Clustering

Professor Ameet Talwalkar
Slide Credit: Professor Fei Sha

11/20/15

Outline

(1) Administration

(2) Brief review of last lecture

(3) Clustering

Grading

- Grades for midterm and project proposal will be available by next Tuesday
- HW5 grades available next Tuesday or Thursday
- For midterm, we will not be giving physical exams back, but you can see them during Nikos' office hours

HW6

- Last Homework assignment
- I will post by next Tuesday
- Due on the last day of class

Outline

(1) Administration

(2) Brief review of last lecture
(3) Clustering

Neural Networks - Basic Idea

Learning nonlinear basis functions and classifiers

- Hidden layers are nonlinear mappings from input features to new representation
- Output layers use the new representations for classification and regression

Learning parameters

- Backpropogation $=$ Stochastic gradient descent

Summary of the course so far

Supervised learning has been our focus

- Setup: given a training dataset $\left\{\boldsymbol{x}_{n}, y_{n}\right\}_{n=1}^{N}$, we learn a function $h(\boldsymbol{x})$ to predict \boldsymbol{x} 's true value y (i.e., regression or classification)
- Linear vs. nonlinear features
(1) Linear: $h(\boldsymbol{x})$ depends on $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$
(2) Nonlinear: $h(\boldsymbol{x})$ depends on $\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$, which in terms depends on a kernel function $k\left(\boldsymbol{x}_{m}, \boldsymbol{x}_{n}\right)=\boldsymbol{\phi}\left(\boldsymbol{x}_{m}\right)^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)$,
- Loss function
(1) Squared loss: least square for regression (minimizing residual sum of errors)
(2) Logistic loss: logistic regression
(3) Exponential loss: AdaBoost
(C) Margin-based loss: support vector machines
- Principles of estimation
(1) Point estimate: maximum likelihood, regularized likelihood

cont'd

- Optimization
(1) Methods: gradient descent, Newton method
(2) Convex optimization: global optimum vs. local optimum
(3) Lagrange duality: primal and dual formulation
- Learning theory
(1) Difference between training error and generalization error
(2) Overfitting, bias and variance tradeoff
(3) Regularization: various regularized models

Supervised versus Unsupervised Learning

Supervised Learning from labeled observations

- Labels 'teach' algorithm to learn mapping from observations to labels
- Classification, Regression

Supervised versus Unsupervised Learning

Supervised Learning from labeled observations

- Labels 'teach' algorithm to learn mapping from observations to labels
- Classification, Regression

Unsupervised Learning from unlabeled observations

- Learning algorithm must find latent structure from features alone
- Can be goal in itself (discover hidden patterns, exploratory analysis)
- Can be means to an end (preprocessing for supervised task)
- Clustering (Today)
- Dimensionality Reduction: Transform an initial feature representation into a more concise representation (Next)

Outline

(1) Administration

(2) Brief review of last lecture
(3) Clustering

- K-means
- Gaussian mixture models

Clustering

Setup Given $\mathcal{D}=\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}$ and K, we want to output

- $\left\{\boldsymbol{\mu}_{k}\right\}_{k=1}^{K}$: prototypes of clusters
- $A\left(\boldsymbol{x}_{n}\right) \in\{1,2, \ldots, K\}$: the cluster membership, i.e., the cluster ID assigned to \boldsymbol{x}_{n}
Toy Example Cluster data into two clusters.

Applications

Clustering

Setup Given $\mathcal{D}=\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}$ and K, we want to output

- $\left\{\boldsymbol{\mu}_{k}\right\}_{k=1}^{K}$: prototypes of clusters
- $A\left(\boldsymbol{x}_{n}\right) \in\{1,2, \ldots, K\}$: the cluster membership, i.e., the cluster ID assigned to \boldsymbol{x}_{n}
Toy Example Cluster data into two clusters.

Applications

- Identify communities within social networks
- Find topics in news stories
- Group similiar sequences into gene families

K-means example

K-means example

K-means example

K-means example

K-means example

K-means clustering

Intuition Data points assigned to cluster k should be close to $\boldsymbol{\mu}_{k}$, the prototype.

