly from feature space to the labels are also discriminative, e.g., perceptron, SVMs (covered later)

Generative vs Discriminative

Discriminative

- Requires only specifying a model for the conditional distribution p(y|x), and thus, maximizes the *conditional* likelihood $\sum_n \log p(y_n|\boldsymbol{x}_n)$.
- Models that try to learn mappings directly from feature space to the labels are also discriminative, e.g., perceptron, SVMs (covered later)

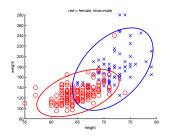
Generative

- Aims to model the joint probability p(x,y) and thus maximize the joint likelihood $\sum_n \log p(x_n,y_n)$.
- \bullet The generative models we cover (Naive Bayes, QDA, LDA) do so by modeling p(x|y) and p(y)

QDA Model of the joint distribution (1D)

$$p(x,y) = p(y)p(x|y) \\ = \begin{cases} p_1 \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} & \text{if } y = 1 \\ p_2 \frac{1}{\sqrt{2\pi}\sigma_2} e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2}} & \text{if } y = 2 \end{cases}$$

 $p_1+p_2=1$ are *prior* probabilities, and p(x|y) is a *class conditional distribution*



QDA Parameter estimation

Log Likelihood in 1D $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N$ with $y_n \in \{1, 2\}$

$$\log P(\mathcal{D}) = \sum_{n} \log p(x_n, y_n)$$

$$= \sum_{n:y_n=1} \log \left(p_1 \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x_n - \mu_1)^2}{2\sigma_1^2}} \right)$$

$$+ \sum_{n:y_n=2} \log \left(p_2 \frac{1}{\sqrt{2\pi}\sigma_2} e^{-\frac{(x_n - \mu_2)^2}{2\sigma_2^2}} \right)$$

 $\textbf{Max log likelihood} \ (p_1^*, p_2^*, \mu_1^*, \mu_2^*, \sigma_1^*, \sigma_2^*) = \arg\max\log P(\mathcal{D})$

QDA Parameter estimation

Log Likelihood in 1D $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N$ with $y_n \in \{1, 2\}$

$$\log P(\mathcal{D}) = \sum_{n} \log p(x_n, y_n)$$

$$= \sum_{n:y_n=1} \log \left(p_1 \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x_n - \mu_1)^2}{2\sigma_1^2}} \right)$$

$$+ \sum_{n:y_n=2} \log \left(p_2 \frac{1}{\sqrt{2\pi}\sigma_2} e^{-\frac{(x_n - \mu_2)^2}{2\sigma_2^2}} \right)$$

 $\textbf{Max log likelihood} \ (p_1^*, p_2^*, \mu_1^*, \mu_2^*, \sigma_1^*, \sigma_2^*) = \arg\max\log P(\mathcal{D})$

 $\textbf{Max likelihood (}D>1\textbf{)}\;(p_1^*,p_2^*,\boldsymbol{\mu}_1^*,\boldsymbol{\mu}_2^*,\boldsymbol{\Sigma}_1^*,\boldsymbol{\Sigma}_2^*)=\arg\max\log P(\mathcal{D})$

QDA vs LDA vs NB

- QDA: Allows distinct, arbitrary covariance matrices for each class
- LDA: Requires the same arbitrary covariance matrix across classes
- GNB in general: Allows for distinct covariance matrices across each class, but these covariance matrices must be diagonal
- GNB in HW2 Problem 1: Requires the same diagonal covariance matrix across classes

Generative versus discriminative: which one to use?

There is no fixed rule

- It depends on how well your modeling assumption fits the data
- LDA and Gaussian Naive Bayes make stronger assumptions than logistic regression
- When data follows this assumption, these generative models will likely yield a model that better fits the data
- But logistic regression is more robust and less sensitive to incorrect modelling assumption

Setup for classifying multiple classes

Suppose we need to predict multiple classes/outcomes:

$$C_1, C_2, \ldots, C_K$$

- Weather prediction: sunny, cloudy, raining, etc
- Optical character recognition: 10 digits + 26 characters (lower and upper cases) + special characters, etc

