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Announcements

HW3 and HW4 due now

HW1 and HW2 can be picked up in class; grades available online

Project proposal due a week from today
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Overfitting

Example with regression, using polynomial basis functions

φ(x) =


1
x
x2

...
xM

 ⇒ f(x) = w0+

M∑
m=1

wmxm
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Being too adaptive can improve training accuracy at the expense of test
accuracy
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Visualizing overfitting

As model becomes more
complex, training error
keeps improving while
test error first improves
then deteriorates
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Horizontal axis: measure of model complexity, e.g., the maximum
degree of the polynomial basis functions.

Vertical axis: some notion of error, e.g., RSS for regression
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How to prevent overfitting?
Use more training data

x

t

N = 100

0 1

−1

0

1

Regularization: adding a term to the objective function

λ‖w‖22

that favors a small parameter vector w.
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Probabilistic interpretation of Ridge Regression

Ridge Regression model: Y = w>X + η
I Y ∼ N(w>X, σ2

0) is a Gaussian random variable (as before)
I wd ∼ N(0, σ2) are i.i.d. Gaussian random variables (unlike before)
I Note that all wd share the same variance σ2

w is random (Bayesian interpretation)

To find w given data D, we can compute posterior distribution of w:

p(w|D) = p(D|w)p(w)

p(D)

Maximum a posterior (MAP) estimate:

wmap = argmaxw p(w|D) = argmaxw p(D,w)

MAP reduces to MLE if we assume uniform prior for p(w)
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Overfitting in terms of λ
Overfitting is reduced as we increase the regularizer
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λ vs. residual error shows the difference of the model performance on
training and testing dataset
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Basic and important machine learning concepts

Supervised learning
We aim to build a function h(x) to predict the true value y associated
with x. If we make a mistake, we incur a loss

`(h(x), y)

Example: quadratic loss function for regression when y is continuous

`(h(x), y) = [h(x)− y]2

Ex: when y = 0

h(x)
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Other types of loss functions

For classification: cross-entropy loss (also called logistic loss)

`(h(x), y) = −y log h(x)−(1−y) log[1−h(x)]

Ex: when y = 1

h(x)
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Measure how good our predictor is

Risk: assume we know the true distribution of data p(x, y), the risk is

R[h(x)] =

∫
x,y

`(h(x), y)p(x, y)dxd y

However, we cannot compute R[h(x)], so we use empirical risk, given a
training dataset D

Remp[h(x)] =
1

N

∑
n

`(h(xn), yn)

Intuitively, as N → +∞,

Remp[h(x)]→ R[h(x)]
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How this relates to what we have learned?

So far, we have been doing empirical risk minimization (ERM)

For linear regression, h(x) = wTx, and we use squared loss

For logistic regression, h(x) = σ(wTx), and we use cross-entropy loss

ERM might be problematic

If h(x) is complicated enough,

Remp[h(x)]→ 0

But then h(x) is unlikely to do well in predicting things out of the
training dataset D
This is called poor generalization or overfitting. We have just
discussed approaches to address this issue.

Let’s try to understand why regularization might work from the
context of the bias-variance tradeoff, focusing on regression / squared
loss

Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 29, 2015 14 / 44



How this relates to what we have learned?

So far, we have been doing empirical risk minimization (ERM)

For linear regression, h(x) = wTx, and we use squared loss

For logistic regression, h(x) = σ(wTx), and we use cross-entropy loss

ERM might be problematic

If h(x) is complicated enough,

Remp[h(x)]→ 0

But then h(x) is unlikely to do well in predicting things out of the
training dataset D
This is called poor generalization or overfitting. We have just
discussed approaches to address this issue.

Let’s try to understand why regularization might work from the
context of the bias-variance tradeoff, focusing on regression / squared
loss

Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 29, 2015 14 / 44



Bias/variance tradeoff (Looking ahead)

Error decomposes into 3 terms

EDR[hD(x)] = variance+ bias2 + noise

We will prove this result, and interpret what it means...
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Bias/variance tradeoff for regression

Goal: to understand the sources of prediction errors

D: our training data

hD(x): our prediction function
We are using the subscript D to indicate that the prediction function
is learned on the specific set of training data D
`(h(x), y): our square loss function for regression

`(hD(x), y) = [hD(x)− y]2

Unknown joint distribution p(x, y)
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The effect of finite training samples

Every training sample D is a sample from the following joint
distribution

D ∼ P (D) =
N∏
n=1

p(xn, yn)

The prediction function hD(x) is a random function with respect to this
distribution, and thus its risk is as well

R[hD(x)] =

∫
x

∫
y
[hD(x)− y]2p(x, y)dxdy

Next we will disentangle the impact of the finite sample D when assessing
the quality of h(·)
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Average over the distribution of the training data

Averaged risk

EDR[hD(x)]

=

∫
D

∫
x

∫
y
[hD(x)− y]2p(x, y)dxdy P (D)dD

Namely, the randomness with respect to D is marginalized out.

