Perceptron and Linear Regresssion

Professor Ameet Talwalkar
Slide Credit: Professor Fei Sha

Outline

(1) Administration

(2) Review of last lecture

(3) Perceptron
(4) Linear regression

A few announcements

- Homework 2: due now
- Homework 3 and 4 now available online
- BOTH are due in two weeks

A few announcements

- Homework 2: due now
- Homework 3 and 4 now available online
- BOTH are due in two weeks
- Read the book(s) to supplement content on slides!

Class Projects (2nd reminder)

- 1-2 students per project
- Grading
- 30% of total class grade
- Proposal will be short (roughly 1 page, details next week), but worth $1 / 4$ of grade because planning ahead is important!
- You are responsible for proposing a project!
- You must briefly meet with one the TAs or myself before the proposal submission deadline

How to get started?

- Projects can be theoretical, algorithmic and/or applied in nature
- Develop new learning algorithm
- Theoretically analyze an existing or a new algorithm
- Apply learning techniques on some problem of interest
- Get started by thinking about what you're interested in
- Research you're already doing?
- Some domain you've always been excited about (sports, politics, weather, movies, music, etc.)?
- If you're doing an applied project, finding data is the crucial component. What questions can you ask of your data?

Class Project Timeline

- Before November 5th: Meet with a TA or me
- November 5th: Project Proposal is due
- December 11th: Poster Session; Project Report due

Outline

(1) Administration

(2) Review of last lecture

- Generative vs Discriminative
- Multiclass classification
(3) Perceptron
(4) Linear regression

Generative vs Discriminative

Discriminative

- Requires only specifying a model for the conditional distribution $p(y \mid x)$, and thus, maximizes the conditional likelihood $\sum_{n} \log p\left(y_{n} \mid \boldsymbol{x}_{n}\right)$.
- Models that try to learn mappings directly from feature space to the labels are also discriminative, e.g., perceptron, SVMs (covered later)

Generative vs Discriminative

Discriminative

- Requires only specifying a model for the conditional distribution $p(y \mid x)$, and thus, maximizes the conditional likelihood $\sum_{n} \log p\left(y_{n} \mid \boldsymbol{x}_{n}\right)$.
- Models that try to learn mappings directly from feature space to the labels are also discriminative, e.g., perceptron, SVMs (covered later)

Generative

- Aims to model the joint probability $p(x, y)$ and thus maximize the joint likelihood $\sum_{n} \log p\left(\boldsymbol{x}_{n}, y_{n}\right)$.
- The generative models we cover (Naive Bayes, QDA, LDA) do so by modeling $p(x \mid y)$ and $p(y)$

QDA Model of the joint distribution (1D)

$$
\begin{aligned}
p(x, y) & =p(y) p(x \mid y) \\
& = \begin{cases}p_{1} \frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{-\frac{\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}} & \text { if } y=1 \\
p_{2} \frac{1}{\sqrt{2 \pi} \sigma_{2}} e^{-\frac{\left(x-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}} & \text { if } y=2\end{cases}
\end{aligned}
$$

$p_{1}+p_{2}=1$ are prior probabilities, and
 $p(x \mid y)$ is a class conditional distribution

QDA Parameter estimation

Log Likelihood in 1D $\mathcal{D}=\left\{\left(x_{n}, y_{n}\right)\right\}_{n=1}^{N}$ with $y_{n} \in\{1,2\}$

$$
\begin{aligned}
\log P(\mathcal{D}) & =\sum_{n} \log p\left(x_{n}, y_{n}\right) \\
& =\sum_{n: y_{n}=1} \log \left(p_{1} \frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{-\frac{\left(x_{n}-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}}\right) \\
& +\sum_{n: y_{n}=2} \log \left(p_{2} \frac{1}{\sqrt{2 \pi} \sigma_{2}} e^{-\frac{\left(x_{n}-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}}\right)
\end{aligned}
$$

