
Support Vector Machines

Professor Ameet Talwalkar

Slide Credit: Professor Fei Sha

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 1 / 34

Outline

1 Administration

2 Review of last lecture

3 Support vector machines – Geometric interpretation

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 2 / 34

Announcements

Project proposal due on Thursday

I’m available until 11am today to talk about proposals

You can also contact TAs to meet them today or tomorrow

HW5 will be available online by Thursday

Midterm is in two weeks – more details next week

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 3 / 34

Outline

1 Administration

2 Review of last lecture
Bias/Variance Analysis
Kernel methods

3 Support vector machines – Geometric interpretation

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 4 / 34

Basic and important machine learning concepts

Supervised learning
We aim to build a function h(x) to predict the true value y associated
with x. If we make a mistake, we incur a loss

`(h(x), y)

Example: quadratic loss function for regression when y is continuous

`(h(x), y) = [h(x)− y]2

Ex: when y = 0

h(x)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 5 / 34

Measure how good our predictor is

Risk: assume we know the true distribution of data p(x, y), the risk is

R[h(x)] =

∫
x,y

`(h(x), y)p(x, y)dxd y

However, we cannot compute R[h(x)], so we use empirical risk, given a
training dataset D

Remp[h(x)] =
1

N

∑
n

`(h(xn), yn)

Intuitively, as N → +∞,

Remp[h(x)]→ R[h(x)]

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 6 / 34

How this relates to what we have learned?

So far, we have been doing empirical risk minimization (ERM)

For linear regression, h(x) = wTx, and we use squared loss

For logistic regression, h(x) = σ(wTx), and we use cross-entropy loss

ERM can lead to overfitting

If h(x) is complicated enough, Remp[h(x)]→ 0 , but h(x) may not
generalize well to new data

Regularization can help prevent overfitting

The bias-variance analysis in the context of squared loss helps us to
understand why regularization can help

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 7 / 34

How this relates to what we have learned?

So far, we have been doing empirical risk minimization (ERM)

For linear regression, h(x) = wTx, and we use squared loss

For logistic regression, h(x) = σ(wTx), and we use cross-entropy loss

ERM can lead to overfitting

If h(x) is complicated enough, Remp[h(x)]→ 0 , but h(x) may not
generalize well to new data

Regularization can help prevent overfitting

The bias-variance analysis in the context of squared loss helps us to
understand why regularization can help

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 7 / 34

Bias/variance tradeoff for regression

Goal: to understand the sources of prediction errors

D: our training data

hD(x): our prediction function
We are using the subscript D to indicate that the prediction function
is learned on the specific set of training data D
`(h(x), y): our square loss function for regression

`(hD(x), y) = [hD(x)− y]2

Unknown joint distribution p(x, y)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 8 / 34

The effect of finite training samples

Every training sample D is a sample from the following joint
distribution

D ∼ P (D) =
N∏
n=1

p(xn, yn)

The prediction function hD(x) is a random function with respect to this
distribution, and thus its risk is as well

R[hD(x)] =

∫
x

∫
y
[hD(x)− y]2p(x, y)dxdy

Averaged risk

EDR[hD(x)] =
∫
D

∫
x

∫
y
[hD(x)− y]2p(x, y)dxdy P (D)dD

Namely, the randomness with respect to D is marginalized out.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 9 / 34

The effect of finite training samples

Every training sample D is a sample from the following joint
distribution

D ∼ P (D) =
N∏
n=1

p(xn, yn)

The prediction function hD(x) is a random function with respect to this
distribution, and thus its risk is as well

R[hD(x)] =

∫
x

∫
y
[hD(x)− y]2p(x, y)dxdy

Averaged risk

EDR[hD(x)] =
∫
D

∫
x

∫
y
[hD(x)− y]2p(x, y)dxdy P (D)dD

Namely, the randomness with respect to D is marginalized out.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 9 / 34

Averaged risk decomposes into 3 terms

EDR[hD(x)] = variance+ bias2 + noise

How can we reduce noise?

There is nothing we can do as it depends only on p(x, y)

How can we reduce the variance?

Use a lot of data (ie, increase the size of D)

Use a simple h(·), e.g., h(x) = const

How can we reduce bias?

Use more complex models

But, increased flexibility can increase the variance term

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 10 / 34

Averaged risk decomposes into 3 terms

EDR[hD(x)] = variance+ bias2 + noise

How can we reduce noise?

There is nothing we can do as it depends only on p(x, y)

How can we reduce the variance?

