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Grading

Grades for midterm and project proposal will be available by next
Tuesday

HW5 grades available next Tuesday or Thursday

For midterm, we will not be giving physical exams back, but you can
see them during Nikos’ office hours
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HW6

Last Homework assignment

I will post by next Tuesday

Due on the last day of class
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Neural Networks – Basic Idea

Learning nonlinear basis functions and classifiers

Hidden layers are nonlinear mappings from input features to new
representation

Output layers use the new representations for classification and
regression

Learning parameters

Backpropogation = Stochastic gradient descent
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Summary of the course so far

Supervised learning has been our focus

Setup: given a training dataset {xn, yn}Nn=1, we learn a function h(x)
to predict x’s true value y (i.e., regression or classification)

Linear vs. nonlinear features
1 Linear: h(x) depends on wTx
2 Nonlinear: h(x) depends on wTφ(x), which in terms depends on a

kernel function k(xm,xn) = φ(xm)Tφ(xn),

Loss function
1 Squared loss: least square for regression (minimizing residual sum of

errors)
2 Logistic loss: logistic regression
3 Exponential loss: AdaBoost
4 Margin-based loss: support vector machines

Principles of estimation
1 Point estimate: maximum likelihood, regularized likelihood
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cont’d

Optimization
1 Methods: gradient descent, Newton method
2 Convex optimization: global optimum vs. local optimum
3 Lagrange duality: primal and dual formulation

Learning theory
1 Difference between training error and generalization error
2 Overfitting, bias and variance tradeoff
3 Regularization: various regularized models
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Supervised versus Unsupervised Learning

Supervised Learning from labeled observations

Labels ‘teach’ algorithm to learn mapping from observations to labels

Classification, Regression

Unsupervised Learning from unlabeled observations

Learning algorithm must find latent structure from features alone

Can be goal in itself (discover hidden patterns, exploratory analysis)

Can be means to an end (preprocessing for supervised task)

Clustering (Today)

Dimensionality Reduction: Transform an initial feature representation
into a more concise representation (Next)
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Clustering
Setup Given D = {xn}Nn=1 and K, we want to output

{µk}Kk=1: prototypes of clusters

A(xn) ∈ {1, 2, . . . ,K}: the cluster membership, i.e., the cluster ID
assigned to xn

Toy Example Cluster data into two clusters.

(a)

−2 0 2

−2

0

2 (i)

−2 0 2

−2

0

2

Applications

Identify communities within social networks

Find topics in news stories

Group similiar sequences into gene families
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K-means example
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K-means clustering

Intuition Data points assigned to cluster k should be close to µk, the
prototype.

Distortion measure (clustering objective function, cost function)

J =
N∑

n=1

K∑
k=1

rnk‖xn − µk‖22

where rnk ∈ {0, 1} is an indicator variable

rnk = 1 if and only if A(xn) = k
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Algorithm

Minimize distortion measure alternative optimization between {rnk}
and {µk}

Step 0 Initialize {µk} to some values

Step 1 Assume the current value of {µk} fixed, minimize J over
{rnk}, which leads to the following cluster assignment rule

rnk =

{
1 if k = argminj ‖xn − µj‖22
0 otherwise

Step 2 Assume the current value of {rnk} fixed, minimize J over
{µk}, which leads to the following rule to update the prototypes of
the clusters

µk =

∑
n rnkxn∑
n rnk

Step 3 Determine whether to stop or return to Step 1
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Remarks

Prototype µk is the mean of data points assigned to the cluster k,
hence ‘K-means’

The procedure reduces J in both Step 1 and Step 2 and thus makes
improvements on each iteration

No guarantee we find the global solution; quality of local optimum
depends on initial values at Step 0 (k-means++ is a neat
approximation algorithm)
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Application: vector quantization

Replace data point with associated prototype µk

In other words, compress the data points into i) a codebook of all the
prototypes; ii) a list of indices to the codebook for the data points

Lossy compression, especially for small K

Clustering pixels and vector quantizing them. From left to right: Original
image, quantized with large K, medium K, and a small K. Details are
missing due to the higher compression (smaller K).
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Probabilistic interpretation of clustering?

We can impose a probabilistic interpretation of our intuition that points
stay close to their cluster centers

How can we model p(x) to reflect this?

(b)

0 0.5 1

0

0.5

1 Data points seem to form 3
clusters

We cannot model p(x) with
simple and known distributions

E.g., the data is not a Guassian
b/c we have 3 distinct
concentrated regions
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Gaussian mixture models: intuition

(a)

0 0.5 1

0

0.5

1

We can model each region with
a distinct distribution

Common to use Gaussians, i.e.,
Gaussian mixture models
(GMMs) or mixture of
Gaussians (MoGs).

We don’t know cluster
assignments (label) or
parameters of Gaussians or
mixture components!