Two main approaches

- Use binary classifiers as building blocks
- Multinomial logistic regression

The approach of "one versus the rest"

- For each class C_k , change the problem into binary classification
 - **1** Relabel training data with label C_k , into POSITIVE (or '1')
 - Relabel all the rest data into NEGATIVE (or '0')
- ullet Train K binary classifiers in total

The approach of "one versus the rest"

- ullet For each class C_k , change the problem into binary classification
 - lacktriangledown Relabel training data with label C_k , into POSITIVE (or '1')
 - Relabel all the rest data into NEGATIVE (or '0')
- Train K binary classifiers in total

The approach of "one versus one"

- For each *pair* of classes C_k and $C_{k'}$, change the problem into binary classification
 - Relabel training data with label C_k , into POSITIVE (or '1')
 - 2 Relabel training data with label $C_{k'}$ into NEGATIVE (or '0')
 - Oisregard all other data
- Train K(K-1)/2 binary classifiers total

Pros and cons of each approach

ullet one versus the rest: only needs to train K classifiers.

Pros and cons of each approach

- ullet one versus the rest: only needs to train K classifiers.
 - ▶ Makes a *big* difference if you have a lot of *classes* to go through

Pros and cons of each approach

- ullet one versus the rest: only needs to train K classifiers.
 - ▶ Makes a *big* difference if you have a lot of *classes* to go through
- one versus one: only needs to train a smaller subset of data (only those labeled with those two classes would be involved).

Pros and cons of each approach

- *one versus the rest*: only needs to train K classifiers.
 - Makes a big difference if you have a lot of classes to go through
- one versus one: only needs to train a smaller subset of data (only those labeled with those two classes would be involved).
 - Makes a big difference if you have a lot of data to go through.

Pros and cons of each approach

- *one versus the rest*: only needs to train K classifiers.
 - ▶ Makes a *big* difference if you have a lot of *classes* to go through
- *one versus one*: only needs to train a smaller subset of data (only those labeled with those two classes would be involved).
 - Makes a big difference if you have a lot of data to go through.

Drawback of both methods: Combining classifiers' outputs seem to be a bit tricky.

Definition of multinomial logistic regression

Model

For each class C_k , we have a parameter vector w_k and model the posterior probability as

$$p(C_k|m{x}) = rac{e^{m{w}_k^{\mathrm{T}}m{x}}}{\sum_{k'}e^{m{w}_{k'}^{\mathrm{T}}m{x}}} \qquad \leftarrow \quad \mathsf{This} \; \mathsf{is} \; \mathsf{called} \; \mathit{softmax} \; \mathsf{function}$$

Definition of multinomial logistic regression

Model

For each class C_k , we have a parameter vector w_k and model the posterior probability as

$$p(C_k|\boldsymbol{x}) = \frac{e^{\boldsymbol{w}_k^T \boldsymbol{x}}}{\sum_{k'} e^{\boldsymbol{w}_{k'}^T \boldsymbol{x}}} \qquad \leftarrow \quad \text{This is called } \textit{softmax} \text{ function}$$

Intuition behind softmax: enforces desired properties of conditional probabilities that we are modelling

- preserves relative ordering of scores
- maps scores to values between 0 and 1 that also sum to 1

Definition of multinomial logistic regression

Model

For each class C_k , we have a parameter vector w_k and model the posterior probability as

$$p(C_k|\boldsymbol{x}) = \frac{e^{\boldsymbol{w}_k^{\mathrm{T}}\boldsymbol{x}}}{\sum_{k'} e^{\boldsymbol{w}_{k'}^{\mathrm{T}}\boldsymbol{x}}} \qquad \leftarrow \quad \text{This is called } \textit{softmax} \text{ function}$$

Intuition behind softmax: enforces desired properties of conditional probabilities that we are modelling

- preserves relative ordering of scores
- maps scores to values between 0 and 1 that also sum to 1

Decision boundary: assign \boldsymbol{x} with the label that is the maximum of posterior

$$\operatorname{arg\,max}_k P(C_k|\boldsymbol{x}) o \operatorname{arg\,max}_k \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}$$

