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Announcements

Project proposal due now

Graded HW3 and HW4 will be returned next Thursday

HW5 has been posted online; due next Thursday
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SVM Intuition: where to put the decision boundary?

Consider the following separable training dataset, i.e., we assume there
exists a decision boundary that separates the two classes perfectly. There
are an infinite number of decision boundaries H : wTφ(x) + b = 0!

HH�

H��

Which one should we pick? Idea: Find a decision boundary in the ’middle’
of the two classes. In other words, we want a decision boundary that:

Perfectly classifies the training data

Is as far away from every training point as possible
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Distance from a point to decision boundary

The unsigned distance from a point φ(x) to decision boundary
(hyperplane) H is

dH(φ(x)) =
|wTφ(x) + b|
‖w‖2

We can remove the absolute value | · | by exploiting the fact that the
decision boundary classifies every point in the training dataset correctly.

Namely, (wTφ(x) + b) and x’s label y must have the same sign, so:

dH(φ(x)) =
y[wTφ(x) + b]

‖w‖2
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Optimizing the Margin
Margin Smallest distance between the hyperplane and all training points

margin(w, b) = min
n

yn[wTφ(xn) + b]

‖w‖2

H : wTφ(x) + b = 0

|wTφ(x) + b|
�w�2

How should we pick (w, b) based on its margin?
We want a decision boundary that is as far away from all training points as
possible, so we to maximize the margin!

max
w,b

min
n

yn[wTφ(xn) + b]

‖w‖ = max
w,b

1

‖w‖2
min
n
yn[wTφ(xn) + b]
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Rescaled Margin
We can further constrain the problem by scaling (w, b) such that

min
n
yn[wTφ(xn) + b] = 1

We’ve fixed the numerator in the margin(w, b) equation, and we have:

margin(w, b) =
1

‖w‖2
Hence the points closest to the decision boundary are at distance 1!

H : wTφ(x) + b = 0

1

�w�2

wTφ(x) + b = 1

wTφ(x) + b = −1
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SVM: max margin formulation for separable data

Assuming separable training data, we thus want to solve:

max
w,b

1

‖w‖2
such that yn[wTφ(xn) + b] ≥ 1, ∀ n

This is equivalent to

min
w,b

1

2
‖w‖22

s.t. yn[wTφ(xn) + b] ≥ 1, ∀ n

Given our geometric intuition, SVM is called a max margin (or large
margin) classifier. The constraints are called large margin constraints.
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SVM for non-separable data

Constraints in separable setting

yn[wTφ(xn) + b] ≥ 1, ∀ n

Constraints in non-separable setting
Idea: modify our constraints to account for non-separability! Specifically,
we introduce slack variables ξn ≥ 0:

yn[wTφ(xn) + b] ≥ 1− ξn, ∀ n

For “hard” training points, we can increase ξn until the above
inequalities are met

What does it mean when ξn is very large?
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Soft-margin SVM formulation

We do not want ξn to grow too large, and we can control their size by
incorporating them into our optimization problem:

min
w,b,ξ

1

2
‖w‖22 + C

∑
n

ξn

s.t. yn[wTφ(xn) + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

C is user-defined regularization hyperparameter that trades off
between the two terms in our objective

This is a convex quadratic program that can be solved with general
purpose or specialized solvers
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Visualization of how training data points are categorized

H : wT�(x) + b = 0

wT�(x) + b = 1

wT�(x) + b = �1

⇠n = 0

⇠n < 1
⇠n > 1

The SVM solution solution is only determined by a subset of the
training samples (as we will see later in the lecture)

These samples are called support vectors, which are highlighted by
the dotted orange lines in the figure
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Hinge loss

Definition Assume y ∈ {−1, 1} and the decision rule is
h(x) = sign(f(x)) with f(x) = wTφ(x) + b,

`hinge(f(x), y) =

{
0 if yf(x) ≥ 1

1− yf(x) otherwise

Intuition

No penalty if raw output, f(x), has same sign and is far enough from
decision boundary (i.e., if ‘margin’ is large enough)

Otherwise pay a growing penalty, between 0 and 1 if signs match, and
greater than one otherwise

Convenient shorthand

`hinge(f(x), y) = max(0, 1− yf(x)) = (1− yf(x))+
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Visualization and Properties
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Upper-bound for 0/1 loss function (black line)

We use hinge loss is a surrogate to 0/1 loss – Why?