We need to learn them all from
our unlabeled data
D = {xn}Nn=1
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Gaussian mixture models: formal definition

A Gaussian mixture model has the following density function for x

p(x) =

K∑
k=1

ωkN(x|µk,Σk)

K: the number of Gaussians — they are called (mixture) components

µk and Σk: mean and covariance matrix of the k-th component

ωk: mixture weights – they represent how much each component
contributes to the final distribution (priors). It satisfies two properties:

∀ k, ωk > 0, and
∑
k

ωk = 1

The properties ensure p(x) is a properly normalized probability
density function.
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GMM as the marginal distribution of a joint distribution

Consider the following joint distribution

p(x, z) = p(z)p(x|z)

where z is a discrete random variable taking values between 1 and K.

Denote
ωk = p(z = k)

Now, assume the conditional distributions are Gaussian distributions

p(x|z = k) = N(x|µk,Σk)

Then, the marginal distribution of x is

p(x) =

K∑
k=1

ωkN(x|µk,Σk)

Namely, the Gaussian mixture model
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GMMs: example

(a)

0 0.5 1

0

0.5

1

The conditional distribution between x and z
(representing color) are

p(x|z = red) = N(x|µ1,Σ1)

p(x|z = blue) = N(x|µ2,Σ2)

p(x|z = green) = N(x|µ3,Σ3)

(b)

0 0.5 1

0

0.5

1 The marginal distribution is thus

p(x) = p(red)N(x|µ1,Σ1) + p(blue)N(x|µ2,Σ2)

+ p(green)N(x|µ3,Σ3)
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Parameter estimation for Gaussian mixture models

The parameters in GMMs are θ = {ωk,µk,Σk}Kk=1. To estimate, consider
the simple (and unrealistic) case first.

We have labels z If we assume z is observed for every x, then our
estimation problem is easier to solve. Our training data is augmented:

D′ = {xn, zn}Nn=1

zn denotes the region where xn comes from. D′ is the complete data and
D the incomplete data. How can we learn our parameters?

Given D′, the maximum likelihood estimation of the θ is given by

θ = argmax logD′ =
∑
n

log p(xn, zn)
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Parameter estimation for GMMs: complete data

The complete likelihood is decomposable∑
n

log p(xn, zn) =
∑
n

log p(zn)p(xn|zn) =
∑
k

∑
n:zn=k

log p(zn)p(xn|zn)

where we have grouped data by its values zn. Let us introduce a binary
variable γnk ∈ {0, 1} to indicate whether zn = k. We then have

∑
n

log p(xn, zn) =
∑
k

∑
n

γnk log p(z = k)p(xn|z = k)

We use a “dummy” variable z to denote all the possible values cluster
assignment values for xn

D′ specifies this value in the complete data setting
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Parameter estimation for GMMs: complete data
From our previous discussion, we have∑

n

log p(xn, zn) =
∑
k

∑
n

γnk [logωk + logN(xn|µk,Σk)]

Regrouping, we have

∑
n

log p(xn, zn) =
∑
k

∑
n

γnk logωk +
∑
k

{∑
n

γnk logN(xn|µk,Σk)

}

The term inside the braces depends on k-th component’s parameters. It is now
easy to show that (left as an exercise) the MLE is:

ωk =

∑
n γnk∑

k

∑
n γnk

, µk =
1∑
n γnk

∑
n

γnkxn

Σk =
1∑
n γnk

∑
n

γnk(xn − µk)(xn − µk)
T

What’s the intuition?
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Intuition

Since γnk is binary, the previous solution is nothing but

For ωk: count the number of data points whose zn is k and divide by
the total number of data points (note that

∑
k

∑
n γnk = N)

For µk: get all the data points whose zn is k, compute their mean

For Σk: get all the data points whose zn is k, compute their
covariance matrix

This intuition is going to help us to develop an algorithm for estimating θ
when we do not know zn (incomplete data).
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Parameter estimation for GMMs: incomplete data

When zn is not given, we can guess it via the posterior probability

p(zn = k|xn) =
p(xn|zn = k)p(zn = k)

p(xn)
=

p(xn|zn = k)p(zn = k)∑K
k′=1 p(xn|zn = k′)p(zn = k′)

To compute the posterior probability, we need to know the parameters θ!

Let’s pretend we know the value of the parameters so we can compute the
posterior probability.

How is that going to help us?
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Estimation with soft γnk

We define γnk = p(zn = k|xn)

Recall that γnk should be binary

Now it’s a “soft” assignment of xn to k-th component

Each xn is assigned to a component fractionally according to
p(zn = k|xn)

We now get the same expression for the MLE as before!

ωk =

∑
n γnk∑

k

∑
n γnk

, µk =
1∑
n γnk

∑
n

γnkxn

Σk =
1∑
n γnk

∑
n

γnk(xn − µk)(xn − µk)
T

But remember, we’re ‘cheating’ by using θ to compute γnk!
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Iterative procedure

We can alternate between estimating γnk and using the estimated γnk to
compute the parameters (same idea as with K-means!)

Step 0: initialize θ with some values (random or otherwise)

Step 1: compute γnk using the current θ

Step 2: update θ using the just computed γnk

Step 3: go back to Step 1

Questions:

Is this procedure reasonable, i.e., are we optimizing a sensible criteria?

Will this procedure converge?

The answers lie in the EM algorithm — a powerful procedure for model
estimation with unknown data (next lecture).
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