
Neural Networks and Deep Learning

Professor Ameet Talwalkar

November 12, 2015

Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 1 / 16



Outline

1 Review of last lecture
AdaBoost
Boosting as learning nonlinear basis

2 Neural networks

3 Summary

Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 2 / 16



How Boosting algorithm works?

Given: N samples {xn, yn}, where yn ∈ {+1,−1}, and some ways of
constructing weak (or base) classifiers

Initialize weights w1(n) =
1
N for every training sample.

For t= 1 to T
1 Train a weak classifier ht(x) based on the current weight wt(n), by

minimizing the weighted classification error

εt =
∑

n

wt(n)I[yn 6= ht(xn)]

2 Calculate weights for combining classifiers βt =
1
2 log

1−εt
εt

3 Update weights
wt+1(n) ∝ wt(n)e−βtynht(xn)

and normalize them such that
∑
n wt+1(n) = 1.

Output the final classifier

h[x] = sign

[
T∑

t=1

βtht(x)

]

Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 3 / 16



Derivation of the AdaBoost

Minimize exponential loss

`exp(h(x), y) = e−yf(x)

Greedily (sequentially) find the best classifier to optimize the loss
A classifier ft−1(x) is improved by adding a new classifier ht(x)

f(x) = ft−1(x) + βtht(x)

(h∗t (x), β
∗
t ) = argmin(ht(x),βt)

∑

n

e−ynf(xn)

= argmin(ht(x),βt)
∑

n

e−yn[ft−1(xn)+βtht(xn)]

Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 4 / 16



Nonlinear basis learned by boosting

Two-stage process

Get sign[f1(x)], sign[f2(x)],· · · ,
Combine into a linear classification model

y = sign

{∑

t

βtsign[ft(x)]

}

Equivalently, each stage learns a nonlinear basis φt(x) = sign[ft(x)].

One thought is then, why not learning the basis functions and the classifier
at the same time?

Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 5 / 16



Outline

1 Review of last lecture

2 Neural networks
Algorithm
Deep Neural Networks (DNNs)

3 Summary

Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 6 / 16



Basic idea

Transform the input feature with nonlinear function

Use nonlinear basis functions

�(·)

x1

x2

xm

�1(x)

�2(x)

�d(x)

Original 
input/feature

new features

y = wT�(x) + w0

y = sgn(wT�(x) + w0)

Linear regression

Linear classification

xD �M (x)

�(x) � RMx � RD

Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 7 / 16



Nonlinear basis as two-layer network

Layered architecture of “neurons”

Input layer: features

hidden layer: nonlinear transformation

Output layer: targets

Feedforward computation

hidden layer output:

Output layer output

x0

x1

xD

z0

z1

zM

y1

yK

w
(1)
MD w

(2)
KM

w
(2)
10

hidden units

inputs outputs

zj = h(aj) = h

�
D⇤

i=0

w
(1)
ji xi

⇥

yk = g

�
⇤

M⇧

j=0

w
(2)
kj zj

⇥
⌅ we often set these two have a 

constant value of 1, thus “bias”



A very concise history

1943 McCulloch-Pitts model of single neurons

1960’s Rosenblatt’s perceptron learning

1969 Minsky and Papert’s perceptron

1985 Hopfield neural nets 

1986 Parallel and Distributed Processing (PDP book) and Connectionisms

2006 Deep nets 

nonlinear processing unit

outputinput from 
other neurons



Neural networks are very powerful

Sufficient

Universal approximator: with sufficient number 
of nonlinear hidden units, linear output unit can 
approximate any continuous functions

Transfer function for the neurons

sigmoid function

tanh function: 

piecewise linear

x0

x1

xD

z0

z1

zM

y1

yK

w
(1)
MD w

(2)
KM

w
(2)
10

hidden units

inputs outputs

h(z) =
ez � e�z

ez + e�z

h(z) =
1

1 + e�z

h(z) = max(0, z)



