
Overfitting, Bias / Variance Analysis

Professor Ameet Talwalkar

Slide Credit: Professor Fei Sha

Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 27, 2015 1 / 39



Outline

1 Administration

2 Review of last lecture

3 Basic ideas to overcome overfitting

4 Bias/Variance Analysis

Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 27, 2015 2 / 39



Announcements

HW2 (and remaining HW1) will be returned today after class (see
Nikos and Amogh)

HW3 and HW4 due on Thursday

No new HW assigned on Thursday (to give you time to work on
project proposal)

Project proposal guideline posted on course website last week
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CS260:	  Project	  Proposal	  
Professor	  Ameet	  Talwalkar	  

Due:	  11/5/15	  
	  
Project	  proposals	  should	  be	  1-‐2	  pages	  long	  and	  contain	  the	  following	  
information:	  
	  

• Motivation:	  What	  high-‐level	  problem	  are	  you	  studying?	  	  Why	  is	  it	  
important?	  	  	  	  

• Background:	  What	  previous	  work	  exists	  on	  your	  topic?	  How	  does	  
your	  proposed	  project	  differ	  from	  these	  existing	  works?	  Note:	  If	  
you	  have	  prior	  experience	  working	  on	  this	  problem,	  please	  clearly	  
describe	  how	  your	  proposed	  work	  for	  this	  class	  project	  differs	  
from	  your	  prior	  work.	  

• Proposed	  Work:	  What	  do	  you	  plan	  to	  do?	  What	  methods	  will	  you	  
use	  and	  why	  will	  you	  use	  them?	  	  

• Timeline:	  What	  is	  your	  timeline	  for	  performing	  this	  work?	  	  	  	  
• Deliverables	  /	  Evaluation:	  What	  is	  the	  expected	  outcome	  of	  your	  
work?	  	  How	  will	  you	  evaluate	  the	  quality	  of	  your	  work?	  

• Data:	  If	  your	  project	  involves	  data,	  what	  data	  are	  you	  using?	  	  How	  
did	  you	  obtain	  this	  data?	  	  Why	  is	  this	  data	  interesting	  /	  relevant	  to	  
your	  problem?	  	  What	  computing	  resources	  will	  you	  be	  using	  to	  
analyze	  this	  data?	  

• Software	  Tools	  /	  Libraries:	  What	  (if	  any)	  software	  will	  be	  used	  
for	  this	  project?	  Please	  describe	  any	  third-‐party	  software	  libraries	  
you	  plan	  to	  use.	  	  

• Team:	  Who	  is	  working	  on	  this	  project	  (at	  most	  two	  students	  can	  
work	  on	  a	  project)?	  

• Prior	  Discussion:	  You	  are	  required	  to	  discuss	  this	  project	  with	  
Professor	  Talwalkar	  or	  one	  of	  the	  TAs	  prior	  to	  submitting	  your	  
proposal.	  	  Please	  list	  who	  you	  spoke	  with	  and	  when.	  Note:	  You	  are	  
also	  encouraged	  to	  speak	  with	  us	  as	  you	  continue	  working	  on	  the	  
project	  if	  you	  have	  questions.	  
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Linear regression 1D

Setup

Input: x ∈ RD (covariates, predictors, features, etc)

Output: y ∈ R (responses, targets, outcomes, outputs, etc)

Training data: D = {(xn, yn), n = 1, 2, . . . ,N}
Model: f : x→ y, with f(x) = w0 +

∑
dwdxd = w0 +w

Tx

We also sometimes call w̃ = [w0 w1 w2 · · · wD]
T parameters too!

Least Mean Squares (LMS) Objective: Minimize squared difference on
training data (or residual sum of squares)

RSS(w̃) =
∑
n

[yn − f(xn)]
2 =

∑
n

[yn − (w0 +
∑
d

wdxnd)]
2

1D Solution: Identify stationary points by taking derivative with respect
to parameters and setting to zero, yielding ‘normal equations’
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LMS when x is D-dimensional
RSS(w̃) in matrix form

RSS(w̃) =
∑
n

[yn − (w0 +
∑
d

wdxnd)]
2 =

∑
n

[yn − w̃Tx̃n]
2

where we have redefined some variables (by augmenting)

x̃← [1 x1 x2 . . . xD]
T, w̃ ← [w0 w1 w2 . . . wD]

T

which leads to

RSS(w̃) =
∑
n

(yn − w̃Tx̃n)(yn − x̃T
n w̃)

=
∑
n

w̃Tx̃nx̃
T
n w̃ − 2ynx̃

T
n w̃ + const.