K-means clustering

Intuition Data points assigned to cluster k should be close to $\boldsymbol{\mu}_{k}$, the prototype.

Distortion measure (clustering objective function, cost function)

$$
J=\sum_{n=1}^{N} \sum_{k=1}^{K} r_{n k}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right\|_{2}^{2}
$$

where $r_{n k} \in\{0,1\}$ is an indicator variable

$$
r_{n k}=1 \quad \text { if and only if } A\left(\boldsymbol{x}_{n}\right)=k
$$

Algorithm

Minimize distortion measure alternative optimization between $\left\{r_{n k}\right\}$ and $\left\{\boldsymbol{\mu}_{k}\right\}$

- Step 0 Initialize $\left\{\boldsymbol{\mu}_{k}\right\}$ to some values

Algorithm

Minimize distortion measure alternative optimization between $\left\{r_{n k}\right\}$ and $\left\{\boldsymbol{\mu}_{k}\right\}$

- Step 0 Initialize $\left\{\boldsymbol{\mu}_{k}\right\}$ to some values
- Step 1 Assume the current value of $\left\{\boldsymbol{\mu}_{k}\right\}$ fixed, minimize J over $\left\{r_{n k}\right\}$, which leads to the following cluster assignment rule

$$
r_{n k}= \begin{cases}1 & \text { if } k=\arg \min _{j}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{j}\right\|_{2}^{2} \\ 0 & \text { otherwise }\end{cases}
$$

Algorithm

Minimize distortion measure alternative optimization between $\left\{r_{n k}\right\}$ and $\left\{\boldsymbol{\mu}_{k}\right\}$

- Step 0 Initialize $\left\{\boldsymbol{\mu}_{k}\right\}$ to some values
- Step 1 Assume the current value of $\left\{\boldsymbol{\mu}_{k}\right\}$ fixed, minimize J over $\left\{r_{n k}\right\}$, which leads to the following cluster assignment rule

$$
r_{n k}= \begin{cases}1 & \text { if } k=\arg \min _{j}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{j}\right\|_{2}^{2} \\ 0 & \text { otherwise }\end{cases}
$$

- Step 2 Assume the current value of $\left\{r_{n k}\right\}$ fixed, minimize J over $\left\{\boldsymbol{\mu}_{k}\right\}$, which leads to the following rule to update the prototypes of the clusters

$$
\boldsymbol{\mu}_{k}=\frac{\sum_{n} r_{n k} \boldsymbol{x}_{n}}{\sum_{n} r_{n k}}
$$

- Step 3 Determine whether to stop or return to Step 1

Remarks

- Prototype $\boldsymbol{\mu}_{k}$ is the mean of data points assigned to the cluster k, hence 'K-means'
- The procedure reduces J in both Step 1 and Step 2 and thus makes improvements on each iteration
- No guarantee we find the global solution; quality of local optimum depends on initial values at Step 0 (k-means ++ is a neat approximation algorithm)

Application: vector quantization

- Replace data point with associated prototype $\boldsymbol{\mu}_{k}$
- In other words, compress the data points into i) a codebook of all the prototypes; ii) a list of indices to the codebook for the data points
- Lossy compression, especially for small K

Clustering pixels and vector quantizing them. From left to right: Original image, quantized with large K, medium K, and a small K. Details are missing due to the higher compression (smaller K).

Probabilistic interpretation of clustering?

We can impose a probabilistic interpretation of our intuition that points stay close to their cluster centers

- How can we model $p(\boldsymbol{x})$ to reflect this?

- Data points seem to form 3 clusters

Probabilistic interpretation of clustering?

We can impose a probabilistic interpretation of our intuition that points stay close to their cluster centers

- How can we model $p(\boldsymbol{x})$ to reflect this?

- Data points seem to form 3 clusters
- We cannot model $p(\boldsymbol{x})$ with simple and known distributions
- E.g., the data is not a Guassian b/c we have 3 distinct concentrated regions

Gaussian mixture models: intuition

- We can model each region with a distinct distribution
- Common to use Gaussians, i.e., Gaussian mixture models (GMMs) or mixture of Gaussians (MoGs).