Max log likelihood $\left(p_{1}^{*}, p_{2}^{*}, \mu_{1}^{*}, \mu_{2}^{*}, \sigma_{1}^{*}, \sigma_{2}^{*}\right)=\arg \max \log P(\mathcal{D})$

QDA Parameter estimation

Log Likelihood in 1D $\mathcal{D}=\left\{\left(x_{n}, y_{n}\right)\right\}_{n=1}^{N}$ with $y_{n} \in\{1,2\}$

$$
\begin{aligned}
\log P(\mathcal{D}) & =\sum_{n} \log p\left(x_{n}, y_{n}\right) \\
& =\sum_{n: y_{n}=1} \log \left(p_{1} \frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{-\frac{\left(x_{n}-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}}\right) \\
& +\sum_{n: y_{n}=2} \log \left(p_{2} \frac{1}{\sqrt{2 \pi} \sigma_{2}} e^{-\frac{\left(x_{n}-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}}\right)
\end{aligned}
$$

Max log likelihood $\left(p_{1}^{*}, p_{2}^{*}, \mu_{1}^{*}, \mu_{2}^{*}, \sigma_{1}^{*}, \sigma_{2}^{*}\right)=\arg \max \log P(\mathcal{D})$
Max likelihood $(D>1)\left(p_{1}^{*}, p_{2}^{*}, \boldsymbol{\mu}_{1}^{*}, \boldsymbol{\mu}_{2}^{*}, \boldsymbol{\Sigma}_{1}^{*}, \boldsymbol{\Sigma}_{2}^{*}\right)=\arg \max \log P(\mathcal{D})$

QDA vs LDA vs NB

- QDA: Allows distinct, arbitrary covariance matrices for each class
- LDA: Requires the same arbitrary covariance matrix across classes
- GNB in general: Allows for distinct covariance matrices across each class, but these covariance matrices must be diagonal
- GNB in HW2 Problem 1: Requires the same diagonal covariance matrix across classes

Generative versus discriminative: which one to use?

There is no fixed rule

- It depends on how well your modeling assumption fits the data
- LDA and Gaussian Naive Bayes make stronger assumptions than logistic regression
- When data follows this assumption, these generative models will likely yield a model that better fits the data
- But logistic regression is more robust and less sensitive to incorrect modelling assumption

Setup for classifying multiple classes

Suppose we need to predict multiple classes/outcomes:
$C_{1}, C_{2}, \ldots, C_{K}$

- Weather prediction: sunny, cloudy, raining, etc
- Optical character recognition: 10 digits +26 characters (lower and upper cases) + special characters, etc
Two main approaches
- Use binary classifiers as building blocks
- Multinomial logistic regression

The approach of "one versus the rest"

- For each class C_{k}, change the problem into binary classification
(1) Relabel training data with label C_{k}, into positive (or '1')
(2) Relabel all the rest data into negative (or ' 0 ')
- Train K binary classifiers in total

The approach of "one versus the rest"

- For each class C_{k}, change the problem into binary classification
(1) Relabel training data with label C_{k}, into positive (or ' 1 ')
(2) Relabel all the rest data into Negative (or ' 0 ')
- Train K binary classifiers in total

The approach of "one versus one"

- For each pair of classes C_{k} and $C_{k^{\prime}}$, change the problem into binary classification
(1) Relabel training data with label C_{k}, into positive (or '1')
(2) Relabel training data with label $C_{k^{\prime}}$ into negative (or '0')
(3) Disregard all other data
- Train $K(K-1) / 2$ binary classifiers total

Contrast these two approaches

Pros and cons of each approach

- one versus the rest: only needs to train K classifiers.

Contrast these two approaches

Pros and cons of each approach

- one versus the rest: only needs to train K classifiers.
- Makes a big difference if you have a lot of classes to go through

Contrast these two approaches

Pros and cons of each approach

- one versus the rest: only needs to train K classifiers.
- Makes a big difference if you have a lot of classes to go through
- one versus one: only needs to train a smaller subset of data (only those labeled with those two classes would be involved).