=

{
w̃T

(∑
n

x̃nx̃
T
n

)
w̃ − 2

(∑
n

ynx̃
T
n

)
w̃

}
+ const.
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RSS(w̃) in new notation

Design matrix and target vector

X̃ =


x̃T
1

x̃T
2
...
x̃T
N

 ∈ RN×(D+1), y =


y1
y2
...
yN


Compact expression

RSS(w̃) = ||X̃w̃ − y||22 =
{
w̃TX̃TX̃w̃ − 2

(
X̃Ty

)T
w̃

}
+ const
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Solution in matrix form

Compact expression

RSS(w̃) = ||X̃w̃ − y||22 =
{
w̃TX̃TX̃w̃ − 2

(
X̃Ty

)T
w̃

}
+ const

Gradients of Linear and Quadratic Functions

∇xb
>x = b

∇xx
>Ax = 2Ax (symmetric A)

Normal equation

∇w̃RSS(w̃) ∝ X̃TX̃w − X̃Ty = 0

This leads to the least-mean-square (LMS) solution

w̃LMS =
(
X̃TX̃

)−1
X̃Ty
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Practical concerns

Bottleneck of computing the LMS solution

w =
(
X̃TX̃

)−1
X̃y

Matrix multiply of X̃TX̃ ∈ R(D+1)×(D+1)

Inverting the matrix X̃TX̃

Scalable methods

Batch gradient descent

Stochastic gradient descent
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Stochastic gradient descent

Widrow-Hoff rule: update parameters using one example at a time

Initialize w̃ to w̃(0) (anything reasonable is fine); set t = 0; choose
η > 0

Loop until convergence
1 random choose a training a sample xt

2 Compute its contribution to the gradient

gt = (x̃T
t w̃

(t) − yt)x̃t

3 Update the parameters
w̃(t+1) = w̃(t) − ηgt

4 t← t+ 1

How does the complexity per iteration compare with gradient descent?

O(ND) for gradient descent versus O(D) for SGD
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What if X̃TX̃ is not invertible

Can you think of any reasons why that could happen?

Answer 1: N < D. Intuitively, not enough data to estimate all the
parameters.

Answer 2: X columns are not linearly independent. Intuitively, there are
two features that are perfectly correlated. In this case, solution is not
unique.
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Ridge regression

For X̃TX̃ that is not invertible

w̃ =
(
X̃TX̃ + λI

)−1
X̃Ty

This is equivalent to adding an extra term to RSS(w̃)

RSS(w̃)︷ ︸︸ ︷
1

2

{
w̃TX̃TX̃w̃ − 2

(
X̃Ty

)T
w̃

}
+

1

2
λ‖w̃‖22︸ ︷︷ ︸

regularization
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What if data is not linearly separable or fits to a line
Example of nonlinear classification
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Example of nonlinear regression
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General nonlinear basis functions

We can use a nonlinear mapping

φ(x) : x ∈ RD → z ∈ RM

where M is the dimensionality of the new feature/input z (or φ(x)). Note
that M could be either greater than D or less than or the same.

With the new features, we can apply our learning techniques to minimize
our errors on the transformed training data

linear methods: prediction is based on wTφ(x)

other methods: nearest neighbors, decision trees, etc
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Regression with nonlinear basis

Residual sum squares ∑
n

[wTφ(xn)− yn]2

where w ∈ RM , the same dimensionality as the transformed features φ(x).