Ex: computing highly nonlinear function

x

bias

bias

+1

-1+0.5

+1

+1

+1

+10 0
1/2

0.5

z1 = h(0.5x + 1)
z2 = h(x + 1)

z3 = h(10x)

y = �z1 + z2 + 0.5 ⇤ z3 + 0.5



Complicated decision boundaries

−2 −1 0 1 2

−2

−1

0

1

2

3



Choice of output nodes

Regression

Linear output 

Classification

sigmoid (for binary classification)

softmax (for multiclass classification)

x0

x1

xD

z0

z1

zM

y1

yK

w
(1)
MD w

(2)
KM

w
(2)
10

hidden units

inputs outputs
yk =

⇤

k

w
(2)
kj h

�⇤

i

w
(1)
ji xi

⇥

y = �

�⇤

k

w
(2)
kj h

�⇤

i

w
(1)
ji xi

⇥⇥

zk =
⇤

k

w
(2)
kj h

�⇤

i

w
(1)
ji xi

⇥
yk =

ezk

�
k� ezk�



Can have multiple (ie, deep) layers

Implements highly complicated nonlinear mapping 

y = f(x)



How to learn the parameters?

Choose the right loss function

Regression:  least-square loss

Classification: cross-entropy loss

Very hard optimization problem

Stochastic gradient descent is commonly used

Many optimization tricks are applied

min
X

n

(f(xn)� yn)2

min �
X

n

X

k

ynk log fk(xn)



Stochastic gradient descent

High-level idea

Randomly pick a data point (xn, yn)

Compute the gradient using only this data point, for example,

Update the parameter right away

Iterate the process until some stop criteria

g =
@[f(xn)� yn)2]

@w

w  w � ⌘g

There are many possible improvements to this simple procedure
(in practice, this procedure works pretty well in many cases, though!)



Several common tricks

Initialization is very important

We are solving a very difficult optimization problem.

There are several heuristics on how to select your starting points wisely.

Learning rate decay

Step size can be big in the begin but should be tuned down later, for example

As the iteration t goes up,  the learning grate becomes smaller.

Minibatch

Use small batch of data points (instead just one) to estimate gradients more robustly.

Momentum

Remembering the good direction in previous iterations that you have changed the parameters

….

⌘  ⌘ � t�⌘



Heavy tuning

In practice

Many tricks require experimenting, and tweaking to obtain the best results

Additionally, other hyperparameters need to be tuned too

Number of hidden layers?

Number of hidden units in each layers?

…

But all those pay off

Deep neural networks attains the best results in automatic speech recognition.

Deep neural networks attains the best results in image  recognition.

Deep neural networks attains the best results in recognizing faces

Deep neural networks attains the best results in recognizing poses.



How to compute the gradient?

Even for very complicated nonlinear functions

Computing the gradient is surprisingly simple to implement

The idea behind it is called error back propagation.

It employs the simple chain-rule for taking derivative.

Implemented in many sophisticated packages

Theano

cuDNN

…



Derivation of the error-backpropagation

Calculate the feed-forward signals from the input to the output.

Calculate output error E based on the predictions xk and the target
tk.

Backpropagate the error by weighting it by the gradients of the
associated activation functions and the weights in previous layers.

Calculating the gradients ∂E
∂w for the parameters based on the

backpropagated error signal and the feedforward signals from the
inputs.

Update the parameters using the calculated gradients w ← w − η ∂E∂w .

Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 8 / 16



Illustrative example

xk

xj
xi

wij wjk

wij : weights connecting node i in layer (`− 1) to node j in layer `.

bj : bias for node j.

zj : input to node j (where zj = bj +
∑

i xiwij).

gj : activation function for node j (applied to zj).

xj = gj(zj): ouput/activation of node j.

tk: target value for node k in the output layer.

Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 9 / 16



Illustrative example (cont’d)

Network output

xk = gk(bk +
∑

j

gj(bj +
∑

i

xiwij)wjk)

Let’s assume that the error function is the sum of the squared
difference between the target values tk and the network output xk

E =
1

2

∑

k∈K
(xk − tk)2

Gradients for the output layer

∂E

∂wjk
= (xk − tk)

∂

∂wjk
(xk − tk) = (xk − tk)g′k(zk)

∂

∂wjk
zk

= (xk − tk)g′k(zk)xj = δkxj

where δk is the output error through the top activation layer.

Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 10 / 16



Illustrative example (cont’d)

Gradients for the hidden layer

∂E

∂wij
=

∑

k∈K
(xk − tk)

∂

∂wij
(xk − tk) =

∑

k∈K
(xk − tk)g′k(zk)

∂

∂wij
zk

=
∑

k∈K
(xk − tk)g′k(zk)wjkg′j(zj)xi

= xig
′
j(zj)

∑

k∈K
(xk − tk)g′k(zk)wjk = δjxi

where we substituted zk = bk +
∑

j gj(bi +
∑

i xiwij)wjk
and zk

wij
= zk

xj

xj
wij

= wjkg
′
j(zj)xi.

The gradients with respect to the biases are respectively:

E

∂bk
= δk,

E

∂bi
= δj

Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 11 / 16



Basic idea behind DNNs

Architecturally, a big neural networks (with a lot of variants)

in depth: 4-5 layers are commonly (Google LeNet uses more than 20)

in width: the number of hidden units in each layer can be a few
thousands

the number of parameters: hundreds of millions, even billions

Algorithmically, many new things

Pre-training: do not do error-backprogation right away

Layer-wise greedy: train one layer at a time

...

Computing

Heavy computing: in both speed in computation and coping with a
lot of data

Ex: fast Graphics Processing Unit (GPUs) are almost indispensable

Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 12 / 16



Good references

Easy to find as DNNs are very popular these days

Many, many online video tutorials

Good open-source packages: Theano, Caffe, MatConvNet,
TensorFlow, etc

Examples:
I Wikipedia entry on “Deep Learning”

http://en.wikipedia.org/wiki/Deep_learning provides a decent
portal to many things including deep belief networks, convolution nets

I A collection of tutorials and codes for implementing them in Python
http://www.deeplearning.net/tutorial/

Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 13 / 16

http://en.wikipedia.org/wiki/Deep_learning
http://www.deeplearning.net/tutorial/


Outline

1 Review of last lecture

2 Neural networks

3 Summary
Supervised learning

Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 14 / 16



Summary of the course so far: a short list of important
concepts

Supervised learning has been our focus

Setup: given a training dataset {xn, yn}Nn=1, we learn a function h(x)
to predict x’s true value y (i.e., regression or classification)

Linear vs. nonlinear features
1 Linear: h(x) depends on wTx
2 Nonlinear: h(x) depends on wTφ(x), which in terms depends on a

kernel function k(xm,xn) = φ(xm)Tφ(xn),

Loss function
1 Squared loss: least square for regression (minimizing residual sum of

errors)
2 Logistic loss: logistic regression
3 Exponential loss: AdaBoost
4 Margin-based loss: support vector machines

Principles of estimation
1 Point estimate: maximum likelihood, regularized likelihood

Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 15 / 16



cont’d

Optimization
1 Methods: gradient descent, Newton method
2 Convex optimization: global optimum vs. local optimum
3 Lagrange duality: primal and dual formulation

Learning theory
1 Difference between training error and generalization error
2 Overfitting, bias and variance tradeoff
3 Regularization: various regularized models

Professor Ameet Talwalkar Neural Networks and Deep Learning November 12, 2015 16 / 16


	Review of last lecture
	AdaBoost
	Boosting as learning nonlinear basis

	Neural networks
	Algorithm
	Deep Neural Networks (DNNs)

	Summary
	Supervised learning