Gaussian mixture models: intuition

- We can model each region with a distinct distribution
- Common to use Gaussians, i.e., Gaussian mixture models (GMMs) or mixture of Gaussians (MoGs).
- We don't know cluster assignments (label) or parameters of Gaussians or mixture components!
- We need to learn them all from our unlabeled data $\mathcal{D}=\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}$

Gaussian mixture models: formal definition

A Gaussian mixture model has the following density function for \boldsymbol{x}

$$
p(\boldsymbol{x})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

- K : the number of Gaussians - they are called (mixture) components
- $\boldsymbol{\mu}_{k}$ and $\boldsymbol{\Sigma}_{k}$: mean and covariance matrix of the k-th component

Gaussian mixture models: formal definition

A Gaussian mixture model has the following density function for \boldsymbol{x}

$$
p(\boldsymbol{x})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

- K : the number of Gaussians - they are called (mixture) components
- $\boldsymbol{\mu}_{k}$ and $\boldsymbol{\Sigma}_{k}$: mean and covariance matrix of the k-th component
- ω_{k} : mixture weights - they represent how much each component contributes to the final distribution (priors). It satisfies two properties:

Gaussian mixture models: formal definition

A Gaussian mixture model has the following density function for \boldsymbol{x}

$$
p(\boldsymbol{x})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

- K : the number of Gaussians - they are called (mixture) components
- $\boldsymbol{\mu}_{k}$ and $\boldsymbol{\Sigma}_{k}$: mean and covariance matrix of the k-th component
- ω_{k} : mixture weights - they represent how much each component contributes to the final distribution (priors). It satisfies two properties:

$$
\forall k, \omega_{k}>0, \quad \text { and } \quad \sum_{k} \omega_{k}=1
$$

The properties ensure $p(\boldsymbol{x})$ is a properly normalized probability density function.

GMM as the marginal distribution of a joint distribution
Consider the following joint distribution

$$
p(\boldsymbol{x}, z)=p(z) p(\boldsymbol{x} \mid z)
$$

where z is a discrete random variable taking values between 1 and K.

GMM as the marginal distribution of a joint distribution

Consider the following joint distribution

$$
p(\boldsymbol{x}, z)=p(z) p(\boldsymbol{x} \mid z)
$$

where z is a discrete random variable taking values between 1 and K. Denote

$$
\omega_{k}=p(z=k)
$$

Now, assume the conditional distributions are Gaussian distributions

$$
p(\boldsymbol{x} \mid z=k)=N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

GMM as the marginal distribution of a joint distribution

Consider the following joint distribution

$$
p(\boldsymbol{x}, z)=p(z) p(\boldsymbol{x} \mid z)
$$

where z is a discrete random variable taking values between 1 and K. Denote

$$
\omega_{k}=p(z=k)
$$

Now, assume the conditional distributions are Gaussian distributions

$$
p(\boldsymbol{x} \mid z=k)=N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

Then, the marginal distribution of \boldsymbol{x} is

$$
p(\boldsymbol{x})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

Namely, the Gaussian mixture model

GMMs: example

The conditional distribution between \boldsymbol{x} and z (representing color) are

$$
\begin{aligned}
p(\boldsymbol{x} \mid z=\text { red }) & =N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right) \\
p(\boldsymbol{x} \mid z=\text { blue }) & =N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right) \\
p(\boldsymbol{x} \mid z=\text { green }) & =N\left(x \mid \mu_{3}, \boldsymbol{\Sigma}_{3}\right)
\end{aligned}
$$

GMMs: example

The conditional distribution between \boldsymbol{x} and z (representing color) are

$$
\begin{aligned}
p(\boldsymbol{x} \mid z=\text { red }) & =N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right) \\
p(\boldsymbol{x} \mid z=\text { blue }) & =N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right) \\
p(\boldsymbol{x} \mid z=\text { green }) & =N\left(x \mid \mu_{3}, \boldsymbol{\Sigma}_{3}\right)
\end{aligned}
$$

The marginal distribution is thus

$$
\begin{aligned}
p(\boldsymbol{x}) & =p(\text { red }) N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right)+p(\text { blue }) N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right) \\
& +p(\text { green }) N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{3}, \boldsymbol{\Sigma}_{3}\right)
\end{aligned}
$$

Parameter estimation for Gaussian mixture models

The parameters in GMMs are $\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}$. To estimate, consider the simple (and unrealistic) case first.