The LMS solution can be formulated with the new design matrix

Φ =


φ(x1)

T

φ(x2)
T

...
φ(xN )T

 ∈ RN×M , wlms =
(
ΦTΦ

)−1
ΦTy
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Example with regression
Polynomial basis functions

φ(x) =


1
x
x2

...
xM

⇒ f(x) = w0 +

M∑
m=1

wmx
m

Fitting samples from a sine function: underrfitting as f(x) is too simple

x

t

M = 0

0 1

−1

0

1

x

t

M = 1

0 1

−1

0

1
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Adding high-order terms

M=3

x

t

M = 3

0 1

−1

0

1

M=9: overfitting

x

t

M = 9

0 1

−1

0

1

More complex features lead to better results on the training data, but
potentially worse results on new data, e.g., test data!
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Overfitting

Parameters for higher-order polynomials are very large

M = 0 M = 1 M = 3 M = 9

w0 0.19 0.82 0.31 0.35
w1 -1.27 7.99 232.37
w2 -25.43 -5321.83
w3 17.37 48568.31
w4 -231639.30
w5 640042.26
w6 -1061800.52
w7 1042400.18
w8 -557682.99
w9 125201.43
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Overfitting can be quite disastrous

Fitting the housing price data with M = 3

Note that the price would goes to zero (or negative) if you buy bigger
ones! This is called poor generalization/overfitting.

How might we prevent overfitting?
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Use more training data to prevent over fitting

The more, the merrier

x

t

M = 9

0 1

−1

0

1

x

t
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0 1

−1

0

1

x

t

N = 100

0 1

−1

0

1

What if we do not have a lot of data?
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Regularization methods

Intuition: For a linear model for regression

wTx

we can try to identify ‘simpler’ models. But what does it mean for a
model to be simple?

Assumption We can place a prior on our weights, assuming that wd is
centered around zero.

With this reasoning, we will interpret w as a random variable and we will
use the observed data D to update our prior belief on w
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Review: Probabilistic interpretation for LMS

LMS model: Y = w>X + η
I η ∼ N(0, σ2

0) is a Gaussian random variable
I Thus, Y ∼ N(w>X, σ2

0)

We assume that w is fixed (Frequentist interpretation)

We define p(y|x,w, σ20) as the sampling distribution given fixed
values for the parameters w, σ20
The likelihood function maps parameters to probabilities

L : w, σ20 7→ p(y|D,w, σ20) =
∏
n

p(yn|xn,w, σ
2
0)

Maximizing likelihood with respect to w minimizes RSS and yields
the LMS solution:

wLMS = wML = argmaxw L(w, σ
2
0)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 27, 2015 23 / 39



Review: Probabilistic interpretation for LMS

LMS model: Y = w>X + η
I η ∼ N(0, σ2

0) is a Gaussian random variable
I Thus, Y ∼ N(w>X, σ2

0)

We assume that w is fixed (Frequentist interpretation)

We define p(y|x,w, σ20) as the sampling distribution given fixed
values for the parameters w, σ20
The likelihood function maps parameters to probabilities

L : w, σ20 7→ p(y|D,w, σ20) =
∏
n

p(yn|xn,w, σ
2
0)

Maximizing likelihood with respect to w minimizes RSS and yields
the LMS solution:

wLMS = wML = argmaxw L(w, σ
2
0)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 27, 2015 23 / 39



Review: Probabilistic interpretation for LMS

LMS model: Y = w>X + η
I η ∼ N(0, σ2

0) is a Gaussian random variable
I Thus, Y ∼ N(w>X, σ2

0)

We assume that w is fixed (Frequentist interpretation)

We define p(y|x,w, σ20) as the sampling distribution given fixed
values for the parameters w, σ20
The likelihood function maps parameters to probabilities

L : w, σ20 7→ p(y|D,w, σ20) =
∏
n

p(yn|xn,w, σ
2
0)

Maximizing likelihood with respect to w minimizes RSS and yields
the LMS solution:

wLMS = wML = argmaxw L(w, σ
2
0)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 27, 2015 23 / 39



Review: Probabilistic interpretation for LMS

LMS model: Y = w>X + η
I η ∼ N(0, σ2

0) is a Gaussian random variable
I Thus, Y ∼ N(w>X, σ2

0)

We assume that w is fixed (Frequentist interpretation)

We define p(y|x,w, σ20) as the sampling distribution given fixed
values for the parameters w, σ20

The likelihood function maps parameters to probabilities

L : w, σ20 7→ p(y|D,w, σ20) =
∏
n

p(yn|xn,w, σ
2
0)

Maximizing likelihood with respect to w minimizes RSS and yields
the LMS solution:

wLMS = wML = argmaxw L(w, σ
2
0)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 27, 2015 23 / 39