Parameter estimation

Discriminative approach: maximize conditional likelihood

$$\log P(\mathcal{D}) = \sum_{n} \log P(y_n | \boldsymbol{x}_n)$$

Cross-entropy error function

$$\mathcal{E}(\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_K) = -\sum_n \sum_k y_{nk} \log P(C_k | \boldsymbol{x}_n)$$

Properties

- Convex, therefore unique global optimum
- Optimization requires numerical procedures, analogous to those used for binary logistic regression

Outline

- Administration
- Review of last lecture
- 3 Perceptron
 - Intuition
 - Algorithm
- 4 Linear regression

Main idea

Consider a linear model for binary classification

$$\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}$$

We use this model to distinguish between two classes $\{-1, +1\}$.

One goal

$$\varepsilon = \sum_n \mathbb{I}[y_n \neq \mathsf{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n)]$$

i.e., to minimize errors on the training dataset.

Hard, but easy if we have only one training example

How can we change $oldsymbol{w}$ such that

$$y_n = \mathsf{sign}(oldsymbol{w}^{\mathrm{T}} oldsymbol{x}_n)$$

Two cases

- If $y_n = \operatorname{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n)$, do nothing.
- ullet If $y_n
 eq \operatorname{sign}(oldsymbol{w}^{\mathrm{T}}oldsymbol{x}_n)$,

$$oldsymbol{w}^{ ext{NEW}} \leftarrow oldsymbol{w}^{ ext{OLD}} + y_n oldsymbol{x}_n$$

Why would it work?

If
$$y_n \neq \mathsf{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n)$$
, then

$$y_n(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n) < 0$$

Why would it work?

If $y_n \neq \operatorname{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n)$, then

$$y_n(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n) < 0$$

What would happen if we change to new ${m w}^{\text{NEW}} = {m w} + y_n {m x}_n$?

$$y_n[(\boldsymbol{w} + y_n \boldsymbol{x}_n)^{\mathrm{T}} \boldsymbol{x}_n] = y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n + y_n^2 \boldsymbol{x}_n^{\mathrm{T}} \boldsymbol{x}_n$$

Why would it work?

If $y_n \neq \operatorname{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n)$, then

$$y_n(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n) < 0$$

What would happen if we change to new ${m w}^{\scriptscriptstyle \rm NEW} = {m w} + y_n {m x}_n$?

$$y_n[(\boldsymbol{w} + y_n \boldsymbol{x}_n)^{\mathrm{T}} \boldsymbol{x}_n] = y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n + y_n^2 \boldsymbol{x}_n^{\mathrm{T}} \boldsymbol{x}_n$$

We are adding a positive number, so it is possible that

$$y_n(\boldsymbol{w}^{\text{NEW}T}\boldsymbol{x}_n) > 0$$

i.e., we are more likely to classify correctly

Perceptron

Iteratively solving one case at a time

- REPEAT
- ullet Pick a data point x_n (can be a fixed order of the training instances)
- ullet Make a prediction $y = \operatorname{sign}(oldsymbol{w}^{\mathrm{T}}oldsymbol{x}_n)$ using the current $oldsymbol{w}$
- If $y = y_n$, do nothing. Else,

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + y_n \boldsymbol{x}_n$$

UNTIL converged.

Perceptron

Iteratively solving one case at a time

- REPEAT
- ullet Pick a data point x_n (can be a fixed order of the training instances)
- Make a prediction $y = \operatorname{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n)$ using the *current* \boldsymbol{w}
- If $y = y_n$, do nothing. Else,

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + y_n \boldsymbol{x}_n$$

UNTIL converged.

Properties

- This is an online algorithm.
- If the training data is linearly separable, the algorithm stops in a finite number of steps.
- The parameter vector is always a linear combination of training instances.

