EM Algorithm

Professor Ameet Talwalkar

Slide Credit: Professor Fei Sha

Outline

(1) Administration

(2) Review of last lecture

(3) GMMs and Incomplete Data
(4) EM Algorithm

Grading

- Midterm and Project Proposal grades are available online
- Midterm: Median (88), Mean (84.7), Standard Deviation (13)
- Proposal: Scores from 0-3 (unaccepatable to exceptional; vast majority of projects were 2s)
- HW5 grades available next Tuesday

HW6

- Will be posted online this afternoon
- Due in section on Friday 12/4
- 1-day extension because:
- I am posting it late
- One question is on PCA, which I will cover next Tuesday

Upcoming Class Schedule

- Today: EM
- Tuesday, 12/1: PCA
- Thursday, 12/3: In-class office hours for project (9:00-11am)
- Friday 12/4: Nikos section (covers midterm, HW6 questions)
- Friday, 12/11: Poster Presentation + Project Report
- I will post project report guideline soon

Outline

(1) Administration
(2) Review of last lecture

- K-means
- Gaussian mixture models

(3) GMMs and Incomplete Data

(4) EM Algorithm

Clustering

Setup Given $\mathcal{D}=\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}$ and K, we want to output

- $\left\{\boldsymbol{\mu}_{k}\right\}_{k=1}^{K}$: centroids of clusters
- $A\left(\boldsymbol{x}_{n}\right) \in\{1,2, \ldots, K\}$: the cluster membership, i.e., the cluster ID assigned to \boldsymbol{x}_{n}
Toy Example Cluster data into two clusters.

Applications

- Identify communities within social networks
- Find topics in news stories
- Group similiar sequences into gene families

K-means clustering

Intuition Data points assigned to cluster k should be close to $\boldsymbol{\mu}_{k}$,

Distortion measure (clustering objective function)

$$
J=\sum_{n=1}^{N} \sum_{k=1}^{K} r_{n k}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right\|_{2}^{2}
$$

where $r_{n k} \in\{0,1\}$ is an indicator variable

$$
r_{n k}=1 \text { if and only if } A\left(\boldsymbol{x}_{n}\right)=k
$$

Algorithm

Minimize distortion measure alternative optimization between $\left\{r_{n k}\right\}$ and $\left\{\boldsymbol{\mu}_{k}\right\}$

- Step 0 Initialize $\left\{\boldsymbol{\mu}_{k}\right\}$ to some values

Algorithm

Minimize distortion measure alternative optimization between $\left\{r_{n k}\right\}$ and $\left\{\boldsymbol{\mu}_{k}\right\}$

- Step 0 Initialize $\left\{\boldsymbol{\mu}_{k}\right\}$ to some values
- Step 1 Assume the current value of $\left\{\boldsymbol{\mu}_{k}\right\}$ fixed, minimize J over $\left\{r_{n k}\right\}$, which leads to the following cluster assignment rule

$$
r_{n k}= \begin{cases}1 & \text { if } k=\arg \min _{j}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{j}\right\|_{2}^{2} \\ 0 & \text { otherwise }\end{cases}
$$

Algorithm

Minimize distortion measure alternative optimization between $\left\{r_{n k}\right\}$ and $\left\{\boldsymbol{\mu}_{k}\right\}$

- Step 0 Initialize $\left\{\boldsymbol{\mu}_{k}\right\}$ to some values
- Step 1 Assume the current value of $\left\{\boldsymbol{\mu}_{k}\right\}$ fixed, minimize J over $\left\{r_{n k}\right\}$, which leads to the following cluster assignment rule

$$
r_{n k}= \begin{cases}1 & \text { if } k=\arg \min _{j}\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{j}\right\|_{2}^{2} \\ 0 & \text { otherwise }\end{cases}
$$

- Step 2 Assume the current value of $\left\{r_{n k}\right\}$ fixed, minimize J over $\left\{\boldsymbol{\mu}_{k}\right\}$, which leads to the following rule to update the centroids of the clusters

$$
\boldsymbol{\mu}_{k}=\frac{\sum_{n} r_{n k} \boldsymbol{x}_{n}}{\sum_{n} r_{n k}}
$$

- Step 3 Determine whether to stop or return to Step 1

Remarks

- Centroid $\boldsymbol{\mu}_{k}$ is the mean of data points assigned to the cluster k, hence 'K-means' (you'll look at an alternative in HW6)
- The procedure reduces J in both Step 1 and Step 2 and thus makes improvements on each iteration
- No guarantee we find the global solution; quality of local optimum depends on initial values at Step 0 (k-means ++ is a clever approximation algorithm)