Contrast these two approaches

Pros and cons of each approach

- one versus the rest: only needs to train K classifiers.
- Makes a big difference if you have a lot of classes to go through
- one versus one: only needs to train a smaller subset of data (only those labeled with those two classes would be involved).
- Makes a big difference if you have a lot of data to go through.

Contrast these two approaches

Pros and cons of each approach

- one versus the rest: only needs to train K classifiers.
- Makes a big difference if you have a lot of classes to go through
- one versus one: only needs to train a smaller subset of data (only those labeled with those two classes would be involved).
- Makes a big difference if you have a lot of data to go through.

Drawback of both methods: Combining classifiers' outputs seem to be a bit tricky.

Definition of multinomial logistic regression

Model

For each class C_{k}, we have a parameter vector \boldsymbol{w}_{k} and model the posterior probability as

$$
p\left(C_{k} \mid \boldsymbol{x}\right)=\frac{e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}}}{\sum_{k^{\prime}} e^{\boldsymbol{w}_{k^{\prime}}^{\mathrm{T}} \boldsymbol{x}}} \quad \leftarrow \quad \text { This is called softmax function }
$$

Definition of multinomial logistic regression

Model

For each class C_{k}, we have a parameter vector \boldsymbol{w}_{k} and model the posterior probability as

$$
p\left(C_{k} \mid \boldsymbol{x}\right)=\frac{e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}}}{\sum_{k^{\prime}} e^{\boldsymbol{w}_{k^{\prime}}^{\mathrm{T}} \boldsymbol{x}}} \quad \leftarrow \quad \text { This is called softmax function }
$$

Intuition behind softmax: enforces desired properties of conditional probabilities that we are modelling

- preserves relative ordering of scores
- maps scores to values between 0 and 1 that also sum to 1

Definition of multinomial logistic regression

Model

For each class C_{k}, we have a parameter vector \boldsymbol{w}_{k} and model the posterior probability as

$$
p\left(C_{k} \mid \boldsymbol{x}\right)=\frac{e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}}}{\sum_{k^{\prime}} e^{\boldsymbol{w}_{k^{\prime}}^{\mathrm{T}} \boldsymbol{x}}} \quad \leftarrow \quad \text { This is called softmax function }
$$

Intuition behind softmax: enforces desired properties of conditional probabilities that we are modelling

- preserves relative ordering of scores
- maps scores to values between 0 and 1 that also sum to 1 Decision boundary: assign \boldsymbol{x} with the label that is the maximum of posterior

$$
\arg \max _{k} P\left(C_{k} \mid \boldsymbol{x}\right) \rightarrow \arg \max _{k} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}
$$

Parameter estimation

Discriminative approach: maximize conditional likelihood

$$
\log P(\mathcal{D})=\sum_{n} \log P\left(y_{n} \mid \boldsymbol{x}_{n}\right)
$$

Cross-entropy error function

$$
\mathcal{E}\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{K}\right)=-\sum_{n} \sum_{k} y_{n k} \log P\left(C_{k} \mid \boldsymbol{x}_{n}\right)
$$

Properties

- Convex, therefore unique global optimum
- Optimization requires numerical procedures, analogous to those used for binary logistic regression

Outline

(1) Administration
(2) Review of last lecture
(3) Perceptron

- Intuition
- Algorithm

4. Linear regression

Main idea

Consider a linear model for binary classification

$$
\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}
$$

We use this model to distinguish between two classes $\{-1,+1\}$.
One goal

$$
\varepsilon=\sum_{n} \mathbb{I}\left[y_{n} \neq \operatorname{sign}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)\right]
$$

i.e., to minimize errors on the training dataset.