Hinge loss is convex, and thus easier to work with (though it’s not
differentiable at kink)
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Visualization and Properties
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Other surrogate losses can be used, e.g., exponential loss for
Adaboost (in blue), logistic loss (not shown) for logistic regression

Hinge loss less sensitive to outliers than exponential (or logistic) loss

Logistic loss has a natural probabilistic interpretation

We can greedily optimize exponential loss (Adaboost)
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Primal formulation of support vector machines (SVM)

Minimizing the total hinge loss on all the training data

min
w,b

∑
n

max(0, 1− yn[wTφ(xn) + b]) +
λ

2
‖w‖22

Analogous to regularized least squares, as we balance between two terms
(the loss and the regularizer).

Previously, we used geometric arguments to derive:

min
w,b,ξ

1

2
‖w‖22 + C

∑
n

ξn

s.t. yn[wTφ(xn) + b] ≥ 1− ξn and ξn ≥ 0, ∀ n
Do these the yield the same solution?
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Recovering our previous SVM formulation

Define C = 1/λ:

min
w,b

C
∑
n

max(0, 1− yn[wTφ(xn) + b]) +
1

2
‖w‖22

Define ξn ≥ max(0, 1− ynf(xn))

min
w,b,ξ

C
∑
n

ξn +
1

2
‖w‖22

s.t. max(0, 1− yn[wTφ(xn) + b]) ≤ ξn, ∀ n
At optimal solution constraints are active so we have equality! Why?

If ξ∗n > max(0, 1− ynf(xn)), we could choose ξ̄n < ξ∗n and still
satisfy the constraint while reducing our objective function!

Since c ≥ max(a, b) ⇐⇒ c ≥ a, c ≥ b, we recover previous
formulation
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Outline

1 Administration

2 Review of last lecture

3 SVM – Hinge loss (primal formulation)

4 Kernel SVM
Lagrange duality theory
SVM Dual Formulation and Kernel SVM
SVM Dual Derivation and Support Vectors
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Kernel SVM Roadmap

Key concepts we’ll cover

Brief review of constrained optimization with inequality constraints
I “Primal” and “Dual” problems
I Strong Duality and KKT conditions

Dual SVM problem and Kernel SVM

Dual SVM problem and support vectors
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Constrained Optimization – Equality Constraints

min
x

f(x)

s.t. hj(x) = 0, ∀ j
The Lagrangian is defined as follows:

L(x,β) = f(x) +
∑
j

βjhj(x)

When problem is convex, we can find the optimal solution by

Computing partial derivatives of L

Setting them to zero

Solving the corresponding system of equations
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Constrained Optimization – Inequality Constraints

min
x

f(x)

s.t. gi(x) ≤ 0, ∀ i
hi(x) = 0, ∀ j

This is the ‘primal’ problem

with the generalized Lagrangian:

L(x,α,β) = f(x) +
∑
i

αigi(x) +
∑
j

βjhj(x)

Consider the following function:

θP (x) = max
α,β,αi≥0

L(x,α,β)

If x violates a primal constraint, θP (x) =∞; otherwise θP (x) = f(x)

Thus minx θP (x) = minxmaxα,β,αi≥0 L(x,α,β) has same solution
as primal problem, which we denote as p∗
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Constrained Optimization – Inequality Constraints

Primal Problem

p∗ = min
x
θP (x) = min

x
max

α,β,αi≥0
L(x,α,β)

Dual Problem

Consider the function: θD(α,β) = minx L(x,α,β)

d∗ = max
α,β,αi≥0

θD(α,β) = max
α,β,αi≥0

min
x
L(x,α,β)

Primal and dual are the same, except the max and min are exchanged!