Gaussian mixture models: intuition

- Probabalistic interpretation of K-means
- We can model each region with a distinct distribution, e.g., Gaussian mixture models (GMMs)
- Can be viewed as generative model

Gaussian mixture models: formal definition

A Gaussian mixture model has the following density function for \boldsymbol{x}

$$
p(\boldsymbol{x})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

Gaussian mixture models: formal definition

A Gaussian mixture model has the following density function for \boldsymbol{x}

$$
p(\boldsymbol{x})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

- K : the number of Gaussians - they are called (mixture) components
- $\boldsymbol{\mu}_{k}$ and $\boldsymbol{\Sigma}_{k}$: mean and covariance matrix of the k-th component
- ω_{k} : mixture weights - priors on each component that satisfy:

$$
\forall k, \omega_{k}>0, \quad \text { and } \quad \sum_{k} \omega_{k}=1
$$

- Given unlabeled data, $\mathcal{D}=\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}$, we must learn:

Gaussian mixture models: formal definition

A Gaussian mixture model has the following density function for \boldsymbol{x}

$$
p(\boldsymbol{x})=\sum_{k=1}^{K} \omega_{k} N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

- K : the number of Gaussians - they are called (mixture) components
- $\boldsymbol{\mu}_{k}$ and $\boldsymbol{\Sigma}_{k}$: mean and covariance matrix of the k-th component
- ω_{k} : mixture weights - priors on each component that satisfy:

$$
\forall k, \omega_{k}>0, \quad \text { and } \quad \sum_{k} \omega_{k}=1
$$

- Given unlabeled data, $\mathcal{D}=\left\{\boldsymbol{x}_{n}\right\}_{n=1}^{N}$, we must learn:
- parameters of Gaussians
- mixture components

GMMs: example

The conditional distribution between \boldsymbol{x} and z
 (representing color) are

$$
\begin{aligned}
p(\boldsymbol{x} \mid z=\text { red }) & =N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right) \\
p(\boldsymbol{x} \mid z=\text { blue }) & =N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right) \\
p(\boldsymbol{x} \mid z=\text { green }) & =N\left(x \mid \boldsymbol{\mu}_{3}, \boldsymbol{\Sigma}_{3}\right)
\end{aligned}
$$

GMMs: example

The conditional distribution between \boldsymbol{x} and z
 (representing color) are

$$
\begin{aligned}
p(\boldsymbol{x} \mid z=\text { red }) & =N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right) \\
p(\boldsymbol{x} \mid z=\text { blue }) & =N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right) \\
p(\boldsymbol{x} \mid z=\text { green }) & =N\left(x \mid \boldsymbol{\mu}_{3}, \boldsymbol{\Sigma}_{3}\right)
\end{aligned}
$$

The marginal distribution is thus

$$
\begin{aligned}
p(\boldsymbol{x}) & =p(\text { red }) N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right)+p(\text { blue }) N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right) \\
& +p(\text { green }) N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{3}, \boldsymbol{\Sigma}_{3}\right)
\end{aligned}
$$

GMMs: example

The conditional distribution between \boldsymbol{x} and z
 (representing color) are

$$
\begin{aligned}
p(\boldsymbol{x} \mid z=\text { red }) & =N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right) \\
p(\boldsymbol{x} \mid z=\text { blue }) & =N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right) \\
p(\boldsymbol{x} \mid z=\text { green }) & =N\left(x \mid \mu_{3}, \boldsymbol{\Sigma}_{3}\right)
\end{aligned}
$$

The marginal distribution is thus

$$
\begin{aligned}
p(\boldsymbol{x}) & =p(\text { red }) N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right)+p(\text { blue }) N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{2}, \boldsymbol{\Sigma}_{2}\right) \\
& +p(\text { green }) N\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{3}, \boldsymbol{\Sigma}_{3}\right)
\end{aligned}
$$

Given a model $\boldsymbol{\theta}$, how would we choose a cluster assignment for \boldsymbol{x} ?

Parameter estimation for GMMs: complete data

GMM Parameters

$$
\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}
$$

Complete Data: We (unrealistically) assume z is observed for every \boldsymbol{x},

$$
\mathcal{D}^{\prime}=\left\{\boldsymbol{x}_{n}, z_{n}\right\}_{n=1}^{N}
$$

Parameter estimation for GMMs: complete data

GMM Parameters

$$
\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}
$$

Complete Data: We (unrealistically) assume z is observed for every \boldsymbol{x},

$$
\mathcal{D}^{\prime}=\left\{\boldsymbol{x}_{n}, z_{n}\right\}_{n=1}^{N}
$$

MLE: Maximize the complete likelihood

$$
\boldsymbol{\theta}=\arg \max \log \mathcal{D}^{\prime}=\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)
$$