Hard, but easy if we have only one training example

How can we change \boldsymbol{w} such that

$$
y_{n}=\operatorname{sign}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)
$$

Two cases

- If $y_{n}=\operatorname{sign}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)$, do nothing.
- If $y_{n} \neq \operatorname{sign}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)$,

$$
\boldsymbol{w}^{\mathrm{NEW}} \leftarrow \boldsymbol{w}^{\mathrm{OLD}}+y_{n} \boldsymbol{x}_{n}
$$

Why would it work?

If $y_{n} \neq \operatorname{sign}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)$, then

$$
y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)<0
$$

Why would it work?

If $y_{n} \neq \operatorname{sign}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)$, then

$$
y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)<0
$$

What would happen if we change to new $\boldsymbol{w}^{\text {NEW }}=\boldsymbol{w}+y_{n} \boldsymbol{x}_{n}$?

$$
y_{n}\left[\left(\boldsymbol{w}+y_{n} \boldsymbol{x}_{n}\right)^{\mathrm{T}} \boldsymbol{x}_{n}\right]=y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}+y_{n}^{2} \boldsymbol{x}_{n}^{\mathrm{T}} \boldsymbol{x}_{n}
$$

Why would it work?

If $y_{n} \neq \operatorname{sign}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)$, then

$$
y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)<0
$$

What would happen if we change to new $\boldsymbol{w}^{\text {NEW }}=\boldsymbol{w}+y_{n} \boldsymbol{x}_{n}$?

$$
y_{n}\left[\left(\boldsymbol{w}+y_{n} \boldsymbol{x}_{n}\right)^{\mathrm{T}} \boldsymbol{x}_{n}\right]=y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}+y_{n}^{2} \boldsymbol{x}_{n}^{\mathrm{T}} \boldsymbol{x}_{n}
$$

We are adding a positive number, so it is possible that

$$
y_{n}\left(\boldsymbol{w}^{\mathrm{NEWT}} \boldsymbol{x}_{n}\right)>0
$$

i.e., we are more likely to classify correctly

Perceptron

Iteratively solving one case at a time

- REPEAT
- Pick a data point \boldsymbol{x}_{n} (can be a fixed order of the training instances)
- Make a prediction $y=\operatorname{sign}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)$ using the current \boldsymbol{w}
- If $y=y_{n}$, do nothing. Else,

$$
\boldsymbol{w} \leftarrow \boldsymbol{w}+y_{n} \boldsymbol{x}_{n}
$$

- UNTIL converged.

Perceptron

Iteratively solving one case at a time

- REPEAT
- Pick a data point \boldsymbol{x}_{n} (can be a fixed order of the training instances)
- Make a prediction $y=\operatorname{sign}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}\right)$ using the current \boldsymbol{w}
- If $y=y_{n}$, do nothing. Else,

$$
\boldsymbol{w} \leftarrow \boldsymbol{w}+y_{n} \boldsymbol{x}_{n}
$$

- UNTIL converged.

Properties

- This is an online algorithm.
- If the training data is linearly separable, the algorithm stops in a finite number of steps.
- The parameter vector is always a linear combination of training instances.

Outline

(1) Administration
(2) Review of last lecture
(3) Perceptron

4 Linear regression

- Motivation
- Algorithm
- Univariate solution
- Probabilistic interpretation

Regression

Predicting a continuous outcome variable

- Predicting shoe size from height, weight and gender
- Predicting a company's future stock price using its profit and other financial info
- Predicting annual rainfall based on local flaura / fauna
- Predicting song year from audio features

Regression

Predicting a continuous outcome variable

- Predicting shoe size from height, weight and gender
- Predicting a company's future stock price using its profit and other financial info
- Predicting annual rainfall based on local flaura / fauna
- Predicting song year from audio features

Key difference from classification

Regression

Predicting a continuous outcome variable

- Predicting shoe size from height, weight and gender
- Predicting a company's future stock price using its profit and other financial info
- Predicting annual rainfall based on local flaura / fauna
- Predicting song year from audio features

Key difference from classification

- We can measure 'closeness' of prediction and labels, leading to different ways to evaluate prediction errors.
- Predicting shoe size: better to be off by one size than by 5 sizes
- Predicting song year: better to be off by one year than by 20 years
- This will lead to different learning models and algorithms