Use a lot of data (ie, increase the size of D)

Use a simple h(·), e.g., h(x) = const

How can we reduce bias?

Use more complex models

But, increased flexibility can increase the variance term

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 10 / 34

Averaged risk decomposes into 3 terms

EDR[hD(x)] = variance+ bias2 + noise

How can we reduce noise?

There is nothing we can do as it depends only on p(x, y)

How can we reduce the variance?

Use a lot of data (ie, increase the size of D)

Use a simple h(·), e.g., h(x) = const

How can we reduce bias?

Use more complex models

But, increased flexibility can increase the variance term

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 10 / 34

Averaged risk decomposes into 3 terms

EDR[hD(x)] = variance+ bias2 + noise

How can we reduce noise?

There is nothing we can do as it depends only on p(x, y)

How can we reduce the variance?

Use a lot of data (ie, increase the size of D)

Use a simple h(·), e.g., h(x) = const

How can we reduce bias?

Use more complex models

But, increased flexibility can increase the variance term

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 10 / 34

Bias/variance tradeoff
Error decomposes into 3 terms

EDR[hD(x)] = variance+ bias2 + noise

The first and second terms are inherently in conflict

If we can compute all terms analytically, they will look like this

ln λ

−3 −2 −1 0 1 2
0

0.03

0.06

0.09

0.12

0.15

(bias)2

variance

(bias)2 + variance
test error

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 11 / 34

How can we perform nonlinear prediction without
specifying nonlinear basis functions?

Definition of kernel function: a (positive semidefinite) kernel function
k(·, ·) is a bivariate function that satisfies the following properties. For any
xm and xn,

k(xm,xn) = k(xn,xm) and k(xm,xn) = φ(xm)
Tφ(xn)

for some function φ(·).

Examples we have seen

k(xm,xn) = (xT
mxn)

2

k(xm,xn) = e−‖xm−xn‖22/2σ2

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 12 / 34

How can we perform nonlinear prediction without
specifying nonlinear basis functions?

Definition of kernel function: a (positive semidefinite) kernel function
k(·, ·) is a bivariate function that satisfies the following properties. For any
xm and xn,

k(xm,xn) = k(xn,xm) and k(xm,xn) = φ(xm)
Tφ(xn)

for some function φ(·).

Examples we have seen

k(xm,xn) = (xT
mxn)

2

k(xm,xn) = e−‖xm−xn‖22/2σ2

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 12 / 34

How can we perform nonlinear prediction without
specifying nonlinear basis functions?

Definition of kernel function: a (positive semidefinite) kernel function
k(·, ·) is a bivariate function that satisfies the following properties. For any
xm and xn,

k(xm,xn) = k(xn,xm) and k(xm,xn) = φ(xm)
Tφ(xn)

for some function φ(·).

Examples we have seen

k(xm,xn) = (xT
mxn)

2

k(xm,xn) = e−‖xm−xn‖22/2σ2

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 12 / 34

Conditions for being a positive semidefinite kernel function

Mercer theorem (loosely), a bivariate function k(·, ·) is a positive
semidefinite kernel function, if and only if, for any N and any x1, x2, . . .,
and xN , the matrix

K =


k(x1,x1) k(x1,x2) · · · k(x1,xN)
k(x2,x1) k(x2,x2) · · · k(x2,xN)

...
...

...
...

k(xN ,x1) k(xN ,x2) · · · k(xN ,xN)


is positive semidefinite. We also refer k(·, ·) as a positive semidefinite
kernel.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 13 / 34

Conditions for being a positive semidefinite kernel function

Mercer theorem (loosely), a bivariate function k(·, ·) is a positive
semidefinite kernel function, if and only if, for any N and any x1, x2, . . .,
and xN , the matrix

K =


k(x1,x1) k(x1,x2) · · · k(x1,xN)
k(x2,x1) k(x2,x2) · · · k(x2,xN)

...
...

...
...

k(xN ,x1) k(xN ,x2) · · · k(xN ,xN)


is positive semidefinite. We also refer k(·, ·) as a positive semidefinite
kernel.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 13 / 34

Flashback: Why would we want to use kernel functions?

without specifying φ(·), the kernel matrix

K =


k(x1,x1) k(x1,x2) · · · k(x1,xN)
k(x2,x1) k(x2,x2) · · · k(x2,xN)

...
...