Parameter estimation for GMMs: complete data

Group likelihood by values of z_{n}

$\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{n} \log p\left(z_{n}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}\right)=\sum_{k} \sum_{n: z_{n}=k} \log p\left(z_{n}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}\right)$

Parameter estimation for GMMs: complete data

Group likelihood by values of z_{n}

$$
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{n} \log p\left(z_{n}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}\right)=\sum_{k} \sum_{n: z_{n}=k} \log p\left(z_{n}\right) p\left(\boldsymbol{x}_{n} \mid z_{n}\right)
$$

Introduce dummy variables

$\gamma_{n k} \in\{0,1\}$ indicate whether $z_{n}=k$:

$$
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{k} \sum_{n} \gamma_{n k} \log p(z=k) p\left(\boldsymbol{x}_{n} \mid z=k\right)
$$

In the complete setting the $\gamma_{n k}$ just add to the notation, but later we will 'relax' these variables and allow them to take on fractional values

Parameter estimation for GMMs: complete data

We can simplify the complete likelihood as follows:

$$
\begin{aligned}
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right) & =\sum_{k} \sum_{n} \gamma_{n k} \log p(z=k) p\left(\boldsymbol{x}_{n} \mid z=k\right) \\
& =\sum_{k} \sum_{n} \gamma_{n k}\left[\log \omega_{k}+\log N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right] \\
& =\sum_{k} \sum_{n} \gamma_{n k} \log \omega_{k}+\sum_{k}\left\{\sum_{n} \gamma_{n k} \log N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\}
\end{aligned}
$$

Parameter estimation for GMMs: complete data

We can simplify the complete likelihood as follows:

$$
\begin{aligned}
\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right) & =\sum_{k} \sum_{n} \gamma_{n k} \log p(z=k) p\left(\boldsymbol{x}_{n} \mid z=k\right) \\
& =\sum_{k} \sum_{n} \gamma_{n k}\left[\log \omega_{k}+\log N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right] \\
& =\sum_{k} \sum_{n} \gamma_{n k} \log \omega_{k}+\sum_{k}\left\{\sum_{n} \gamma_{n k} \log N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\}
\end{aligned}
$$

ω_{k} appears only in left term, and the k-th component's parameters only appear inside braces of right term. We can easily compute MLE (exercise):

$$
\begin{aligned}
\omega_{k} & =\frac{\sum_{n} \gamma_{n k}}{\sum_{k} \sum_{n} \gamma_{n k}}, \quad \boldsymbol{\mu}_{k}=\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k} \boldsymbol{x}_{n} \\
\boldsymbol{\Sigma}_{k} & =\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\mathrm{T}}
\end{aligned}
$$

What's the intuition?

Intuition

Since $\gamma_{n k}$ is binary, the previous solution is simply:

- For ω_{k} : count the number of data points whose z_{n} is k and divide by the total number of data points (note that $\sum_{k} \sum_{n} \gamma_{n k}=N$)
- For $\boldsymbol{\mu}_{k}$: get all the data points whose z_{n} is k, compute their mean
- For $\boldsymbol{\Sigma}_{k}$: get all the data points whose z_{n} is k, compute their covariance matrix
This intuition is going to help us to develop an algorithm for estimating $\boldsymbol{\theta}$ when we do not know z_{n} (incomplete data).

Outline

(1) Administration

(2) Review of last lecture
(3) GMMs and Incomplete Data
(4) EM Algorithm

Parameter estimation for GMMs: Incomplete data

GMM Parameters

$$
\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}
$$

Incomplete Data

Our data contains observed and unobserved data, and hence is incomplete

- Observed: $\mathcal{D}=\left\{\boldsymbol{x}_{n}\right\}$
- Unobserved (hidden): $\left\{\boldsymbol{z}_{n}\right\}$

Parameter estimation for GMMs: Incomplete data

GMM Parameters

$$
\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}
$$

Incomplete Data

Our data contains observed and unobserved data, and hence is incomplete

- Observed: $\mathcal{D}=\left\{\boldsymbol{x}_{n}\right\}$
- Unobserved (hidden): $\left\{\boldsymbol{z}_{n}\right\}$

Goal Obtain the maximum likelihood estimate of $\boldsymbol{\theta}$:

$$
\boldsymbol{\theta}=\arg \max \ell(\boldsymbol{\theta})=\arg \max \log \mathcal{D}=\arg \max \sum_{n} \log p\left(\boldsymbol{x}_{n} \mid \boldsymbol{\theta}\right)
$$

