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Grading

Midterm and Project Proposal grades are available online

Midterm: Median (88), Mean (84.7), Standard Deviation (13)

Proposal: Scores from 0-3 (unaccepatable to exceptional; vast
majority of projects were 2s)

HW5 grades available next Tuesday
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HW6

Will be posted online this afternoon

Due in section on Friday 12/4

1-day extension because:
I I am posting it late
I One question is on PCA, which I will cover next Tuesday
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Upcoming Class Schedule

Today: EM

Tuesday, 12/1: PCA

Thursday, 12/3: In-class office hours for project (9:00-11am)

Friday 12/4: Nikos section (covers midterm, HW6 questions)

Friday, 12/11: Poster Presentation + Project Report
I I will post project report guideline soon
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Clustering
Setup Given D = {xn}Nn=1 and K, we want to output

{µk}Kk=1: centroids of clusters

A(xn) ∈ {1, 2, . . . ,K}: the cluster membership, i.e., the cluster ID
assigned to xn

Toy Example Cluster data into two clusters.

(a)
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Applications

Identify communities within social networks

Find topics in news stories

Group similiar sequences into gene families
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K-means clustering

Intuition Data points assigned to cluster k should be close to µk,

Distortion measure (clustering objective function)

J =

N∑
n=1

K∑
k=1

rnk‖xn − µk‖22

where rnk ∈ {0, 1} is an indicator variable

rnk = 1 if and only if A(xn) = k

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 24, 2015 8 / 32



Algorithm

Minimize distortion measure alternative optimization between {rnk}
and {µk}

Step 0 Initialize {µk} to some values

Step 1 Assume the current value of {µk} fixed, minimize J over
{rnk}, which leads to the following cluster assignment rule

rnk =

{
1 if k = argminj ‖xn − µj‖22
0 otherwise

Step 2 Assume the current value of {rnk} fixed, minimize J over
{µk}, which leads to the following rule to update the centroids of the
clusters

µk =

∑
n rnkxn∑
n rnk

Step 3 Determine whether to stop or return to Step 1
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Remarks

Centroid µk is the mean of data points assigned to the cluster k,
hence ‘K-means’ (you’ll look at an alternative in HW6)

The procedure reduces J in both Step 1 and Step 2 and thus makes
improvements on each iteration

No guarantee we find the global solution; quality of local optimum
depends on initial values at Step 0 (k-means++ is a clever
approximation algorithm)
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Gaussian mixture models: intuition

(a)

0 0.5 1

0

0.5

1 Probabalistic interpretation of
K-means

We can model each region with
a distinct distribution, e.g.,
Gaussian mixture models
(GMMs)

Can be viewed as generative
model
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Gaussian mixture models: formal definition

A Gaussian mixture model has the following density function for x

p(x) =

K∑
k=1

ωkN(x|µk,Σk)

K: the number of Gaussians — they are called (mixture) components

µk and Σk: mean and covariance matrix of the k-th component

ωk: mixture weights – priors on each component that satisfy:

∀ k, ωk > 0, and
∑
k

ωk = 1

Given unlabeled data, D = {xn}Nn=1, we must learn:

I parameters of Gaussians
I mixture components
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GMMs: example

(a)

0 0.5 1

0
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1

The conditional distribution between x and z
(representing color) are

p(x|z = red) = N(x|µ1,Σ1)

p(x|z = blue) = N(x|µ2,Σ2)

p(x|z = green) = N(x|µ3,Σ3)

(b)

0 0.5 1

0

0.5

1

The marginal distribution is thus

p(x) = p(red)N(x|µ1,Σ1) + p(blue)N(x|µ2,Σ2)

+ p(green)N(x|µ3,Σ3)

Given a model θ, how would we choose a cluster
assignment for x?
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Parameter estimation for GMMs: complete data

GMM Parameters
θ = {ωk,µk,Σk}Kk=1

Complete Data: We (unrealistically) assume z is observed for every x,

D′ = {xn, zn}Nn=1

MLE: Maximize the complete likelihood

θ = argmax logD′ =
∑
n

log p(xn, zn)
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Parameter estimation for GMMs: complete data

Group likelihood by values of zn∑
n

log p(xn, zn) =
∑
n

log p(zn)p(xn|zn) =
∑
k

∑
n:zn=k

log p(zn)p(xn|zn)

Introduce dummy variables
γnk ∈ {0, 1} indicate whether zn = k:∑

n

log p(xn, zn) =
∑
k

∑
n

γnk log p(z = k)p(xn|z = k)