...
...

k(xN ,x1) k(xN ,x2) · · · k(xN ,xN)


is exactly the same as

K = ΦΦT

=


φ(x1)

Tφ(x1) φ(x1)
Tφ(x2) · · · φ(x1)

Tφ(xN)
φ(x2)

Tφ(x1) φ(x2)
Tφ(x2) · · · φ(x2)

Tφ(xN)
· · · · · · · · · · · ·

φ(xN)
Tφ(x1) φ(xN)

Tφ(x2) · · · φ(xN)
Tφ(xN)



Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 14 / 34

Flashback: Why would we want to use kernel functions?

without specifying φ(·), the kernel matrix

K =


k(x1,x1) k(x1,x2) · · · k(x1,xN)
k(x2,x1) k(x2,x2) · · · k(x2,xN)

...
...

...
...

k(xN ,x1) k(xN ,x2) · · · k(xN ,xN)


is exactly the same as

K = ΦΦT

=


φ(x1)

Tφ(x1) φ(x1)
Tφ(x2) · · · φ(x1)

Tφ(xN)
φ(x2)

Tφ(x1) φ(x2)
Tφ(x2) · · · φ(x2)

Tφ(xN)
· · · · · · · · · · · ·

φ(xN)
Tφ(x1) φ(xN)

Tφ(x2) · · · φ(xN)
Tφ(xN)



Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 14 / 34

‘Kernel trick’

Many learning methods depend on computing inner products between
features — we have seen the example of regularized least squares. For
those methods, we can use a kernel function in the place of the inner
products, i.e., “kernelizing” the methods, thus, introducing nonlinear
features.

Last lecture: Ridge Regression, Nearest Neighbor Classification

Next lecture: Support Vector Machines

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 15 / 34

There are infinite numbers of kernels to use!

Rules of composing kernels (this is just a partial list)

if k(xm,xn) is a kernel, then ck(xm,xn) is also if c > 0.

if both k1(xm,xn) and k2(xm,xn) are kernels, then
αk1(xm,xn) + βk2(xm,xn) are also if α, β ≥ 0

if both k1(xm,xn) and k2(xm,xn) are kernels, then
k1(xm,xn)k2(xm,xn) are also.

if k(xm,xn) is a kernel, then ek(xm,xn) is also.

· · ·
In practice, choosing an appropriate kernel is an “art”

People typically start with polynomial and Gaussian RBF kernels or
incorporate domain knowledge.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 16 / 34

Outline

1 Administration

2 Review of last lecture

3 Support vector machines – Geometric interpretation

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 17 / 34

Support vector machines

One of the most commonly used classification algorithms

This lecture: Geometric motivation

Next lecture: Hinge-loss formulation, Kernel SVM

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 18 / 34

Intuition: where to put the decision boundary?

Consider the following separable training dataset, i.e., we assume there
exists a decision boundary that separates the two classes perfectly. There
are an infinite number of decision boundaries H : wTφ(x) + b = 0!

HH�

H��

Which one should we pick?

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 19 / 34

Intuition: where to put the decision boundary?

w·x+b=0

w·x+b=0

Idea: Find a decision boundary in the ’middle’ of the two classes. In other
words, we want a decision boundary that:

Perfectly classifies the training data

Is as far away from every training point as possible

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 20 / 34

Intuition: where to put the decision boundary?

w·x+b=0

w·x+b=0

Idea: Find a decision boundary in the ’middle’ of the two classes. In other
words, we want a decision boundary that:

Perfectly classifies the training data

Is as far away from every training point as possible

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 20 / 34

What is a hyperplane?

w·x+b=0

w·x+b=0

General equation is w>x+ b = 0

w ∈ Rd is a non-zero normal vector, b is a scalar intercept

Divides the space in half, i.e., w>x+ b > 0 and w>x+ b < 0

A hyperplane is a line in 2D and a plane in 3D

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 21 / 34

Properties of hyperplanes

a

w�x + b = 0

a0

w�

p

q

Why is w normal to this hyperplane (or line in 2D)?

If two points, p and q are both on the line, then w>(p− q) = 0

p− q is an arbitrary vector parallel to the line, thus w is orthogonal

w∗ = w
||w|| is the unit normal vector

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 22 / 34

Properties of hyperplanes

a

w�x + b = 0

a0

w�

p

q

Why is w normal to this hyperplane (or line in 2D)?

If two points, p and q are both on the line, then w>(p− q) = 0

p− q is an arbitrary vector parallel to the line, thus w is orthogonal

w∗ = w
||w|| is the unit normal vector

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 22 / 34

Properties of hyperplanes

a

w�x + b = 0

a0

w�

p

q

Why is w normal to this hyperplane (or line in 2D)?