Outline

- Administration
- 2 Review of last lecture
- Perceptron
- 4 Linear regression
 - Motivation
 - Algorithm
 - Univariate solution
 - Probabilistic interpretation

Regression

Predicting a continuous outcome variable

- Predicting shoe size from height, weight and gender
- Predicting a company's future stock price using its profit and other financial info
- Predicting annual rainfall based on local flaura / fauna
- Predicting song year from audio features

Regression

Predicting a continuous outcome variable

- Predicting shoe size from height, weight and gender
- Predicting a company's future stock price using its profit and other financial info
- Predicting annual rainfall based on local flaura / fauna
- Predicting song year from audio features

Key difference from classification

Regression

Predicting a continuous outcome variable

- Predicting shoe size from height, weight and gender
- Predicting a company's future stock price using its profit and other financial info
- Predicting annual rainfall based on local flaura / fauna
- Predicting song year from audio features

Key difference from classification

- We can measure 'closeness' of prediction and labels, leading to different ways to evaluate prediction errors.
 - ▶ Predicting shoe size: better to be off by one size than by 5 sizes
 - Predicting song year: better to be off by one year than by 20 years
- This will lead to different learning models and algorithms

Ex: predicting the sale price of a house

Retrieve historical sales records

(This will be our training data)

Features used to predict

\$1.510.000 4,418 So. Pt. Last Sold Price Beds Baths \$342 / Sq. Pt. Built: 1956 Lot Size: 9,649 Sq. Pt. Sold On: Jul 26, 2013

Five unit apartment complex within 2 blocks of USC campus. Gate #6. Great for students (most student leases have parents as guarantors). Most USC students live off campus, so housing units like this are always fully leased. Situated on a gated, corner lot, and across from an elementary school, this complex was recently renovated, and has in-unit laundry hook ups, wall -unit AC, and 12 parking spaces. It is within a DPS (Department of Public Safety) and Campus Cruiser patrolled area. This is a great income generating property, not to be missed!

Property Type Multi-Family Community Downtown Los Angeles MLSI 22176741

Style Two Level, Low Rise County Los Angeles

Property Details for 3620 South BUDLONG, Los Angeles, CA 90007

Interior Features			
Kitchen Information Remodeled Oven, Range Multi-Unit Information	Laundry Information Inside Laundry	Heating & Cooling Wall Cooling Unit(s)	
Community Features - Units in Compress (Foats 5 Multis Family Information - is Lassed 5 - is of Buildrags: 1 - is of Buildrags: 1 - Tenent Paye Section Ty Tenent Paye Gas - Tenent Paye Bectriothy, Tenent Paye Gas - Info	Unit 2 Information # of Dects: 3 # of Dects: 3 United States: 4 United States: 4 United States: 4 # of Dects: 4 # of United: 4 # of United: 5 # of United: 6 # of United	Mentity Plant: \$2,260 Unit & Information of Glebia: 3 of Glebia: 2 Information Monthly Plant: \$2,250 Unit Simble of Glebia: 3 of Glebia: 3 of Glebia: 3 of Glebia: 3 of Glebia: 1 Monthly Plant: \$2,250 Monthly Plant: \$2,250	
Property / Lot Details Property Features - Automotic Gate, Card/Code Access	Automatic Gate, Lawn, Sidewelks Comer Lot, Near Public Transit	Tax Parcel Number: 5040017019	
Lot Size (Sq. Pt.): 9,849 Lot Size (Sq. Pt.): 9,849 Lot Size (Acres): 0,2215 Lot Size Source Public Records.	Property Information Updated/Pernodeled Square Footage Source: Public Records		

Green Certification Rating: 0.00

. Green Walk Score: 0

. Green Year Certified: 0

. Green Location: Transportation, Walkability

Parking / Garage, Exterior Features, Utilities & Financing

- Parking Information . # of Parking Spaces (Total): 12 · Parking Space
- Gated
- Building Information

. Cross Streets: W 36th PI

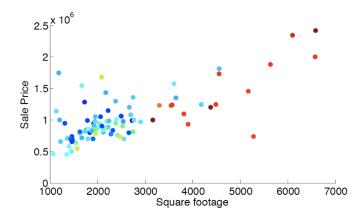
- Total Floors: 2
- Location Details, Misc. Information & Listing Information

Location Information

Expense Information Operating: \$37,664

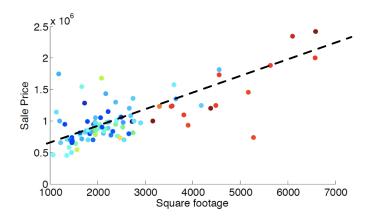
- Financial Information
- . Capitalization Rate (N): 6.25 . Actual Annual Gross Rent: \$128,331 Gross Rent Multiplier: 11.29
- Listing Information Listing Terms: Cash, Cash To Existing Loan . Buyer Financing: Cash