In the complete setting the γnk just add to the notation, but later we will
‘relax’ these variables and allow them to take on fractional values
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Parameter estimation for GMMs: complete data
We can simplify the complete likelihood as follows:∑

n

log p(xn, zn) =
∑
k

∑
n

γnk log p(z = k)p(xn|z = k)

=
∑
k

∑
n

γnk [logωk + logN(xn|µk,Σk)]

=
∑
k

∑
n

γnk logωk +
∑
k

{∑
n

γnk logN(xn|µk,Σk)

}

ωk appears only in left term, and the k-th component’s parameters only
appear inside braces of right term. We can easily compute MLE (exercise):

ωk =

∑
n γnk∑

k

∑
n γnk

, µk =
1∑
n γnk

∑
n

γnkxn

Σk =
1∑
n γnk

∑
n

γnk(xn − µk)(xn − µk)
T

What’s the intuition?
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Intuition

Since γnk is binary, the previous solution is simply:

For ωk: count the number of data points whose zn is k and divide by
the total number of data points (note that

∑
k

∑
n γnk = N)

For µk: get all the data points whose zn is k, compute their mean

For Σk: get all the data points whose zn is k, compute their
covariance matrix

This intuition is going to help us to develop an algorithm for estimating θ
when we do not know zn (incomplete data).
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Parameter estimation for GMMs: Incomplete data

GMM Parameters
θ = {ωk,µk,Σk}Kk=1

Incomplete Data
Our data contains observed and unobserved data, and hence is incomplete

Observed: D = {xn}
Unobserved (hidden): {zn}

Goal Obtain the maximum likelihood estimate of θ:

θ = argmax `(θ) = argmax logD = argmax
∑
n

log p(xn|θ)

= argmax
∑
n

log
∑
zn

p(xn, zn|θ)

The objective function `(θ) is called the incomplete log-likelihood.
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Issue with Incomplete log-likelihood

No simple way to optimize the incomplete log-likelihood (exercise: try to
take derivative with respect to parameters, set it to zero and solve)

EM algorithm provides a strategy for iteratively optimizing this function

Two steps as they apply to GMM:

E-step: ‘guess’ values of the zn using existing values of θ

M-step: solve for new values of θ given imputed values for zn

(maximize complete likelihood!)
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E-step: Soft cluster assignments

We define γnk as p(zn = k|xn,θ)

This is the posterior distribution of zn given xn and θ

Recall that in complete data setting γnk was binary

Now it’s a “soft” assignment of xn to k-th component, with xn

assigned to each component with some probability

Given an estimate of θ = {ωk,µk,Σk}Kk=1, we can compute γnk as follows:

γnk = p(zn = k|xn)

=
p(xn|zn = k)p(zn = k)

p(xn)

=
p(xn|zn = k)p(zn = k)∑K

k′=1 p(xn|zn = k′)p(zn = k′)
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M-step: Maximimize complete likelihood

Recall definition of complete likelihood from earlier:

∑
n

log p(xn, zn) =
∑
k

∑
n

γnk logωk +
∑
k

{∑
n

γnk logN(xn|µk,Σk)

}

Previously γnk was binary, but now we define γnk = p(zn = k|xn) (E-step)

We get the same simple expression for the MLE as before!

ωk =

∑
n γnk∑

k

∑
n γnk

, µk =
1∑
n γnk

∑
n

γnkxn

Σk =
1∑
n γnk

∑
n

γnk(xn − µk)(xn − µk)
T

Intuition: Each point now contributes some fractional component to each
of the parameters, with weights determined by γnk

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 24, 2015 22 / 32



M-step: Maximimize complete likelihood

Recall definition of complete likelihood from earlier:

∑
n

log p(xn, zn) =
∑
k

∑
n

γnk logωk +
∑
k

{∑
n

γnk logN(xn|µk,Σk)

}

Previously γnk was binary, but now we define γnk = p(zn = k|xn) (E-step)

We get the same simple expression for the MLE as before!

ωk =

∑
n γnk∑

k

∑
n γnk

, µk =
1∑
n γnk

∑
n

γnkxn

Σk =
1∑
n γnk

∑
n

γnk(xn − µk)(xn − µk)
T

Intuition: Each point now contributes some fractional component to each
of the parameters, with weights determined by γnk

Professor Ameet Talwalkar CS260 Machine Learning Algorithms November 24, 2015 22 / 32



EM procedure for GMM

Alternate between estimating γnk and estimating θ

Initialize θ with some values (random or otherwise)

Repeat
I E-Step: Compute γnk using the current θ
I M-Step: Update θ using the γnk we just computed

Until Convergence

Questions to be answered next

How does GMM relate to K-means?