Ex: predicting the sale price of a house

Retrieve historical sales records

(This will be our training data)

Features used to predict

\ni Property Details for $\mathbf{3 6 2 0}$ South BUDLONG, Los Angeles, CA 90007

Interior Features		
Kitchen Information - Remodeled - Oven, Range	Laundry Information - Inside Launtry	Heating \& Cooling - Wall Cooling Unit(s)
Multi-Unilt information		
Community Features - Units in Complex (Total 5 Multi-Family Information - \# Leased: 5 - \#t af Buildings: 1 - Owne Pays Water - Tenant Paya Electricity, Tenant Pays Gas Unit 1 Information - It of Beds: 2 - \$ of Baths: 1 - Unfumished - Monthly Rent: \$1.700	Unit 2 intormation - * of Beds: 3 - \# of Baths: 1 - Unfurnished - Monthly Rent $\$ 2.260$ Unit 3 Information - Unfurnished Unit 4 Information - IN of Becis: 3 - \# of Baths: 1 - Unfurnished	- Monthiy Rent: $\mathbf{3 2 , 3 5 0}$ Unit 5 Information - \#o of Beds; 3 - \# of Baths: 2 - Unfurrished - Monthly Rent: $\$ 2,325$ Unit 6 Information - \# ot Beda: 3 - \#i of Baths: 1 - Monthly Fient: $\$ 2,250$
Property / Lot Details		
Property Features - Automaric Gate Card/Code Access Lot Information - Lot Size (Sq Ft): 9,649 - Lot Size /acrest 0.2215 - Lot Size Sourca: Public Records	- Automatic Gate, Lawn, Sidewalks - Comer Lot, Near Public Transit Property Information - Updated/Rimodeled - Square Footage Source PuDic Records	- Tax Faccel numberr 5040017018
Parking / Oarage, Exierior Features, Uutilies \& FFinancing		
Parking Information - \# of Parking Spaces (Tota): 12 - Parking Spacs - Gated Building Information - Total Floora: 2	Utility Information - Green Certification Rating 0.00 - Green Location: Transponation, Walkability - Green Walk Score 0 - Grean Year Cartifed: 0	Financial Intormation - Capitalization Rate (\%): 6.25 - Actual Annual Gross Rent: \$128,331 - Gross fent Multiplier: 11.29
Location Dotails, Misc. Intormation 8 Listing Information		
Location Information - Cross Stroes: W 36th PI	Expense Information - Operar:ing: $\$ 37,664$	Listing Intormation - Listing Terms: Cash, Cash To Existing Loan - Buyer Finanding: Cash

Correlation between square footage and sale price

Note: colors here do NOT represent different labels as in classification

Roughly linear relationship

Roughly linear relationship

Sale price \approx price_per_sqft \times square_footage + fixed_expense

How to learn the unknown parameters?

training data (past sales record)

sqft	sale price
2000	800 K
2100	907 K
1100	312 K
5500	$2,600 \mathrm{~K}$
\cdots	\cdots

Reduce prediction error

How to measure errors?

- The classification error (hit or miss) is not appropriate for continuous outcomes.
- How should we evaluate quality of a prediction?

Reduce prediction error

How to measure errors?

- The classification error (hit or miss) is not appropriate for continuous outcomes.
- How should we evaluate quality of a prediction?
- absolute difference: | prediction - sale price|
- squared difference: (prediction - sale price) ${ }^{2}$ [differentiable]

sqft	sale price	prediction	error	squared error
2000	810 K	720 K	90 K	8100
2100	907 K	800 K	107 K	107^{2}
1100	312 K	350 K	38 K	38^{2}
5500	$2,600 \mathrm{~K}$	$2,600 \mathrm{~K}$	0	0
\cdots	\cdots			

Minimize squared errors

Our model

Sale price $=$ price_per_sqft \times square_footage + fixed_expense + unexplainable_stuff