Parameter estimation for GMMs: Incomplete data

GMM Parameters

$$
\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}
$$

Incomplete Data

Our data contains observed and unobserved data, and hence is incomplete

- Observed: $\mathcal{D}=\left\{\boldsymbol{x}_{n}\right\}$
- Unobserved (hidden): $\left\{\boldsymbol{z}_{n}\right\}$

Goal Obtain the maximum likelihood estimate of $\boldsymbol{\theta}$:

$$
\begin{aligned}
\boldsymbol{\theta} & =\arg \max \ell(\boldsymbol{\theta})=\arg \max \log \mathcal{D}=\arg \max \sum_{n} \log p\left(\boldsymbol{x}_{n} \mid \boldsymbol{\theta}\right) \\
& =\arg \max \sum_{n} \log \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)
\end{aligned}
$$

The objective function $\ell(\boldsymbol{\theta})$ is called the incomplete log-likelihood.

Issue with Incomplete log-likelihood

No simple way to optimize the incomplete log-likelihood (exercise: try to take derivative with respect to parameters, set it to zero and solve)

EM algorithm provides a strategy for iteratively optimizing this function
Two steps as they apply to GMM:

- E-step: 'guess' values of the z_{n} using existing values of $\boldsymbol{\theta}$
- M-step: solve for new values of $\boldsymbol{\theta}$ given imputed values for z_{n}

Issue with Incomplete log-likelihood

No simple way to optimize the incomplete log-likelihood (exercise: try to take derivative with respect to parameters, set it to zero and solve)

EM algorithm provides a strategy for iteratively optimizing this function
Two steps as they apply to GMM:

- E-step: 'guess' values of the z_{n} using existing values of $\boldsymbol{\theta}$
- M-step: solve for new values of $\boldsymbol{\theta}$ given imputed values for z_{n} (maximize complete likelihood!)

E-step: Soft cluster assignments

We define $\gamma_{n k}$ as $p\left(z_{n}=k \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)$

- This is the posterior distribution of z_{n} given \boldsymbol{x}_{n} and $\boldsymbol{\theta}$
- Recall that in complete data setting $\gamma_{n k}$ was binary
- Now it's a "soft" assignment of \boldsymbol{x}_{n} to k-th component, with \boldsymbol{x}_{n} assigned to each component with some probability

E-step: Soft cluster assignments

We define $\gamma_{n k}$ as $p\left(z_{n}=k \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)$

- This is the posterior distribution of z_{n} given \boldsymbol{x}_{n} and $\boldsymbol{\theta}$
- Recall that in complete data setting $\gamma_{n k}$ was binary
- Now it's a "soft" assignment of \boldsymbol{x}_{n} to k-th component, with \boldsymbol{x}_{n} assigned to each component with some probability

Given an estimate of $\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}$, we can compute $\gamma_{n k}$ as follows:

$$
\gamma_{n k}=p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right)
$$

$$
=
$$

E-step: Soft cluster assignments

We define $\gamma_{n k}$ as $p\left(z_{n}=k \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)$

- This is the posterior distribution of z_{n} given \boldsymbol{x}_{n} and $\boldsymbol{\theta}$
- Recall that in complete data setting $\gamma_{n k}$ was binary
- Now it's a "soft" assignment of \boldsymbol{x}_{n} to k-th component, with \boldsymbol{x}_{n} assigned to each component with some probability

Given an estimate of $\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}$, we can compute $\gamma_{n k}$ as follows:

$$
\begin{aligned}
\gamma_{n k} & =p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right) \\
& =\frac{p\left(\boldsymbol{x}_{n} \mid z_{n}=k\right) p\left(z_{n}=k\right)}{p\left(\boldsymbol{x}_{n}\right)}
\end{aligned}
$$

E-step: Soft cluster assignments

We define $\gamma_{n k}$ as $p\left(z_{n}=k \mid \boldsymbol{x}_{n}, \boldsymbol{\theta}\right)$

- This is the posterior distribution of z_{n} given \boldsymbol{x}_{n} and $\boldsymbol{\theta}$
- Recall that in complete data setting $\gamma_{n k}$ was binary
- Now it's a "soft" assignment of \boldsymbol{x}_{n} to k-th component, with \boldsymbol{x}_{n} assigned to each component with some probability

Given an estimate of $\boldsymbol{\theta}=\left\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right\}_{k=1}^{K}$, we can compute $\gamma_{n k}$ as follows:

$$
\begin{aligned}
\gamma_{n k} & =p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right) \\
& =\frac{p\left(\boldsymbol{x}_{n} \mid z_{n}=k\right) p\left(z_{n}=k\right)}{p\left(\boldsymbol{x}_{n}\right)} \\
& =\frac{p\left(\boldsymbol{x}_{n} \mid z_{n}=k\right) p\left(z_{n}=k\right)}{\sum_{k^{\prime}=1}^{K} p\left(\boldsymbol{x}_{n} \mid z_{n}=k^{\prime}\right) p\left(z_{n}=k^{\prime}\right)}
\end{aligned}
$$