Averaged prediction

EDhD(x) =
∫
D
hD(x)P (D)dD

Namely, if we have seen many training datasets, we predict with the
average of our trained models learned on each training dataset.
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Variance

We can add and subtract averaged prediction from averaged risk

EDR[hD(x)] =
∫
D

∫
x

∫
y
[hD(x)− y]2p(x, y)dxdy P (D)dD

=

∫
D

∫
x

∫
y
[hD(x)

−EDhD(x)

+EDhD(x)− y]2p(x, y)dxdy P (D)dD

=

∫
D

∫
x

∫
y
[hD(x)− EDhD(x)]2p(x, y)dxdy P (D)dD︸ ︷︷ ︸

variance

+

∫
D

∫
x

∫
y
[EDhD(x)− y]2p(x, y)dxdy P (D)dD
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Where does the cross-term go?

It is zero∫
D

∫
x

∫
y
[hD(x)− EDhD(x)][EDhD(x)− y]p(x, y)dxdy P (D)dD

=

∫
x

∫
y

{∫
D
[hD(x)− EDhD(x)]P (D)dD

}
[EDhD(x)− y]p(x, y)dxdy

= 0← (the integral within the braces vanishes, by definition)
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Analyzing the variance

How can we reduce the variance?∫
D

∫
x

∫
y
[hD(x)− EDhD(x)]2p(x, y)dxdy P (D)dD

Use a lot of data (ie, increase the size of D)

Use a simple h(·) so that hD(x) does not vary much across different
training datasets.
Ex: h(x) = const
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The remaining item

EDR[hD(x)] =
∫
D

∫
x

∫
y
[hD(x)− EDhD(x)]2p(x, y)dxdy P (D)dD

+

∫
D

∫
x

∫
y
[EDhD(x)− y]2p(x, y)dxdy P (D)dD

The integrand has no dependency on D anymore and simplifies to∫
x

∫
y
[EDhD(x)− y]2p(x, y)dxdy

We will apply a similar trick, by using an averaged target y

Ey[y] =
∫
y
yp(y|x)dy
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Bias and noise

Decompose again∫
x

∫
y
[EDhD(x)− y]2p(x, y)dxdy

=

∫
x

∫
y
[EDhD(x)−Ey[y] + Ey[y]− y]2p(x, y)dxdy

=

∫
x

∫
y
[EDhD(x)− Ey[y]]2p(x, y)dxdy︸ ︷︷ ︸

bias2

+

∫
x

∫
y
[Ey[y]− y]2p(x, y)dxdy︸ ︷︷ ︸

noise
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Where is the cross-term?

Left as the take-home exercise
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Analyzing the noise

How can we reduce noise∫
x

∫
y
[Ey[y]− y]2p(x, y)dxdy =

∫
x

(∫
y
[Ey[y]− y]2p(y|x)dy

)
p(x)dx

There is nothing we can do. This quantity depends on p(x, y) only;
choosing h(·) or the training dataset D will not affect it. Note that the
integral inside the parentheses is the variance (noise) of the distribution
p(y|x) at the given x.

More difficult

y

p(y|x)

Ey[y]

Easier

y

p(y|x)

Ey[y]
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Analyzing the bias term

How can we reduce bias?∫
x

∫
y
[EDhD(x)− Ey[y]]2p(x, y)dxdy =

∫
x
[EDhD(x)− Ey[y]]2p(x)dx

It can be reduced by using more complex models. We can choose h(·) to
be as flexible as possible to better h(·) approximate Ey[y] and reduce bias.
However, this increased flexibility will increase the variance term (as we
can potentially overfit to training data).
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Bias/variance tradeoff
Error decomposes into 3 terms

EDR[hD(x)] = variance+ bias2 + noise

where the first and the second term are inherently in conflict in terms of
choosing what kind of h(x) we should use (unless we have an infinite
amount of data).

If we can compute all terms analytically, they will look like this

ln λ

 

 

−3 −2 −1 0 1 2
0

0.03

0.06

0.09

0.12

0.15

(bias)2

variance

(bias)2 + variance
test error
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Motivation
How to choose nonlinear basis function for regression?

wTφ(x)

where φ(·) maps the original feature vector x to a M -dimensional new
feature vector. In the following, we will show that we can sidestep the
issue of choosing which φ(·) to use — instead, we will choose equivalently
a kernel function.