Correlation between square footage and sale price

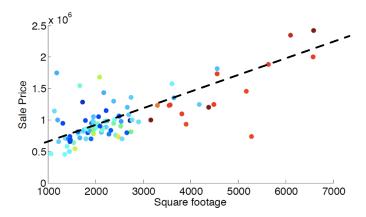


Note: colors here do NOT represent different labels as in classification

Roughly linear relationship



Roughly linear relationship



Sale price \approx price_per_sqft \times square_footage + fixed_expense

How to learn the unknown parameters?

training data (past sales record)

sqft	sale price
2000	800K
2100	907K
1100	312K
5500	2,600K

Reduce prediction error

How to measure errors?

- The classification error (*hit* or *miss*) is not appropriate for continuous outcomes.
- How should we evaluate quality of a prediction?

Reduce prediction error

How to measure errors?

- The classification error (*hit* or *miss*) is not appropriate for continuous outcomes.
- How should we evaluate quality of a prediction?
 - absolute difference: | prediction sale price
 - squared difference: (prediction sale price)² [differentiable]

sqft	sale price	prediction	error	squared error
2000	810K	720K	90K	8100
2100	907K	800K	107K	107^{2}
1100	312K	350K	38K	38^{2}
5500	2,600K	2,600K	0	0

Minimize squared errors

Our model

Sale price = price_per_sqft \times square_footage + fixed_expense + unexplainable_stuff

Training data

sqft	sale price	prediction	error	squared error
2000	810K	720K	90K	8100
2100	907K	800K	107K	107^2
1100	312K	350K	38K	38^{2}
5500	2,600K	2,600K	0	0
• • •	• • •			
Total				$8100 + 107^2 + 38^2 + 0 + \cdots$

Minimize squared errors

Our model

Sale price = price_per_sqft \times square_footage + fixed_expense + unexplainable_stuff

Training data

sqft	sale price	prediction	error	squared error
2000	810K	720K	90K	8100
2100	907K	800K	107K	107^2
1100	312K	350K	38K	38^{2}
5500	2,600K	2,600K	0	0
Total				$8100 + 107^2 + 38^2 + 0 + \cdots$

Aim

Adjust price_per_sqft and fixed_expense such that the sum of the squared error is minimized — i.e., the residual/remaining unexplainable_stuff is minimized.

Linear regression

Setup

- ullet Input: $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$ (covariates, predictors, features, etc)
- ullet Output: $y \in \mathbb{R}$ (responses, targets, outcomes, outputs, etc)

Linear regression

Setup

- ullet Input: $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$ (covariates, predictors, features, etc)
- ullet Output: $y \in \mathbb{R}$ (responses, targets, outcomes, outputs, etc)
- Model: $f: \boldsymbol{x} \to y$, with $f(\boldsymbol{x}) = w_0 + \sum_d w_d x_d = w_0 + \boldsymbol{w}^T \boldsymbol{x}$ $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_D]^T$: weights, parameters, or parameter vector w_0 is called bias.

We also sometimes call $\tilde{\boldsymbol{w}} = [w_0 \ w_1 \ w_2 \ \cdots \ w_{\mathsf{D}}]^{\mathrm{T}}$ parameters too!

Linear regression

Setup

- ullet Input: $x\in\mathbb{R}^{\mathsf{D}}$ (covariates, predictors, features, etc)
- ullet Output: $y \in \mathbb{R}$ (responses, targets, outcomes, outputs, etc)
- Model: $f: \boldsymbol{x} \to y$, with $f(\boldsymbol{x}) = w_0 + \sum_d w_d x_d = w_0 + \boldsymbol{w}^T \boldsymbol{x}$ $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_D]^T$: weights, parameters, or parameter vector w_0 is called bias.

We also sometimes call $\tilde{\boldsymbol{w}} = [w_0 \ w_1 \ w_2 \ \cdots \ w_{\mathsf{D}}]^{\mathrm{T}}$ parameters too!