We have labels z If we assume z is observed for every \boldsymbol{x}, then our estimation problem is easier to solve. Our training data is augmented:

$$
\mathcal{D}^{\prime}=\left\{\boldsymbol{x}_{n}, z_{n}\right\}_{n=1}^{N}
$$

z_{n} denotes the region where \boldsymbol{x}_{n} comes from. \mathcal{D}^{\prime} is the complete data and \mathcal{D} the incomplete data. How can we learn our parameters?

Parameter estimation for Gaussian mixture models

The parameters in GMMs are $\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}$. To estimate, consider the simple (and unrealistic) case first.

We have labels z If we assume z is observed for every \boldsymbol{x}, then our estimation problem is easier to solve. Our training data is augmented:

$$
\mathcal{D}^{\prime}=\left\{\boldsymbol{x}_{n}, z_{n}\right\}_{n=1}^{N}
$$

z_{n} denotes the region where \boldsymbol{x}_{n} comes from. \mathcal{D}^{\prime} is the complete data and \mathcal{D} the incomplete data. How can we learn our parameters?

Given \mathcal{D}^{\prime}, the maximum likelihood estimation of the $\boldsymbol{\theta}$ is given by

$$
\boldsymbol{\theta}=\arg \max \log \mathcal{D}^{\prime}=\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)
$$

Parameter estimation for GMMs: complete data

The complete likelihood is decomposable

$$
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{n} \log p\left(z_{n}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}\right)=\sum_{k} \sum_{n: z_{n}=k} \log p\left(z_{n}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}\right)
$$

where we have grouped data by its values z_{n}. Let us introduce a binary variable $\gamma_{n k} \in\{0,1\}$ to indicate whether $z_{n}=k$. We then have

Parameter estimation for GMMs: complete data

The complete likelihood is decomposable

$$
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{n} \log p\left(z_{n}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}\right)=\sum_{k} \sum_{n: z_{n}=k} \log p\left(z_{n}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}\right)
$$

where we have grouped data by its values z_{n}. Let us introduce a binary variable $\gamma_{n k} \in\{0,1\}$ to indicate whether $z_{n}=k$. We then have

$$
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{k} \sum_{n} \gamma_{n k} \log p(z=k) p\left(\boldsymbol{x}_{n} \mid z=k\right)
$$

We use a "dummy" variable z to denote all the possible values cluster assignment values for \boldsymbol{x}_{n}
\mathcal{D}^{\prime} specifies this value in the complete data setting

Parameter estimation for GMMs: complete data

From our previous discussion, we have

$$
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{k} \sum_{n} \gamma_{n k}\left[\log \omega_{k}+\log N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right]
$$

Regrouping, we have

$$
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{k} \sum_{n} \gamma_{n k} \log \omega_{k}+\sum_{k}\left\{\sum_{n} \gamma_{n k} \log N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\}
$$

Parameter estimation for GMMs: complete data

From our previous discussion, we have

$$
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{k} \sum_{n} \gamma_{n k}\left[\log \omega_{k}+\log N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right]
$$

Regrouping, we have

$$
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{k} \sum_{n} \gamma_{n k} \log \omega_{k}+\sum_{k}\left\{\sum_{n} \gamma_{n k} \log N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\}
$$

The term inside the braces depends on k-th component's parameters. It is now easy to show that (left as an exercise) the MLE is:

$$
\begin{aligned}
\omega_{k} & =\frac{\sum_{n} \gamma_{n k}}{\sum_{k} \sum_{n} \gamma_{n k}}, \quad \boldsymbol{\mu}_{k}=\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k} \boldsymbol{x}_{n} \\
\boldsymbol{\Sigma}_{k} & =\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\mathrm{T}}
\end{aligned}
$$

What's the intuition?