If two points, p and q are both on the line, then w>(p− q) = 0

p− q is an arbitrary vector parallel to the line, thus w is orthogonal

w∗ = w
||w|| is the unit normal vector

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 22 / 34

Properties of hyperplanes

a

w�x + b = 0

a0

w�

p

q

How to compute signed distance from a to the hyperplane?

We want to find distance between a and line in direction of w∗

If we define point a0 on the line, then this distance corresponds to
length of a− a0 in direction of w∗, which equals w∗>(a− a0)
Since w>a0 = −b, the distance equals 1

||w||(w
>a+ b)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 23 / 34

Properties of hyperplanes

a

w�x + b = 0

a0

w�

p

q

How to compute signed distance from a to the hyperplane?

We want to find distance between a and line in direction of w∗

If we define point a0 on the line, then this distance corresponds to
length of a− a0 in direction of w∗, which equals w∗>(a− a0)

Since w>a0 = −b, the distance equals 1
||w||(w

>a+ b)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 23 / 34

Properties of hyperplanes

a

w�x + b = 0

a0

w�

p

q

How to compute signed distance from a to the hyperplane?

We want to find distance between a and line in direction of w∗

If we define point a0 on the line, then this distance corresponds to
length of a− a0 in direction of w∗, which equals w∗>(a− a0)
Since w>a0 = −b,

the distance equals 1
||w||(w

>a+ b)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 23 / 34

Properties of hyperplanes

a

w�x + b = 0

a0

w�

p

q

How to compute signed distance from a to the hyperplane?

We want to find distance between a and line in direction of w∗

If we define point a0 on the line, then this distance corresponds to
length of a− a0 in direction of w∗, which equals w∗>(a− a0)
Since w>a0 = −b, the distance equals 1

||w||(w
>a+ b)

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 23 / 34

Distance from a point to decision boundary

The unsigned distance from a point φ(x) to decision boundary
(hyperplane) H is

dH(φ(x)) =
|wTφ(x) + b|
‖w‖2

We can remove the absolute value | · | by exploiting the fact that the
decision boundary classifies every point in the training dataset correctly.

Namely, (wTφ(x) + b) and x’s label y must have the same sign, so:

dH(φ(x)) =
y[wTφ(x) + b]

‖w‖2

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 24 / 34

Distance from a point to decision boundary

The unsigned distance from a point φ(x) to decision boundary
(hyperplane) H is

dH(φ(x)) =
|wTφ(x) + b|
‖w‖2

We can remove the absolute value | · | by exploiting the fact that the
decision boundary classifies every point in the training dataset correctly.

Namely, (wTφ(x) + b) and x’s label y must have the same sign, so:

dH(φ(x)) =
y[wTφ(x) + b]

‖w‖2

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 24 / 34

Distance from a point to decision boundary

The unsigned distance from a point φ(x) to decision boundary
(hyperplane) H is

dH(φ(x)) =
|wTφ(x) + b|
‖w‖2

We can remove the absolute value | · | by exploiting the fact that the
decision boundary classifies every point in the training dataset correctly.

Namely, (wTφ(x) + b) and x’s label y must have the same sign, so:

dH(φ(x)) =
y[wTφ(x) + b]

‖w‖2

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 24 / 34

Optimizing the Margin
Margin Smallest distance between the hyperplane and all training points

margin(w, b) = min
n

yn[w
Tφ(xn) + b]

‖w‖2

H : wTφ(x) + b = 0

|wTφ(x) + b|
�w�2

How should we pick (w, b) based on its margin?
We want a decision boundary that is as far away from all training points as
possible, so we to maximize the margin!

max
w,b

min
n

yn[w
Tφ(xn) + b]

‖w‖ = max
w,b

1

‖w‖2
min
n
yn[w

Tφ(xn) + b]

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 25 / 34

Optimizing the Margin
Margin Smallest distance between the hyperplane and all training points

margin(w, b) = min
n

yn[w
Tφ(xn) + b]

‖w‖2

H : wTφ(x) + b = 0

|wTφ(x) + b|
�w�2

How should we pick (w, b) based on its margin?