 \bullet Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, \mathsf{N}\}$

How do we learn parameters?

Minimize prediction error on training data

- Use squared difference to measure error
- Residual sum of squares

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} [y_n - f(\boldsymbol{x}_n)]^2 = \sum_{n} [y_n - (w_0 + \sum_{d} w_d x_{nd})]^2$$

A simple case: x is just one-dimensional (D=1)

Residual sum of squares

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} [y_n - f(\boldsymbol{x}_n)]^2 = \sum_{n} [y_n - (w_0 + w_1 x_n)]^2$$

A simple case: x is just one-dimensional (D=1)

Residual sum of squares

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} [y_n - f(\boldsymbol{x}_n)]^2 = \sum_{n} [y_n - (w_0 + w_1 x_n)]^2$$

Identify stationary points by taking derivative with respect to parameters and setting to zero

$$\frac{\partial RSS(\tilde{\boldsymbol{w}})}{\partial w_0} = 0 \Rightarrow -2\sum_n [y_n - (w_0 + w_1 x_n)] = 0$$

$$\frac{\partial RSS(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \Rightarrow -2\sum_n [y_n - (w_0 + w_1 x_n)]x_n = 0$$

$$\frac{\partial RSS(\tilde{\boldsymbol{w}})}{\partial w_0} = 0 \Rightarrow -2\sum_n [y_n - (w_0 + w_1 x_n)] = 0$$

$$\frac{\partial RSS(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \Rightarrow -2\sum_n [y_n - (w_0 + w_1 x_n)]x_n = 0$$

Simplify these expressions to get "Normal Equations"

$$\frac{\partial RSS(\tilde{\boldsymbol{w}})}{\partial w_0} = 0 \Rightarrow -2\sum_n [y_n - (w_0 + w_1 x_n)] = 0$$

$$\frac{\partial RSS(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \Rightarrow -2\sum_n [y_n - (w_0 + w_1 x_n)]x_n = 0$$

Simplify these expressions to get "Normal Equations"

$$\sum y_n = Nw_0 + w_1 \sum x_n$$
$$\sum x_n y_n = w_0 \sum x_n + w_1 \sum x_n^2$$

$$\frac{\partial RSS(\tilde{\boldsymbol{w}})}{\partial w_0} = 0 \Rightarrow -2\sum_n [y_n - (w_0 + w_1 x_n)] = 0$$

$$\frac{\partial RSS(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \Rightarrow -2\sum_n [y_n - (w_0 + w_1 x_n)]x_n = 0$$

Simplify these expressions to get "Normal Equations"

$$\sum y_n = Nw_0 + w_1 \sum x_n$$
$$\sum x_n y_n = w_0 \sum x_n + w_1 \sum x_n^2$$

We have two equations and two unknowns! Do some algebra to get:

$$w_1 = rac{\sum (x_n - \bar{x})(y_n - \bar{y})}{\sum (x_i - \bar{x})^2}$$
 and $w_0 = \bar{y} - w_1 \bar{x}$

where $\bar{x} = \frac{1}{n} \sum_n x_n$ and $\bar{y} = \frac{1}{n} \sum_n y_n$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ◆ ◆ ○ ○ ○

Why is minimizing RSS sensible?

Probabilistic interpretation

Noisy observation model

$$Y = w_0 + w_1 X + \eta$$

where $\eta \sim N(0, \sigma^2)$ is a Gaussian random variable

Why is minimizing RSS sensible?

Probabilistic interpretation

Noisy observation model

$$Y = w_0 + w_1 X + \eta$$

where $\eta \sim N(0, \sigma^2)$ is a Gaussian random variable

• Likelihood of one training sample (x_n, y_n)

$$p(y_n|x_n) = N(w_0 + w_1 x_n, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{[y_n - (w_0 + w_1 x_n)]^2}{2\sigma^2}}$$

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$\log P(\mathcal{D}) = \log \prod_{n=1}^{N} p(y_n|x_n) = \sum_{n} \log p(y_n|x_n)$$