Regularized least square

J(w) =
1

2

∑
n

(yn −wTφ(xn))
2 +

λ

2
‖w‖22

Its solution wmap is given by

∂J(w)

∂w
=
∑
n

(yn −wTφ(xn))(−φ(xn)) + λw = 0
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MAP Solution

The optimal parameter vector is a linear combination of features

wmap =
∑
n

1

λ
(yn −wTφ(xn))φ(xn) =

∑
n

αnφ(xn) = ΦTα

where we have designated 1
λ(yn −wTφ(xn)) as αn. And the matrix Φ is

the design matrix made of transformed features. Its transpose is made of
column vectors and is given by

ΦT = (φ(x1) φ(x2) · · · φ(xN )) ∈ RM×N

where M is the dimensionality of φ(x).

Of course, we do not know what α (the vector of all αn) corresponds to
wmap!
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Dual formulation

We substitute wmap = ΦTα into J(w), and obtain the following function
of α

J(α) =
1

2
αTΦΦTΦΦTα− (ΦΦTy)Tα+

λ

2
αTΦΦTα

Before we show how J(α) is derived, we make an important observation.
We see repeated structures ΦΦT, to which we refer as Gram matrix or
kernel matrix

K = ΦΦT

=


φ(x1)

Tφ(x1) φ(x1)
Tφ(x2) · · · φ(x1)

Tφ(xN )
φ(x2)

Tφ(x1) φ(x2)
Tφ(x2) · · · φ(x2)

Tφ(xN )
· · · · · · · · · · · ·

φ(xN )
Tφ(x1) φ(xN )

Tφ(x2) · · · φ(xN )
Tφ(xN )

 ∈ RN×N
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Properties of the matrix K

Symmetric

Kmn = φ(xm)
Tφ(xn) = φ(xn)

Tφ(xm) = Knm

Positive semidefinite: for any vector a

aTKa = (ΦTa)T(ΦTa) ≥ 0

Not the same as the second-moment (covariance) matrix C = ΦTΦ
1 C has a size of D ×D while K is N ×N .
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The derivation of J(α)

J(w) =
1

2

∑
n

(y −wTφ(xn))
2 +

λ

2
‖w‖22

=
1

2
‖y −Φw‖22 +

λ

2
‖w‖22

=
1

2
‖y −ΦΦTα‖22 +

λ

2
‖ΦTα‖22

=
1

2
‖y −Kα‖22 +

λ

2
αTΦΦTα

∝ 1

2
αTKTKα− yTKα+

λ

2
αTKα

=
1

2
αTK2α− (Ky)Tα+

λ

2
αTKα = J(α)

where we have used the property that K is symmetric.
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Optimal α

∂J(α)

∂α
=K2α−Ky + λKα = 0

which leads to (assuming that K is invertible)

α = (K + λI)−1y

Note that we only need to know K in order to compute α — the exact
form of φ(·) is not essential — as long as we know how to get inner
products φ(xm)

Tφ(xn). That observation will give rise to the use of
kernel function.

Note that computing the parameter vector does require knowledge of Φ

wmap = ΦT(K + λI)−1y
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Computing prediction needs only inner products too!

Given a test point φ(x), we must compute:

wTφ(x) = yT(K + λI)−1Φφ(x)

= yT(K + λI)−1


φ(x1)

Tφ(x)
φ(x2)

Tφ(x)
...

φ(xN )
Tφ(x)

 = yT(K + λI)−1kx

where we have used the property that (K + λI)−1 is symmetric (as K is)
and use kx as a shorthand notation for the column vector.
Note that, to make a prediction, once again, we only need to know how to
get φ(xn)

Tφ(x).
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Inner products between features

Due to their central roles, let us examine more closely the inner products
φ(xm)

Tφ(xn) for a pair of data points xm and xn.

Polynomial-based nonlinear basis functions consider the following
φ(x):

φ : x→ φ(x) =

 x21√
2x1x2
x22



This gives rise to an inner product in a special form,

φ(xm)
Tφ(xn) = x2m1x

2
n1 + 2xm1xm2xn1xn2 + x2m2x

2
n2

= (xm1xn1 + xm2xn2)
2 = (xT

mxn)
2

Namely, the inner product can be computed by a function (xT
mxn)

2

defined in terms of the original features, without knowing φ(·).
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Common kernel functions

Polynomial kernel function with degree of d

k(xm,xn) = (xT
mxn + c)d

for c ≥ 0 and d is a positive integer.

Gaussian kernel, RBF kernel, or Gaussian RBF kernel

k(xm,xn) = e−‖xm−xn‖22/2σ2

Shift-invariant kernel (only depends on difference between two inputs)

Corresponds to a feature space with infinite dimensions (but we can
work directly with the original features)!