We want a decision boundary that is as far away from all training points as
possible, so we to maximize the margin!

max
w,b

min
n

yn[w
Tφ(xn) + b]

‖w‖ = max
w,b

1

‖w‖2
min
n
yn[w

Tφ(xn) + b]

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 25 / 34

Optimizing the Margin
Margin Smallest distance between the hyperplane and all training points

margin(w, b) = min
n

yn[w
Tφ(xn) + b]

‖w‖2

H : wTφ(x) + b = 0

|wTφ(x) + b|
�w�2

How should we pick (w, b) based on its margin?
We want a decision boundary that is as far away from all training points as
possible, so we to maximize the margin!

max
w,b

min
n

yn[w
Tφ(xn) + b]

‖w‖ = max
w,b

1

‖w‖2
min
n
yn[w

Tφ(xn) + b]

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 25 / 34

Scale of w

Margin Smallest distance between the hyperplane and all training points

margin(w, b) = min
n

yn[w
Tφ(xn) + b]

‖w‖2
Consider three hyperplanes

(w, b)

(2w, 2b)

(.5w, .5b)

Which one has the largest margin?

The margin doesn’t change if we scale (w, b) by a constant factor c

wTφ(x)+ b = 0 and (cw)Tφ(x)+(cb) = 0: same decision boundary!

Can we further constrain the problem?

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 26 / 34

Scale of w

Margin Smallest distance between the hyperplane and all training points

margin(w, b) = min
n

yn[w
Tφ(xn) + b]

‖w‖2
Consider three hyperplanes

(w, b)

(2w, 2b)

(.5w, .5b)

Which one has the largest margin?

The margin doesn’t change if we scale (w, b) by a constant factor c

wTφ(x)+ b = 0 and (cw)Tφ(x)+(cb) = 0: same decision boundary!

Can we further constrain the problem?

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 26 / 34

Rescaled Margin
We can further constrain the problem by scaling (w, b) such that

min
n
yn[w

Tφ(xn) + b] = 1

We’ve fixed the numerator in the margin(w, b) equation, and we have:

margin(w, b) =
1

‖w‖2
Hence the points closest to the decision boundary are at distance 1!

H : wTφ(x) + b = 0

1

�w�2

wTφ(x) + b = 1

wTφ(x) + b = −1

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 27 / 34

Rescaled Margin
We can further constrain the problem by scaling (w, b) such that

min
n
yn[w

Tφ(xn) + b] = 1

We’ve fixed the numerator in the margin(w, b) equation, and we have:

margin(w, b) =
1

‖w‖2

Hence the points closest to the decision boundary are at distance 1!

H : wTφ(x) + b = 0

1

�w�2

wTφ(x) + b = 1

wTφ(x) + b = −1

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 27 / 34

Rescaled Margin
We can further constrain the problem by scaling (w, b) such that

min
n
yn[w

Tφ(xn) + b] = 1

We’ve fixed the numerator in the margin(w, b) equation, and we have:

margin(w, b) =
1

‖w‖2
Hence the points closest to the decision boundary are at distance 1!

H : wTφ(x) + b = 0

1

�w�2

wTφ(x) + b = 1

wTφ(x) + b = −1

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 27 / 34

SVM: max margin formulation for separable data

Assuming separable training data, we thus want to solve:

max
w,b

1

‖w‖2
such that yn[w

Tφ(xn) + b] ≥ 1, ∀ n

This is equivalent to

min
w,b

1

2
‖w‖22

s.t. yn[w
Tφ(xn) + b] ≥ 1, ∀ n

Given our geometric intuition, SVM is called a max margin (or large
margin) classifier. The constraints are called large margin constraints.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 28 / 34

SVM for non-separable data

SVM formulation for separable data

min
w,b

1

2
‖w‖22

s.t. yn[w
Tφ(xn) + b] ≥ 1, ∀ n

Non-separable setting In practice our training data will not be separable.
What issues arise with the optimization problem above when data is not
separable?

For every w there exists a training point xi such that

yi[w
Tφ(xi) + b] ≤ 0

There is no feasible (w, b) as at least one of our constraints is
violated!

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 29 / 34

SVM for non-separable data

SVM formulation for separable data

min
w,b

1

2
‖w‖22

s.t. yn[w
Tφ(xn) + b] ≥ 1, ∀ n

Non-separable setting In practice our training data will not be separable.
What issues arise with the optimization problem above when data is not
separable?

For every w there exists a training point xi such that

yi[w
Tφ(xi) + b] ≤ 0

There is no feasible (w, b) as at least one of our constraints is
violated!

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 29 / 34

SVM for non-separable data

Constraints in separable setting

yn[w
Tφ(xn) + b] ≥ 1, ∀ n

Constraints in non-separable setting
Idea: modify our constraints to account for non-separability! Specifically,
we introduce slack variables ξn ≥ 0:

yn[w
Tφ(xn) + b] ≥ 1− ξn, ∀ n

For “hard” training points, we can increase ξn until the above
inequalities are met

What does it mean when ξn is very large?