Training data

sqft	sale price	prediction	error	squared error
2000	810 K	720 K	90 K	8100
2100	907 K	800 K	107 K	107^{2}
1100	312 K	350 K	38 K	38^{2}
5500	$2,600 \mathrm{~K}$	$2,600 \mathrm{~K}$	0	0
\cdots	\cdots			
Total				$8100+107^{2}+38^{2}+0+\cdots$

Minimize squared errors

Our model

Sale price $=$ price_per_sqft \times square_footage + fixed_expense + unexplainable_stuff

Training data

sqft	sale price	prediction	error	squared error
2000	810 K	720 K	90 K	8100
2100	907 K	800 K	107 K	107^{2}
1100	312 K	350 K	38 K	38^{2}
5500	$2,600 \mathrm{~K}$	$2,600 \mathrm{~K}$	0	0
\cdots	\cdots			
Total				$8100+107^{2}+38^{2}+0+\cdots$

Aim

Adjust price_per_sqft and fixed_expense such that the sum of the squared error is minimized - i.e., the residual/remaining unexplainable_stuff is minimized.

Linear regression

Setup

- Input: $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$ (covariates, predictors, features, etc)
- Output: $y \in \mathbb{R}$ (responses, targets, outcomes, outputs, etc)

Linear regression

Setup

- Input: $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$ (covariates, predictors, features, etc)
- Output: $y \in \mathbb{R}$ (responses, targets, outcomes, outputs, etc)
- Model: $f: \boldsymbol{x} \rightarrow y$, with $f(\boldsymbol{x})=w_{0}+\sum_{d} w_{d} x_{d}=w_{0}+\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$
$\boldsymbol{w}=\left[\begin{array}{llll}w_{1} & w_{2} & \cdots & w_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}:$ weights, parameters, or parameter vector w_{0} is called bias.
We also sometimes call $\tilde{\boldsymbol{w}}=\left[\begin{array}{lllll}w_{0} & w_{1} & w_{2} & \cdots & w_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}$ parameters too!

Linear regression

Setup

- Input: $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$ (covariates, predictors, features, etc)
- Output: $y \in \mathbb{R}$ (responses, targets, outcomes, outputs, etc)
- Model: $f: \boldsymbol{x} \rightarrow y$, with $f(\boldsymbol{x})=w_{0}+\sum_{d} w_{d} x_{d}=w_{0}+\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$
$\boldsymbol{w}=\left[\begin{array}{llll}w_{1} & w_{2} & \cdots & w_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}:$ weights, parameters, or parameter vector w_{0} is called bias.
We also sometimes call $\tilde{\boldsymbol{w}}=\left[\begin{array}{lllll}w_{0} & w_{1} & w_{2} & \cdots & w_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}$ parameters too!
- Training data: $\mathcal{D}=\left\{\left(\boldsymbol{x}_{n}, y_{n}\right), n=1,2, \ldots, \mathrm{~N}\right\}$

How do we learn parameters?

Minimize prediction error on training data

- Use squared difference to measure error
- Residual sum of squares

$$
R S S(\tilde{\boldsymbol{w}})=\sum_{n}\left[y_{n}-f\left(\boldsymbol{x}_{n}\right)\right]^{2}=\sum_{n}\left[y_{n}-\left(w_{0}+\sum_{d} w_{d} x_{n d}\right)\right]^{2}
$$

A simple case: \boldsymbol{x} is just one-dimensional $(D=1)$

Residual sum of squares

$$
R S S(\tilde{\boldsymbol{w}})=\sum_{n}\left[y_{n}-f\left(\boldsymbol{x}_{n}\right)\right]^{2}=\sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2}
$$

A simple case: \boldsymbol{x} is just one-dimensional $(D=1)$

Residual sum of squares

$$
R S S(\tilde{\boldsymbol{w}})=\sum_{n}\left[y_{n}-f\left(\boldsymbol{x}_{n}\right)\right]^{2}=\sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2}
$$