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$\log P(\mathcal{D}) = \log \prod_{n=1}^{N} p(y_n | x_n) = \sum_{n} \log p(y_n | x_n)$$
$$= \sum_{n} \left\{ -\frac{[y_n - (w_0 + w_1 x_n)]^2}{2\sigma^2} - \log \sqrt{2\pi}\sigma \right\}$$

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$\log P(\mathcal{D}) = \log \prod_{n=1}^{N} p(y_n | x_n) = \sum_{n} \log p(y_n | x_n)$$

$$= \sum_{n} \left\{ -\frac{[y_n - (w_0 + w_1 x_n)]^2}{2\sigma^2} - \log \sqrt{2\pi}\sigma \right\}$$

$$= -\frac{1}{2\sigma^2} \sum_{n} [y_n - (w_0 + w_1 x_n)]^2 - \frac{N}{2} \log \sigma^2 - N \log \sqrt{2\pi}$$

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$\begin{split} \log P(\mathcal{D}) &= \log \prod_{n=1}^{\mathsf{N}} p(y_n|x_n) = \sum_n \log p(y_n|x_n) \\ &= \sum_n \left\{ -\frac{[y_n - (w_0 + w_1x_n)]^2}{2\sigma^2} - \log \sqrt{2\pi}\sigma \right\} \\ &= -\frac{1}{2\sigma^2} \sum_n [y_n - (w_0 + w_1x_n)]^2 - \frac{\mathsf{N}}{2} \log \sigma^2 - \mathsf{N} \log \sqrt{2\pi} \\ &= -\frac{1}{2} \left\{ \frac{1}{\sigma^2} \sum_n [y_n - (w_0 + w_1x_n)]^2 + \mathsf{N} \log \sigma^2 \right\} + \mathsf{const} \end{split}$$

What is the relationship between minimizing RSS and maximizing the log-likelihood?

Maximum likelihood estimation

Estimating σ , w_0 and w_1 can be done in two steps

• Maximize over w_0 and w_1

$$\max \log P(\mathcal{D}) \Leftrightarrow \min \sum_{n} [y_n - (w_0 + w_1 x_n)]^2 \leftarrow \mathsf{That} \mathsf{ is } \mathsf{RSS}(\tilde{\boldsymbol{w}})!$$

Maximum likelihood estimation

Estimating σ , w_0 and w_1 can be done in two steps

ullet Maximize over w_0 and w_1

$$\max \log P(\mathcal{D}) \Leftrightarrow \min \sum_{n} [y_n - (w_0 + w_1 x_n)]^2 \leftarrow \mathsf{That} \mathsf{ is } \mathsf{RSS}(\tilde{\boldsymbol{w}})!$$

• Maximize over $s=\sigma^2$ (we could estimate σ directly)

$$\frac{\partial \log P(\mathcal{D})}{\partial s} = -\frac{1}{2} \left\{ -\frac{1}{s^2} \sum_n [y_n - (w_0 + w_1 x_n)]^2 + \mathsf{N} \frac{1}{s} \right\} = 0$$

Maximum likelihood estimation

Estimating σ , w_0 and w_1 can be done in two steps

ullet Maximize over w_0 and w_1

$$\max \log P(\mathcal{D}) \Leftrightarrow \min \sum_{n} [y_n - (w_0 + w_1 x_n)]^2 \leftarrow \mathsf{That} \mathsf{ is } \mathsf{RSS}(\tilde{\boldsymbol{w}})!$$

• Maximize over $s=\sigma^2$ (we could estimate σ directly)

$$\frac{\partial \log P(\mathcal{D})}{\partial s} = -\frac{1}{2} \left\{ -\frac{1}{s^2} \sum_n [y_n - (w_0 + w_1 x_n)]^2 + \mathsf{N} \frac{1}{s} \right\} = 0$$

$$\to \sigma^{*2} = s^* = \frac{1}{\mathsf{N}} \sum_n [y_n - (w_0 + w_1 x_n)]^2$$

How does this probabilistic interpretation help us?

- ullet It gives a solid footing to our intuition: minimizing RSS $(ilde{w})$ is a sensible thing based on reasonable modeling assumptions
- Estimating σ^* tells us how much noise there could be in our predictions. For example, it allows us to place confidence intervals around our predictions.