These kernels have hyperparameters to be tuned: d, c, σ2
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Kernel functions

Definition: a (positive semidefinite) kernel function k(·, ·) is a bivariate
function that satisfies the following properties. For any xm and xn,

k(xm,xn) = k(xn,xm) and k(xm,xn) = φ(xm)
Tφ(xn)

for some function φ(·).

Examples we have seen

k(xm,xn) = (xT
mxn)

2

k(xm,xn) = e−‖xm−xn‖22/2σ2

Example that is not a kernel

k(xm,xn) = ‖xm − xn‖22

(we’ll see why later)
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Conditions for being a positive semidefinite kernel function

Mercer theorem (loosely), a bivariate function k(·, ·) is a positive
semidefinite kernel function, if and only if, for any N and any x1, x2, . . .,
and xN , the matrix

K =


k(x1,x1) k(x1,x2) · · · k(x1,xN )
k(x2,x1) k(x2,x2) · · · k(x2,xN )

...
...

...
...

k(xN ,x1) k(xN ,x2) · · · k(xN ,xN )


is positive semidefinite. We also refer k(·, ·) as a positive semidefinite
kernel.
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Why ‖xm − xn‖22 is not a positive semidefinite kernel?

Use the definition of positive semidefinite kernel function. We choose
N = 2, and compute the matrix

K =

(
0 ‖x1 − x2‖22

‖x1 − x2‖22 0

)
This matrix cannot be positive semidefinite as it has both negative and
positive eigenvalues (the sum of the diagonal elements is called the trace
of a matrix, which equals to the sum of the matrix’s eigenvalues. In our
case, the trace is zero.)
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Flashback: why using kernel functions?

without specifying φ(·), the kernel matrix

K =


k(x1,x1) k(x1,x2) · · · k(x1,xN )
k(x2,x1) k(x2,x2) · · · k(x2,xN )

...
...

...
...

k(xN ,x1) k(xN ,x2) · · · k(xN ,xN )


is exactly the same as

K = ΦΦT

=


φ(x1)

Tφ(x1) φ(x1)
Tφ(x2) · · · φ(x1)

Tφ(xN )
φ(x2)

Tφ(x1) φ(x2)
Tφ(x2) · · · φ(x2)

Tφ(xN )
· · · · · · · · · · · ·

φ(xN )
Tφ(x1) φ(xN )

Tφ(x2) · · · φ(xN )
Tφ(xN )


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‘Kernel trick’

Many learning methods depend on computing inner products between
features — we have seen the example of regularized least squares. For
those methods, we can use a kernel function in the place of the inner
products, i.e., “kernelizing” the methods, thus, introducing nonlinear
features.

We will present one more to illustrate this “trick” by kernelizing the
nearest neighbor classifier.

When we talk about support vector machines, we will see the trick one
more time.
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Kernelized nearest neighbors
In nearest neighbor classification, the most important quantity to compute
is the (squared) distance between two data points xm and xn

d(xm,xn) = ‖xm − xn‖22 = xT
mxm + xT

nxn − 2xT
mxn

We replace all the inner products in the distance with a kernel function
k(·, ·), arriving at the kernel distance

dkernel(xm,xn) = k(xm,xm) + k(xn,xn)− 2k(xm,xn)

The distance is equivalent to compute the distance between φ(xm) and
φ(xn)

dkernel(xm,xn) = d(φ(xm),φ(xn))

where the φ(·) is the nonlinear mapping function implied by the kernel
function. The nearest neighbor of a point x is thus found with

argminn d
kernel(x,xn)
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dkernel(xm,xn) = k(xm,xm) + k(xn,xn)− 2k(xm,xn)

The distance is equivalent to compute the distance between φ(xm) and
φ(xn)

dkernel(xm,xn) = d(φ(xm),φ(xn))

where the φ(·) is the nonlinear mapping function implied by the kernel
function. The nearest neighbor of a point x is thus found with

argminn d
kernel(x,xn)
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There are infinite numbers of kernels to use!

Rules of composing kernels (this is just a partial list)

if k(xm,xn) is a kernel, then ck(xm,xn) is also if c > 0.

if both k1(xm,xn) and k2(xm,xn) are kernels, then
αk1(xm,xn) + βk2(xm,xn) are also if α, β ≥ 0

if both k1(xm,xn) and k2(xm,xn) are kernels, then
k1(xm,xn)k2(xm,xn) are also.

if k(xm,xn) is a kernel, then ek(xm,xn) is also.

· · ·
In practice, choosing an appropriate kernel is an “art”

People typically start with polynomial and Gaussian RBF kernels or
incorporate domain knowledge.
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