Intuition

Since $\gamma_{n k}$ is binary, the previous solution is nothing but

- For ω_{k} : count the number of data points whose z_{n} is k and divide by the total number of data points (note that $\sum_{k} \sum_{n} \gamma_{n k}=N$)
- For $\boldsymbol{\mu}_{k}$: get all the data points whose z_{n} is k, compute their mean
- For $\boldsymbol{\Sigma}_{k}$: get all the data points whose z_{n} is k, compute their covariance matrix
This intuition is going to help us to develop an algorithm for estimating $\boldsymbol{\theta}$ when we do not know z_{n} (incomplete data).

Parameter estimation for GMMs: incomplete data

When z_{n} is not given, we can guess it via the posterior probability

$$
p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right)=\frac{p\left(\boldsymbol{x}_{n} \mid z_{n}=k\right) p\left(z_{n}=k\right)}{p\left(\boldsymbol{x}_{n}\right)}=\frac{p\left(\boldsymbol{x}_{n} \mid z_{n}=k\right) p\left(z_{n}=k\right)}{\sum_{k^{\prime}=1}^{K} p\left(\boldsymbol{x}_{n} \mid z_{n}=k^{\prime}\right) p\left(z_{n}=k^{\prime}\right)}
$$

Parameter estimation for GMMs: incomplete data

When z_{n} is not given, we can guess it via the posterior probability

$$
p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right)=\frac{p\left(\boldsymbol{x}_{n} \mid z_{n}=k\right) p\left(z_{n}=k\right)}{p\left(\boldsymbol{x}_{n}\right)}=\frac{p\left(\boldsymbol{x}_{n} \mid z_{n}=k\right) p\left(z_{n}=k\right)}{\sum_{k^{\prime}=1}^{K} p\left(\boldsymbol{x}_{n} \mid z_{n}=k^{\prime}\right) p\left(z_{n}=k^{\prime}\right)}
$$

To compute the posterior probability, we need to know the parameters $\boldsymbol{\theta}$!
Let's pretend we know the value of the parameters so we can compute the posterior probability.

How is that going to help us?

Estimation with soft $\gamma_{n k}$

We define $\gamma_{n k}=p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right)$

Estimation with soft $\gamma_{n k}$

We define $\gamma_{n k}=p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right)$

- Recall that $\gamma_{n k}$ should be binary
- Now it's a "soft" assignment of \boldsymbol{x}_{n} to k-th component
- Each \boldsymbol{x}_{n} is assigned to a component fractionally according to $p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right)$

Estimation with soft $\gamma_{n k}$

We define $\gamma_{n k}=p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right)$

- Recall that $\gamma_{n k}$ should be binary
- Now it's a "soft" assignment of \boldsymbol{x}_{n} to k-th component
- Each \boldsymbol{x}_{n} is assigned to a component fractionally according to $p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right)$

We now get the same expression for the MLE as before!

$$
\begin{aligned}
\omega_{k} & =\frac{\sum_{n} \gamma_{n k}}{\sum_{k} \sum_{n} \gamma_{n k}}, \quad \boldsymbol{\mu}_{k}=\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k} \boldsymbol{x}_{n} \\
\boldsymbol{\Sigma}_{k} & =\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\mathrm{T}}
\end{aligned}
$$

But remember, we're 'cheating' by using $\boldsymbol{\theta}$ to compute $\gamma_{n k}$!

Iterative procedure

We can alternate between estimating $\gamma_{n k}$ and using the estimated $\gamma_{n k}$ to compute the parameters (same idea as with K-means!)

- Step 0: initialize $\boldsymbol{\theta}$ with some values (random or otherwise)
- Step 1: compute $\gamma_{n k}$ using the current $\boldsymbol{\theta}$
- Step 2: update $\boldsymbol{\theta}$ using the just computed $\gamma_{n k}$
- Step 3: go back to Step 1

Questions:

- Is this procedure reasonable, i.e., are we optimizing a sensible criteria?
- Will this procedure converge?

The answers lie in the EM algorithm - a powerful procedure for model estimation with unknown data (next lecture).