M-step: Maximimize complete likelihood

Recall definition of complete likelihood from earlier:
$\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{k} \sum_{n} \gamma_{n k} \log \omega_{k}+\sum_{k}\left\{\sum_{n} \gamma_{n k} \log N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\}$
Previously $\gamma_{n k}$ was binary, but now we define $\gamma_{n k}=p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right)$ (E-step)

M-step: Maximimize complete likelihood

Recall definition of complete likelihood from earlier:
$\sum_{n} \log p\left(\boldsymbol{x}_{n}, z_{n}\right)=\sum_{k} \sum_{n} \gamma_{n k} \log \omega_{k}+\sum_{k}\left\{\sum_{n} \gamma_{n k} \log N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right\}$
Previously $\gamma_{n k}$ was binary, but now we define $\gamma_{n k}=p\left(z_{n}=k \mid \boldsymbol{x}_{n}\right)$ (E-step)
We get the same simple expression for the MLE as before!

$$
\begin{aligned}
\omega_{k} & =\frac{\sum_{n} \gamma_{n k}}{\sum_{k} \sum_{n} \gamma_{n k}}, \quad \boldsymbol{\mu}_{k}=\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k} \boldsymbol{x}_{n} \\
\boldsymbol{\Sigma}_{k} & =\frac{1}{\sum_{n} \gamma_{n k}} \sum_{n} \gamma_{n k}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k}\right)^{\mathrm{T}}
\end{aligned}
$$

Intuition: Each point now contributes some fractional component to each of the parameters, with weights determined by $\gamma_{n k}$

EM procedure for GMM

Alternate between estimating $\gamma_{n k}$ and estimating $\boldsymbol{\theta}$

- Initialize $\boldsymbol{\theta}$ with some values (random or otherwise)
- Repeat
- E-Step: Compute $\gamma_{n k}$ using the current $\boldsymbol{\theta}$
- M-Step: Update $\boldsymbol{\theta}$ using the $\gamma_{n k}$ we just computed
- Until Convergence

EM procedure for GMM

Alternate between estimating $\gamma_{n k}$ and estimating $\boldsymbol{\theta}$

- Initialize $\boldsymbol{\theta}$ with some values (random or otherwise)
- Repeat
- E-Step: Compute $\gamma_{n k}$ using the current $\boldsymbol{\theta}$
- M-Step: Update $\boldsymbol{\theta}$ using the $\gamma_{n k}$ we just computed
- Until Convergence

Questions to be answered next

- How does GMM relate to K-means?
- Is this procedure reasonable, i.e., are we optimizing a sensible criterion?
- Will this procedure converge?

GMMs and K-means

GMMs provide probabilistic interpretation for K-means

GMMs and K-means

GMMs provide probabilistic interpretation for K-means
GMMs reduce to K-means under the following assumptions (in which case EM for GMM parameter estimation simplifies to K-means):

- Assume all Gaussians have $\sigma^{2} \boldsymbol{I}$ covariance matrices
- Further assume $\sigma \rightarrow 0$, so we only need to estimate $\boldsymbol{\mu}_{k}$, i.e., means

K-means is often called "hard" GMM or GMMs is called "soft" K-means
The posterior $\gamma_{n k}$ provides a probabilistic assignment for \boldsymbol{x}_{n} to cluster k

Outline

(1) Administration
(2) Review of last lecture
(3) GMMs and Incomplete Data
(4) EM Algorithm

EM algorithm: motivation and setup

- EM is a general procedure to estimate parameters for probabilistic models with hidden/latent variables
- Suppose the model is given by a joint distribution

$$
p(\boldsymbol{x} \mid \boldsymbol{\theta})=\sum_{\boldsymbol{z}} p(\boldsymbol{x}, \boldsymbol{z} \mid \boldsymbol{\theta})
$$

EM algorithm: motivation and setup

- EM is a general procedure to estimate parameters for probabilistic models with hidden/latent variables
- Suppose the model is given by a joint distribution

$$
p(\boldsymbol{x} \mid \boldsymbol{\theta})=\sum_{\boldsymbol{z}} p(\boldsymbol{x}, \boldsymbol{z} \mid \boldsymbol{\theta})
$$

- Given incomplete data $\mathcal{D}=\left\{\boldsymbol{x}_{n}\right\}$ our goal is to compute MLE of $\boldsymbol{\theta}$:

$$
\begin{aligned}
\boldsymbol{\theta} & =\arg \max \log \mathcal{D}=\arg \max \sum_{n} \log p\left(\boldsymbol{x}_{n} \mid \boldsymbol{\theta}\right) \\
& =\arg \max \sum_{n} \log \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)
\end{aligned}
$$