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 30 / 34

SVM for non-separable data

Constraints in separable setting

yn[w
Tφ(xn) + b] ≥ 1, ∀ n

Constraints in non-separable setting
Idea: modify our constraints to account for non-separability! Specifically,
we introduce slack variables ξn ≥ 0:

yn[w
Tφ(xn) + b] ≥ 1− ξn, ∀ n

For “hard” training points, we can increase ξn until the above
inequalities are met

What does it mean when ξn is very large?

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 30 / 34

Soft-margin SVM formulation

We do not want ξn to grow too large, and we can control their size by
incorporating them into our optimization problem:

min
w,b,ξ

1

2
‖w‖22 + C

∑
n

ξn

s.t. yn[w
Tφ(xn) + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

What is the role of C?

User-defined hyperparameter

Trades off between the two terms in our objective

Same idea as the regularization term in ridge regression, i.e., C = 1
λ

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 31 / 34

Soft-margin SVM formulation

We do not want ξn to grow too large, and we can control their size by
incorporating them into our optimization problem:

min
w,b,ξ

1

2
‖w‖22 + C

∑
n

ξn

s.t. yn[w
Tφ(xn) + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

What is the role of C?

User-defined hyperparameter

Trades off between the two terms in our objective

Same idea as the regularization term in ridge regression, i.e., C = 1
λ

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 31 / 34

Soft-margin SVM formulation

We do not want ξn to grow too large, and we can control their size by
incorporating them into our optimization problem:

min
w,b,ξ

1

2
‖w‖22 + C

∑
n

ξn

s.t. yn[w
Tφ(xn) + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

What is the role of C?

User-defined hyperparameter

Trades off between the two terms in our objective

Same idea as the regularization term in ridge regression, i.e., C = 1
λ

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 31 / 34

How to solve this problem?

min
w,b,ξ

1

2
‖w‖22 + C

∑
n

ξn

s.t. yn[w
Tφ(xn) + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

This is a convex quadratic program: the objective function is
quadratic in w and linear in ξ and the constraints are linear
(inequality) constraints in w, b and ξn.

Given φ(·), we can solve the optimization problem using
general-purpose solvers, e.g., Matlab’s quadprog() function.

There are several specialized methods for solving this problem, taking
advantage of the special structure of the objective function and the
constraints (we will not discuss them). Most existing SVM
implementation/packages leverage these methods.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 32 / 34

How to solve this problem?

min
w,b,ξ

1

2
‖w‖22 + C

∑
n

ξn

s.t. yn[w
Tφ(xn) + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

This is a convex quadratic program: the objective function is
quadratic in w and linear in ξ and the constraints are linear
(inequality) constraints in w, b and ξn.

Given φ(·), we can solve the optimization problem using
general-purpose solvers, e.g., Matlab’s quadprog() function.

There are several specialized methods for solving this problem, taking
advantage of the special structure of the objective function and the
constraints (we will not discuss them). Most existing SVM
implementation/packages leverage these methods.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 32 / 34

How to solve this problem?

min
w,b,ξ

1

2
‖w‖22 + C

∑
n

ξn

s.t. yn[w
Tφ(xn) + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

This is a convex quadratic program: the objective function is
quadratic in w and linear in ξ and the constraints are linear
(inequality) constraints in w, b and ξn.

Given φ(·), we can solve the optimization problem using
general-purpose solvers, e.g., Matlab’s quadprog() function.

There are several specialized methods for solving this problem, taking
advantage of the special structure of the objective function and the
constraints (we will not discuss them). Most existing SVM
implementation/packages leverage these methods.

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 32 / 34

Meaning of “support vectors” in SVMs

The SVM solution solution is only determined by a subset of the
training samples (as we will see in more detail in the next lecture)

These samples are called support vectors

All other training points do not affect the optimal solution, i.e.,if
remove the other points and construct another SVM classifier on the
reduced dataset, the optimal solution will be the same

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 33 / 34

Visualization of how training data points are categorized

H : wT�(x) + b = 0

wT�(x) + b = 1

wT�(x) + b = �1

⇠n = 0

⇠n < 1
⇠n > 1

Support vectors are highlighted by the dotted orange lines

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 3, 2015 34 / 34

	Administration
	Review of last lecture
	Bias/Variance Analysis
	Kernel methods

	Support vector machines – Geometric interpretation