Identify stationary points by taking derivative with respect to parameters and setting to zero

$$
\begin{gathered}
\frac{\partial R S S(\tilde{\boldsymbol{w}})}{\partial w_{0}}=0 \Rightarrow-2 \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]=0 \\
\frac{\partial R S S(\tilde{\boldsymbol{w}})}{\partial w_{1}}=0 \Rightarrow-2 \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right] x_{n}=0
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial R S S(\tilde{\boldsymbol{w}})}{\partial w_{0}}=0 \Rightarrow-2 \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]=0 \\
\frac{\partial R S S(\tilde{\boldsymbol{w}})}{\partial w_{1}}=0 \Rightarrow-2 \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right] x_{n}=0
\end{gathered}
$$

Simplify these expressions to get "Normal Equations"

$$
\begin{gathered}
\frac{\partial R S S(\tilde{\boldsymbol{w}})}{\partial w_{0}}=0 \Rightarrow-2 \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]=0 \\
\frac{\partial R S S S(\tilde{\boldsymbol{w}})}{\partial w_{1}}=0 \Rightarrow-2 \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right] x_{n}=0
\end{gathered}
$$

Simplify these expressions to get "Normal Equations"

$$
\begin{aligned}
\sum y_{n} & =N w_{0}+w_{1} \sum x_{n} \\
\sum x_{n} y_{n} & =w_{0} \sum x_{n}+w_{1} \sum x_{n}^{2}
\end{aligned}
$$

$$
\begin{gathered}
\frac{\partial R S S(\tilde{\boldsymbol{w}})}{\partial w_{0}}=0 \Rightarrow-2 \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]=0 \\
\frac{\partial R S S(\tilde{\boldsymbol{w}})}{\partial w_{1}}=0 \Rightarrow-2 \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right] x_{n}=0
\end{gathered}
$$

Simplify these expressions to get "Normal Equations"

$$
\begin{aligned}
\sum y_{n} & =N w_{0}+w_{1} \sum x_{n} \\
\sum x_{n} y_{n} & =w_{0} \sum x_{n}+w_{1} \sum x_{n}^{2}
\end{aligned}
$$

We have two equations and two unknowns! Do some algebra to get:

$$
w_{1}=\frac{\sum\left(x_{n}-\bar{x}\right)\left(y_{n}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}} \quad \text { and } \quad w_{0}=\bar{y}-w_{1} \bar{x}
$$

where $\bar{x}=\frac{1}{n} \sum_{n} x_{n}$ and $\bar{y}=\frac{1}{n} \sum_{n} y_{n}$.

Why is minimizing RSS sensible?

Probabilistic interpretation

- Noisy observation model

$$
Y=w_{0}+w_{1} X+\eta
$$

where $\eta \sim N\left(0, \sigma^{2}\right)$ is a Gaussian random variable

Why is minimizing RSS sensible?

Probabilistic interpretation

- Noisy observation model

$$
Y=w_{0}+w_{1} X+\eta
$$

where $\eta \sim N\left(0, \sigma^{2}\right)$ is a Gaussian random variable

- Likelihood of one training sample $\left(x_{n}, y_{n}\right)$

$$
p\left(y_{n} \mid x_{n}\right)=N\left(w_{0}+w_{1} x_{n}, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2}}{2 \sigma^{2}}}
$$

Probabilistic interpretation (cont'd)

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$
\log P(\mathcal{D})=\log \prod_{n=1}^{\mathrm{N}} p\left(y_{n} \mid x_{n}\right)=\sum_{n} \log p\left(y_{n} \mid x_{n}\right)
$$

Probabilistic interpretation (cont'd)

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$
\begin{aligned}
\log P(\mathcal{D}) & =\log \prod_{n=1}^{\mathrm{N}} p\left(y_{n} \mid x_{n}\right)=\sum_{n} \log p\left(y_{n} \mid x_{n}\right) \\
& =\sum_{n}\left\{-\frac{\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2}}{2 \sigma^{2}}-\log \sqrt{2 \pi} \sigma\right\}
\end{aligned}
$$