The objective function $\ell(\boldsymbol{\theta})$ is called incomplete log-likelihood

A lower bound

- log-sum form of incomplete log-likelihood is difficult to work with
- EM: construct lower bound on $\ell(\boldsymbol{\theta})$ (E-step) and optimize it (M-step)

A lower bound

- log-sum form of incomplete log-likelihood is difficult to work with
- EM: construct lower bound on $\ell(\boldsymbol{\theta})$ (E-step) and optimize it (M-step)
- If we define $q(\boldsymbol{z})$ as a distribution over \boldsymbol{z}, then

$$
\ell(\boldsymbol{\theta})=\sum_{n} \log \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)
$$

A lower bound

- log-sum form of incomplete log-likelihood is difficult to work with
- EM: construct lower bound on $\ell(\boldsymbol{\theta})$ (E-step) and optimize it (M-step)
- If we define $q(\boldsymbol{z})$ as a distribution over \boldsymbol{z}, then

$$
\begin{aligned}
\ell(\boldsymbol{\theta}) & =\sum_{n} \log \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right) \\
& =\sum_{n} \log \sum_{\boldsymbol{z}_{n}} q\left(\boldsymbol{z}_{n}\right) \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)}{q\left(\boldsymbol{z}_{n}\right)}
\end{aligned}
$$

A lower bound

- log-sum form of incomplete log-likelihood is difficult to work with
- EM: construct lower bound on $\ell(\boldsymbol{\theta})$ (E-step) and optimize it (M-step)
- If we define $q(\boldsymbol{z})$ as a distribution over \boldsymbol{z}, then

$$
\begin{aligned}
\ell(\boldsymbol{\theta}) & =\sum_{n} \log \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right) \\
& =\sum_{n} \log \sum_{\boldsymbol{z}_{n}} q\left(\boldsymbol{z}_{n}\right) \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)}{q\left(\boldsymbol{z}_{n}\right)} \\
& \geq \sum_{n} \sum_{\boldsymbol{z}_{n}} q\left(\boldsymbol{z}_{n}\right) \log \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)}{q\left(\boldsymbol{z}_{n}\right)}
\end{aligned}
$$

- Last step follows from Jensen's inequality, i.e., $f(\mathbb{E} X) \geq \mathbb{E} f(X)$ for concave function f

GMM Example

- Consider the previous model where \boldsymbol{x} could be from 3 regions
- We can choose $q(\boldsymbol{z})$ as any valid distribution
- e.g., $q(z=k)=1 / 3$ for any of 3 colors
- e.g., $q(z=k)=1 / 2$ for red and blue, 0 for green

Which $q(\boldsymbol{z})$ should we choose?

Which $q(\boldsymbol{z})$ to choose?

$$
\begin{aligned}
\ell(\boldsymbol{\theta}) & =\sum_{n} \log \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)=\sum_{n} \log \sum_{\boldsymbol{z}_{n}} q\left(\boldsymbol{z}_{n}\right) \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)}{q\left(\boldsymbol{z}_{n}\right)} \\
& \geq \sum_{n} \sum_{\boldsymbol{z}_{n}} q\left(\boldsymbol{z}_{n}\right) \log \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)}{q\left(\boldsymbol{z}_{n}\right)}
\end{aligned}
$$

- The lower bound we derived for $\ell(\boldsymbol{\theta})$ holds for all choices of $q(\cdot)$
- We want a tight lower bound

Which $q(\boldsymbol{z})$ to choose?

$$
\begin{aligned}
\ell(\boldsymbol{\theta}) & =\sum_{n} \log \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)=\sum_{n} \log \sum_{\boldsymbol{z}_{n}} q\left(\boldsymbol{z}_{n}\right) \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)}{q\left(\boldsymbol{z}_{n}\right)} \\
& \geq \sum_{n} \sum_{\boldsymbol{z}_{n}} q\left(\boldsymbol{z}_{n}\right) \log \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)}{q\left(\boldsymbol{z}_{n}\right)}
\end{aligned}
$$

- The lower bound we derived for $\ell(\boldsymbol{\theta})$ holds for all choices of $q(\cdot)$
- We want a tight lower bound, and given some current estimate $\boldsymbol{\theta}^{t}$, we will pick $q(\cdot)$ such that our lower bound holds with equality at $\boldsymbol{\theta}^{t}$
- $f(\mathbb{E} X)=\mathbb{E} f(X)$?