Relationship between primal and dual?

p∗ ≥ d∗ (weak duality)

‘min max’ of any function is always greater than the ‘max min’

https://en.wikipedia.org/wiki/Max%E2%80%93min_inequality
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Strong Duality

When p∗ = d∗, we can solve the dual problem in lieu of the problem!

Sufficient conditions for strong duality:

f and gi are convex, hi are affine (i.e., linear with offset)

Inequality constraints are strictly ‘feasible,’ i.e., there exists some x
such that gi(x) < 0 for all i

These conditions are all satisfied by the SVM optimization problem!

Under these assumptions, there must exist x∗,α∗,β∗ such that:

x∗ is the solution to the primal and α∗,β∗ is the solution to the dual

p∗ = d∗ = L(x∗,α∗,β∗)

x∗,α∗,β∗ satisfy the KKT conditions, and in fact are necessary and
sufficient
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Recap

When working with constrained optimization problems with inequality
constraints, we can write down primal and dual problems

The dual solution is always a lower bound on the primal solution
(weak duality)

The duality gap equals 0 under certain conditions (strong duality),
and in such cases we can either solve the primal or dual problem

Strong duality holds for the SVM problem, and in particular the KKT
conditions are necessary and sufficient for the optimal solution

See http://cs229.stanford.edu/notes/cs229-notes3.pdf for details
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Dual formulation of SVM

Dual is also a convex quadratic programming

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnφ(xm)Tφ(xn)

s.t. 0 ≤ αn ≤ C, ∀ n∑
n

αnyn = 0

There are N dual variable αn, one for each constraint in the primal
formulation
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Kernel SVM

We replace the inner products φ(xm)Tφ(xn) with a kernel function

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnk(xm,xn)

s.t. 0 ≤ αn ≤ C, ∀ n∑
n

αnyn = 0

We can define a kernel function to work with nonlinear features and learn
a nonlinear decision surface

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 5, 2015 27 / 39



Recovering solution to the primal formulation

Weights

w =
∑
n

ynαnφ(xn) ← Linear combination of the input features

Offset

b = [yn −wTφ(xn)] = [yn −
∑
m

ymαmk(xm,xn)], for any C > αn > 0

Prediction on a test point x

h(x) = sign(wTφ(x) + b) = sign(
∑
n

ynαnk(xn,x) + b)

At test time it suffices to know the kernel function!
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Derivation of the dual

We will derive the dual formulation as the process will reveal some
interesting and important properties of SVM. Particularly, why is it called
“support vector”?
Recipe

Formulate the generalized Lagrangian function that incorporates the
constraints and introduces dual variables

Minimize the Lagrangian function over the primal variables

Substitute the primal variables for dual variables in the Lagrangian

Maximize the Lagrangian with respect to dual variables

Recover the solution (for the primal variables) from the dual variables
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A simple example

Consider the example of convex quadratic programming

min
1

2
x2

s.t. − x ≤ 0

2x− 3 ≤ 0

The generalized Lagrangian is (note that we do not have equality
constraints)

L(x, α) =
1

2
x2 + α1 × (−x) + α2 × (2x− 3) =

1

2
x2 + (2α2 − α1)x− 3α2

under the constraint that α1 ≥ 0 and α2 ≥ 0.

Its dual problem is

max
α1≥0,α2≥0

min
x
L(x, α) = max

α1≥0,α2≥0
min
x

1

2
x2 + (2α2 − α1)x− 3α2
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Example (cont’d)

We now solve minx L(x, α). The optimal x is attained by

∂(12x
2 + (2α2 − α1)x− 3α2)

∂x
= 0→ x = −(2α2 − α1)

We next substitute the solution back into the Lagrangian:

g(α) = min
x

1

2
x2 + (2α2 − α1)x− 3α2 = −1

2
(2α2 − α1)

2 − 3α2

Our dual problem can now be simplified:

max
α1≥0,α2≥0

−1

2
(2α2 − α1)