Review: Probabilistic interpretation for LMS

LMS model: Y = w>X + η
I η ∼ N(0, σ2

0) is a Gaussian random variable
I Thus, Y ∼ N(w>X, σ2

0)

We assume that w is fixed (Frequentist interpretation)

We define p(y|x,w, σ20) as the sampling distribution given fixed
values for the parameters w, σ20
The likelihood function maps parameters to probabilities

L : w, σ20 7→ p(y|D,w, σ20) =
∏
n

p(yn|xn,w, σ
2
0)

Maximizing likelihood with respect to w minimizes RSS and yields
the LMS solution:

wLMS = wML = argmaxw L(w, σ
2
0)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 27, 2015 23 / 39



Review: Probabilistic interpretation for LMS

LMS model: Y = w>X + η
I η ∼ N(0, σ2

0) is a Gaussian random variable
I Thus, Y ∼ N(w>X, σ2

0)

We assume that w is fixed (Frequentist interpretation)

We define p(y|x,w, σ20) as the sampling distribution given fixed
values for the parameters w, σ20
The likelihood function maps parameters to probabilities

L : w, σ20 7→ p(y|D,w, σ20) =
∏
n

p(yn|xn,w, σ
2
0)

Maximizing likelihood with respect to w minimizes RSS and yields
the LMS solution:

wLMS = wML = argmaxw L(w, σ
2
0)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 27, 2015 23 / 39



Probabilistic interpretation of Ridge Regression

Ridge Regression model: Y = w>X + η
I Y ∼ N(w>X, σ2

0) is a Gaussian random variable (as before)
I wd ∼ N(0, σ2) are i.i.d. Gaussian random variables (unlike before)
I Note that all wd share the same variance σ2

w is a random variable with a prior distribution (Bayesian
interpretation)

To find w given data D, we can compute posterior distribution of w:

p(w|D) = p(D|w)p(w)

p(D)

Maximum a posterior (MAP) estimate:

wmap = argmaxw p(w|D) = argmaxw p(D,w)

What’s the relationship between MAP and MLE?
I MAP reduces to MLE if we assume uniform prior for p(w)
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Estimating w

Let X1, . . . , XN be IID with y|w,x ∼ N(w>x, σ20)

Let wd be IID with wd ∼ N(0, σ2)

Joint likelihood of data and parameters (given σ0, σ)

p(D,w) = p(D|w)p(w) =
∏
n

p(yn|xn,w)
∏
d

p(wd)

Joint log likelihood Plugging in Gaussian PDF, we get:

log p(D,w) =
∑
n

log p(yn|xn,w) +
∑
d

log p(wd)

= −
∑

n(w
Txn − yn)2
2σ20

−
∑
d

1

2σ2
w2
d + const

MAP estimate: wmap = argmaxw log p(D,w)

As with LMS, set gradient equal to zero and solve (for w)
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Maximum a posterior (MAP) estimate
Regularized linear regression: a new error to minimize

E(w) =
∑
n

(wTxn − yn)2 + λ‖w‖22

where λ > 0 is used to denote σ20/σ
2. This extra term ‖w‖22 is called

regularization/regularizer and controls the model complexity.

Intuitions

If λ→ +∞, then σ2
0 � σ2. That is, the variance of noise is far greater than

what our prior model can allow for w. In this case, our prior model on w
would be more accurate than what data can tell us. Thus, we are getting a
simple model. Numerically,

wmap → 0

If λ→ 0, then we trust our data more. Numerically,

wmap → wlms = argmin
∑
n

(wTxn − yn)2
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Closed-form solution

For regularized linear regression: the solution changes very little (in
form) from the LMS solution

argmin
∑
n

(wTxn − yn)2 + λ‖w‖22 ⇒ wmap =
(
XTX + λI

)−1
XTy

and reduces to the LMS solution when λ = 0, as expected.

If we have to use numerical procedure, the gradients and the Hessian
matrix would change nominally too,

∇E(w) = 2(XTXw −XTy + λw), H = 2(XTX + λI)

As long as λ ≥ 0, the optimization is convex.
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Example: fitting data with polynomials

Our regression model

y =

M∑
m=1

wmx
m

Regularization would discourage large parameter values as we saw with the
LMS solution, thus potentially preventing overfitting.