Probabilistic interpretation (cont'd)

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$
\begin{aligned}
\log P(\mathcal{D}) & =\log \prod_{n=1}^{\mathrm{N}} p\left(y_{n} \mid x_{n}\right)=\sum_{n} \log p\left(y_{n} \mid x_{n}\right) \\
& =\sum_{n}\left\{-\frac{\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2}}{2 \sigma^{2}}-\log \sqrt{2 \pi} \sigma\right\} \\
& =-\frac{1}{2 \sigma^{2}} \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2}-\frac{\mathrm{N}}{2} \log \sigma^{2}-\mathrm{N} \log \sqrt{2 \pi}
\end{aligned}
$$

Probabilistic interpretation (cont'd)

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$
\begin{aligned}
\log P(\mathcal{D}) & =\log \prod_{n=1}^{N} p\left(y_{n} \mid x_{n}\right)=\sum_{n} \log p\left(y_{n} \mid x_{n}\right) \\
& =\sum_{n}\left\{-\frac{\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2}}{2 \sigma^{2}}-\log \sqrt{2 \pi} \sigma\right\} \\
& =-\frac{1}{2 \sigma^{2}} \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2}-\frac{\mathrm{N}}{2} \log \sigma^{2}-\mathrm{N} \log \sqrt{2 \pi} \\
& =-\frac{1}{2}\left\{\frac{1}{\sigma^{2}} \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2}+\mathrm{N} \log \sigma^{2}\right\}+\mathrm{const}
\end{aligned}
$$

What is the relationship between minimizing RSS and maximizing the log-likelihood?

Maximum likelihood estimation

Estimating σ, w_{0} and w_{1} can be done in two steps

- Maximize over w_{0} and w_{1}

$$
\max \log P(\mathcal{D}) \Leftrightarrow \min \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2} \leftarrow \text { That is } \operatorname{RSS}(\tilde{\boldsymbol{w}})!
$$

Maximum likelihood estimation

Estimating σ, w_{0} and w_{1} can be done in two steps

- Maximize over w_{0} and w_{1}

$$
\max \log P(\mathcal{D}) \Leftrightarrow \min \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2} \leftarrow \text { That is } \operatorname{RSS}(\tilde{\boldsymbol{w}})!
$$

- Maximize over $s=\sigma^{2}$ (we could estimate σ directly)

$$
\frac{\partial \log P(\mathcal{D})}{\partial s}=-\frac{1}{2}\left\{-\frac{1}{s^{2}} \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2}+\mathrm{N} \frac{1}{s}\right\}=0
$$

Maximum likelihood estimation

Estimating σ, w_{0} and w_{1} can be done in two steps

- Maximize over w_{0} and w_{1}

$$
\max \log P(\mathcal{D}) \Leftrightarrow \min \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2} \leftarrow \text { That is } \operatorname{RSS}(\tilde{\boldsymbol{w}})!
$$

- Maximize over $s=\sigma^{2}$ (we could estimate σ directly)

$$
\begin{aligned}
\frac{\partial \log P(\mathcal{D})}{\partial s} & =-\frac{1}{2}\left\{-\frac{1}{s^{2}} \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2}+\mathrm{N} \frac{1}{s}\right\}=0 \\
& \rightarrow \sigma^{* 2}=s^{*}=\frac{1}{\mathrm{~N}} \sum_{n}\left[y_{n}-\left(w_{0}+w_{1} x_{n}\right)\right]^{2}
\end{aligned}
$$

How does this probabilistic interpretation help us?

- It gives a solid footing to our intuition: minimizing $\operatorname{RSS}(\tilde{\boldsymbol{w}})$ is a sensible thing based on reasonable modeling assumptions
- Estimating σ^{*} tells us how much noise there could be in our predictions. For example, it allows us to place confidence intervals around our predictions.