Is this procedure reasonable, i.e., are we optimizing a sensible
criterion?

Will this procedure converge?
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GMMs and K-means

GMMs provide probabilistic interpretation for K-means

GMMs reduce to K-means under the following assumptions (in which case
EM for GMM parameter estimation simplifies to K-means):

Assume all Gaussians have σ2I covariance matrices

Further assume σ → 0, so we only need to estimate µk, i.e., means

K-means is often called “hard” GMM or GMMs is called “soft” K-means

The posterior γnk provides a probabilistic assignment for xn to cluster k
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EM algorithm: motivation and setup

EM is a general procedure to estimate parameters for probabilistic
models with hidden/latent variables

Suppose the model is given by a joint distribution

p(x|θ) =
∑
z

p(x, z|θ)

Given incomplete data D = {xn} our goal is to compute MLE of θ:

θ = argmax logD = argmax
∑
n

log p(xn|θ)

= argmax
∑
n

log
∑
zn

p(xn, zn|θ)

The objective function `(θ) is called incomplete log-likelihood
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A lower bound

log-sum form of incomplete log-likelihood is difficult to work with

EM: construct lower bound on `(θ) (E-step) and optimize it (M-step)

If we define q(z) as a distribution over z, then

`(θ) =
∑
n

log
∑
zn

p(xn, zn|θ)

=
∑
n

log
∑
zn

q(zn)
p(xn, zn|θ)
q(zn)

≥
∑
n

∑
zn

q(zn) log
p(xn, zn|θ)
q(zn)

Last step follows from Jensen’s inequality, i.e., f(EX) ≥ Ef(X) for
concave function f
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GMM Example

Consider the previous model where x could be from 3 regions

We can choose q(z) as any valid distribution

e.g., q(z = k) = 1/3 for any of 3 colors

e.g., q(z = k) = 1/2 for red and blue, 0 for green

Which q(z) should we choose?
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Which q(z) to choose?

`(θ) =
∑
n

log
∑
zn

p(xn, zn|θ) =
∑
n

log
∑
zn

q(zn)
p(xn, zn|θ)
q(zn)

≥
∑
n

∑
zn

q(zn) log
p(xn, zn|θ)
q(zn)

The lower bound we derived for `(θ) holds for all choices of q(·)
We want a tight lower bound

, and given some current estimate θt, we
will pick q(·) such that our lower bound holds with equality at θt

f(EX) = Ef(X)? It is sufficient for X to be a constant random
variable!

Choose q(zn) ∝ p(xn, zn|θt)! Since q(·) is a distribution, we have

q(zn) =
p(xn, zn|θt)∑

k p(xn, zn = k|θ)
=
p(xn, zn|θt)
p(xn|θt)

= p(zn|xn;θ
t)

This is the posterior distribution of zn given xn and θt
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E and M Steps

Our simplified expression

`(θt) =
∑
n

∑
zn

p(zn|xn;θ
t) log

p(xn, zn|θt)
p(zn|xn;θt))

E-Step: For all n, compute q(zn) = p(zn|xn;θ
t)

Why is this called the E-Step? Because we can view it as computing the
expected (complete) log-likelihood:

Q(θ|θt) =
∑
n

∑
zn

p(zn|xn;θ
t) log p(xn, zn|θ) = Eq

∑
n

log p(xn, zn|θ)

M-Step: Maximize Q(θ|θt), i.e., θt+1 = argmaxθ Q(θ|θt)
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Example: applying EM to GMMs

What is the E-step in GMM?

γnk = p(z = k|xn;θ
(t))

What is the M-step in GMM? The Q-function is

Q(θ,θ(t)) =
∑
n

∑
k

p(z = k|xn;θ
(t)) log p(xn, z = k|θ)

=
∑
n

∑
k

γnk log p(xn, z = k|θ)

=
∑
k

∑
n

γnk log p(z = k)p(xn|z = k)

=
∑
k

∑
n

γnk [logωk + logN(xn|µk,Σk)]

We have recovered the parameter estimation algorithm for GMMs that we
previously discussed
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Iterative and monotonic improvement

We can show that `(θt+1) ≥ `(θt)
Recall that we chose q(·) in the E-step such that:

`(θt) =
∑
n

∑
zn

q(zn) log
p(xn, zn|θt)

q(zn)

However, in the M-step, θt+1 is chosen to maximize the right hand
side of the equation, thus proving our desired result

Note: the EM procedure converges but only to a local optimum
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