2 − 3α2

We will solve the dual next.
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Solving the dual

Note that,

g(α) = −1

2
(2α2 − α1)

2 − 3α2 ≤ 0

for all α1 ≥ 0, α2 ≥ 0. Thus, to maximize the function, the optimal
solution is

α∗1 = 0, α∗2 = 0

This brings us back the optimal solution of x

x∗ = −(2α∗2 − α∗1) = 0

Namely, we have arrived at the same solution as the one we guessed from
the primal formulation

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 5, 2015 32 / 39



Deriving the dual for SVM

Primal SVM

min
w,b,ξ

1

2
‖w‖22 + C

∑
n

ξn

s.t. yn[wTφ(xn) + b] ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

Lagrangian

L(w, b, {ξn}, {αn}, {λn}) = C
∑
n

ξn +
1

2
‖w‖22 −

∑
n

λnξn

+
∑
n

αn{1− yn[wTφ(xn) + b]− ξn}

under the constraint that αn ≥ 0 and λn ≥ 0.
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Minimizing the Lagrangian
Taking derivatives with respect to the primal variables

∂L

∂w
= w −

∑
n

ynαnφ(xn) = 0

∂L

∂b
=
∑
n

αnyn = 0

∂L

∂ξn
= C − λn − αn = 0

These equations link the primal variables and the dual variables and
provide new constraints on the dual variables:

w =
∑
n

ynαnφ(xn)∑
n

αnyn = 0

C − λn − αn = 0
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Substitute the solution back into the Lagrangian

g({αn},{λn}) = L(w, b, {ξn}, {αn}, {λn})

=
∑
n

(C − αn − λn)ξn +
1

2
‖
∑
n

ynαnφ(xn)‖22 +
∑
n

αn

+

(∑
n

αnyn

)
b−

∑
n

αnyn

(∑
m

ymαmφ(xm)

)T

φ(xn)

=
∑
n

αn +
1

2
‖
∑
n

ynαnφ(xn)‖22 −
∑
m,n

αnαmymynφ(xm)Tφ(xn)

=
∑
n

αn −
1

2

∑
m,n

αnαmymynφ(xm)Tφ(xn)

Several terms vanish because of the constraints
∑

n αnyn = 0 and
C − λn − αn = 0.
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The dual problem
Maximizing the dual under the constraints

max
α

g({αn}, {λn}) =
∑
n

αn −
1

2

∑
m,n

ymynαmαnk(xm,xn)

s.t. αn ≥ 0, ∀ n∑
n

αnyn = 0

C − λn − αn = 0, ∀ n
λn ≥ 0, ∀ n

We can simplify as the objective function does not depend on λn.
Specifically, we can combine the constraints involving λn resulting in the
following inequality constraint: αn ≤ C:

C − λn − αn = 0, λn ≥ 0 ⇐⇒ λn = C − αn ≥ 0

⇐⇒ αn ≤ C
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Simplified Dual

max
α

∑
n

αn −
1

2

∑
m,n

ymynαmαnφ(xm)Tφ(xn)

s.t. 0 ≤ αn ≤ C, ∀ n∑
n

αnyn = 0
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Recovering solution to the primal formulation

We already identified the primal variable w as

w =
∑
n

αnynφ(xn)

To identify b, we need to appeal to one of the KKT conditions See
http://cs229.stanford.edu/notes/cs229-notes3.pdf for details
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Complementary slackness and support vectors

At the optimal solution to both primal and dual, the following
condition must hold due to the KKT conditions:

λnξn = 0

αn{1− ξn − yn[wTφ(xn) + b]} = 0

From the first condition, if αn < C, then

λn = C − αn > 0→ ξn = 0

Thus, using the second condition, if C > αn > 0 and yn ∈ {−1, 1}:

1− yn[wTφ(xn) + b] = 0→ b = yn −wTφ(xn)

Test Prediction: h(x) = sign(
∑

n ynαnk(xn,x) + b)

Prediction only depends on support vectors, i.e., points with αn > 0!
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