Which $q(\boldsymbol{z})$ to choose?

$$
\begin{aligned}
\ell(\boldsymbol{\theta}) & =\sum_{n} \log \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)=\sum_{n} \log \sum_{\boldsymbol{z}_{n}} q\left(\boldsymbol{z}_{n}\right) \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)}{q\left(\boldsymbol{z}_{n}\right)} \\
& \geq \sum_{n} \sum_{\boldsymbol{z}_{n}} q\left(\boldsymbol{z}_{n}\right) \log \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)}{q\left(\boldsymbol{z}_{n}\right)}
\end{aligned}
$$

- The lower bound we derived for $\ell(\boldsymbol{\theta})$ holds for all choices of $q(\cdot)$
- We want a tight lower bound, and given some current estimate $\boldsymbol{\theta}^{t}$, we will pick $q(\cdot)$ such that our lower bound holds with equality at $\boldsymbol{\theta}^{t}$
- $f(\mathbb{E} X)=\mathbb{E} f(X)$? It is sufficient for X to be a constant random variable!

Which $q(\boldsymbol{z})$ to choose?

$$
\begin{aligned}
\ell(\boldsymbol{\theta}) & =\sum_{n} \log \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)=\sum_{n} \log \sum_{\boldsymbol{z}_{n}} q\left(\boldsymbol{z}_{n}\right) \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)}{q\left(\boldsymbol{z}_{n}\right)} \\
& \geq \sum_{n} \sum_{\boldsymbol{z}_{n}} q\left(\boldsymbol{z}_{n}\right) \log \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)}{q\left(\boldsymbol{z}_{n}\right)}
\end{aligned}
$$

- The lower bound we derived for $\ell(\boldsymbol{\theta})$ holds for all choices of $q(\cdot)$
- We want a tight lower bound, and given some current estimate $\boldsymbol{\theta}^{t}$, we will pick $q(\cdot)$ such that our lower bound holds with equality at $\boldsymbol{\theta}^{t}$
- $f(\mathbb{E} X)=\mathbb{E} f(X)$? It is sufficient for X to be a constant random variable!
- Choose $q\left(\boldsymbol{z}_{n}\right) \propto p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{t}\right)$!

Which $q(\boldsymbol{z})$ to choose?

$$
\begin{aligned}
\ell(\boldsymbol{\theta}) & =\sum_{n} \log \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)=\sum_{n} \log \sum_{\boldsymbol{z}_{n}} q\left(\boldsymbol{z}_{n}\right) \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)}{q\left(\boldsymbol{z}_{n}\right)} \\
& \geq \sum_{n} \sum_{\boldsymbol{z}_{n}} q\left(\boldsymbol{z}_{n}\right) \log \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)}{q\left(\boldsymbol{z}_{n}\right)}
\end{aligned}
$$

- The lower bound we derived for $\ell(\boldsymbol{\theta})$ holds for all choices of $q(\cdot)$
- We want a tight lower bound, and given some current estimate $\boldsymbol{\theta}^{t}$, we will pick $q(\cdot)$ such that our lower bound holds with equality at $\boldsymbol{\theta}^{t}$
- $f(\mathbb{E} X)=\mathbb{E} f(X)$? It is sufficient for X to be a constant random variable!
- Choose $q\left(\boldsymbol{z}_{n}\right) \propto p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{t}\right)$! Since $q(\cdot)$ is a distribution, we have

$$
q\left(\boldsymbol{z}_{n}\right)=\frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{t}\right)}{\sum_{k} p\left(\boldsymbol{x}_{n}, z_{n}=k \mid \boldsymbol{\theta}\right)}=\frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{t}\right)}{p\left(\boldsymbol{x}_{n} \mid \boldsymbol{\theta}^{t}\right)}=p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right)
$$

Which $q(\boldsymbol{z})$ to choose?

$$
\begin{aligned}
\ell(\boldsymbol{\theta}) & =\sum_{n} \log \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)=\sum_{n} \log \sum_{\boldsymbol{z}_{n}} q\left(\boldsymbol{z}_{n}\right) \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)}{q\left(\boldsymbol{z}_{n}\right)} \\
& \geq \sum_{n} \sum_{\boldsymbol{z}_{n}} q\left(\boldsymbol{z}_{n}\right) \log \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)}{q\left(\boldsymbol{z}_{n}\right)}
\end{aligned}
$$