M = 0 M = 1 M = 3 M = 9

w0 0.19 0.82 0.31 0.35
w1 -1.27 7.99 232.37
w2 -25.43 -5321.83
w3 17.37 48568.31
w4 -231639.30
w5 640042.26
w6 -1061800.52
w7 1042400.18
w8 -557682.99
w9 125201.43
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Overfitting in terms of λ
Overfitting is reduced from complex model to simpler one with the
help of increasing regularizers
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λ vs. residual error shows the difference of the model performance on
training and testing dataset
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The effect of λ

Large λ attenuates parameters towards 0

lnλ = −∞ lnλ = −18 lnλ = 0

w0 0.35 0.35 0.13
w1 232.37 4.74 -0.05
w2 -5321.83 -0.77 -0.06
w3 48568.31 -31.97 -0.06
w4 -231639.30 -3.89 -0.03
w5 640042.26 55.28 -0.02
w6 -1061800.52 41.32 -0.01
w7 1042400.18 -45.95 -0.00
w8 -557682.99 -91.53 0.00
w9 125201.43 72.68 0.01
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Regularized methods for classification

Adding regularizer to the cross-entropy functions used for binary
and multinomial logistic regression

E(w) = −
∑
n

{yn log σ(wTxn) + (1− yn) log[1− σ(wTxn)]}+ λ‖w‖22

E(w1,w2, . . . ,wK) = −
∑
n

∑
k

logP (Ck|xn) + λ
∑
k

‖wk‖22

Numerical optimization

Objective functions remain to be convex as long as λ ≥ 0.

Gradients and Hessians are changed marginally and can be easily
derived.
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How to choose the right amount of regularization?

Can we tune λ on the training dataset?

No: as this will set λ to zero, i.e., without regularization, defeating our
intention to use it to control model complexity and to gain better
generalization.

λ is thus a hyperparmeter. To tune it,

We can use a development/holdout dataset independent of training
and testing dataset.

We can do leave-one-out (LOO)

The procedure is similar to choose K in the nearest neighbor classifiers.

For different λ, we get wmap and evaluate the model on the development/holdout
dataset (or, the samples being left in LOO).

We then plot the curve λ versus prediction error (accuracy, classification error)

and find the place that the performance on the holdout/LOO is the best.
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Use cross-validation to choose λ

Procedure

Randomly partition training data into
K disjoint parts
Normally, K is chosen to be 10, 5, etc.

For each possible value of λ
1 Use one part as holdout; use other

(K − 1) parts as training
2 Evaluate the model on the holdout
3 Do this K times, and average the

performance on the holdouts

Choose the λ with the best performance

When K = N (the number of training
examples), this becomes LOO.
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Basic and important machine learning concepts

Supervised learning
We aim to build a function h(x) to predict the true value y associated
with x. If we make a mistake, we incur a loss

`(h(x), y)

Example: quadratic loss function for regression when y is continuous

`(h(x), y) = [h(x)− y]2

Ex: when y = 0

h(x)
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Other types of loss functions

For classification: cross-entropy loss (also called logistic loss)

`(h(x), y) = −y log h(x)−(1−y) log[1−h(x)]

Ex: when y = 1

h(x)
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Measure how good our predictor is

Risk: assume we know the true distribution of data p(x, y), the risk is

R[h(x)] =

∫
x,y

`(h(x), y)p(x, y)dxd y

However, we cannot compute R[h(x)], so we use empirical risk, given a
training dataset D

Remp[h(x)] =
1

N

∑
n

`(h(xn), yn)

Intuitively, as N → +∞,

Remp[h(x)]→ R[h(x)]
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How this relates to what we have learned?

So far, we have been doing empirical risk minimization (ERM)

For linear regression, h(x) = wTx, and we use squared loss

For logistic regression, h(x) = σ(wTx), and we use cross-entropy loss

ERM might be problematic

If h(x) is complicated enough,

Remp[h(x)]→ 0

But then h(x) is unlikely to do well in predicting things out of the
training dataset D
This is called poor generalization or overfitting. We have just
discussed approaches to address this issue.

Let’s try to understand why regularization might work from the
context of the bias-variance tradeoff, focusing on regression / squared
loss
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Bias/variance tradeoff (Looking ahead)

Error decomposes into 3 terms

EDR[hD(x)] = variance+ bias2 + noise

We will prove this result, and interpret what it means...
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