- The lower bound we derived for $\ell(\boldsymbol{\theta})$ holds for all choices of $q(\cdot)$
- We want a tight lower bound, and given some current estimate $\boldsymbol{\theta}^{t}$, we will pick $q(\cdot)$ such that our lower bound holds with equality at $\boldsymbol{\theta}^{t}$
- $f(\mathbb{E} X)=\mathbb{E} f(X)$? It is sufficient for X to be a constant random variable!
- Choose $q\left(\boldsymbol{z}_{n}\right) \propto p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{t}\right)$! Since $q(\cdot)$ is a distribution, we have

$$
q\left(\boldsymbol{z}_{n}\right)=\frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{t}\right)}{\sum_{k} p\left(\boldsymbol{x}_{n}, z_{n}=k \mid \boldsymbol{\theta}\right)}=\frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{t}\right)}{p\left(\boldsymbol{x}_{n} \mid \boldsymbol{\theta}^{t}\right)}=p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right)
$$

- This is the posterior distribution of z_{n} given \boldsymbol{x}_{n} and $\boldsymbol{\theta}^{t}$

E and M Steps

Our simplified expression

$$
\ell\left(\boldsymbol{\theta}^{t}\right)=\sum_{n} \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right) \log \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{t}\right)}{\left.p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right)\right)}
$$

E and M Steps

Our simplified expression

$$
\ell\left(\boldsymbol{\theta}^{t}\right)=\sum_{n} \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right) \log \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{t}\right)}{\left.p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right)\right)}
$$

E-Step: For all n, compute $q\left(\boldsymbol{z}_{n}\right)=p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right)$
Why is this called the E-Step?

E and M Steps

Our simplified expression

$$
\ell\left(\boldsymbol{\theta}^{t}\right)=\sum_{n} \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right) \log \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{t}\right)}{\left.p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right)\right)}
$$

E-Step: For all n, compute $q\left(\boldsymbol{z}_{n}\right)=p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right)$
Why is this called the E-Step? Because we can view it as computing the expected (complete) log-likelihood:
$Q\left(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{t}\right)=\sum_{n} \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right) \log p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)=\mathbb{E}_{q} \sum_{n} \log p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)$

E and M Steps

Our simplified expression

$$
\ell\left(\boldsymbol{\theta}^{t}\right)=\sum_{n} \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right) \log \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{t}\right)}{\left.p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right)\right)}
$$

E-Step: For all n, compute $q\left(\boldsymbol{z}_{n}\right)=p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right)$
Why is this called the E-Step? Because we can view it as computing the expected (complete) log-likelihood:
$Q\left(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{t}\right)=\sum_{n} \sum_{\boldsymbol{z}_{n}} p\left(\boldsymbol{z}_{n} \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{t}\right) \log p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)=\mathbb{E}_{q} \sum_{n} \log p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}\right)$

M-Step: Maximize $Q\left(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{t}\right)$, i.e., $\boldsymbol{\theta}^{t+1}=\arg \max _{\boldsymbol{\theta}} Q\left(\boldsymbol{\theta} \mid \boldsymbol{\theta}^{t}\right)$

Example: applying EM to GMMs

What is the E-step in GMM?

$$
\gamma_{n k}=p\left(z=k \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{(t)}\right)
$$

What is the M -step in GMM? The Q-function is

$$
\begin{aligned}
Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}\right) & =\sum_{n} \sum_{k} p\left(z=k \mid \boldsymbol{x}_{n} ; \boldsymbol{\theta}^{(t)}\right) \log p\left(\boldsymbol{x}_{n}, z=k \mid \boldsymbol{\theta}\right) \\
& =\sum_{n} \sum_{k} \gamma_{n k} \log p\left(\boldsymbol{x}_{n}, z=k \mid \boldsymbol{\theta}\right) \\
& =\sum_{k} \sum_{n}^{n} \gamma_{n k} \log p(z=k) p\left(\boldsymbol{x}_{n} \mid z=k\right) \\
& =\sum_{k} \sum_{n} \gamma_{n k}\left[\log \omega_{k}+\log N\left(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right]
\end{aligned}
$$

We have recovered the parameter estimation algorithm for GMMs that we previously discussed

Iterative and monotonic improvement

- We can show that $\ell\left(\boldsymbol{\theta}^{t+1}\right) \geq \ell\left(\boldsymbol{\theta}^{t}\right)$
- Recall that we chose $q(\cdot)$ in the E-step such that:

$$
\ell\left(\boldsymbol{\theta}^{t}\right)=\sum_{n} \sum_{\boldsymbol{z}_{n}} q\left(\boldsymbol{z}_{n}\right) \log \frac{p\left(\boldsymbol{x}_{n}, \boldsymbol{z}_{n} \mid \boldsymbol{\theta}^{t}\right)}{q\left(\boldsymbol{z}_{n}\right)}
$$

- However, in the M -step, $\boldsymbol{\theta}^{t+1}$ is chosen to maximize the right hand side of the equation, thus proving our desired result
- Note: the EM procedure converges but only to a local optimum

