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Announcements

Graded HW5 available today

HW6 released last Tuesday, due on Friday in section

Project report guideline posted online
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Upcoming Class Schedule

Today: PCA – Last day of lecture!

Thursday, 12/3: In-class office hours for project (9:00-11am)
I You can sign up for a 10 minute slot on the Doodle poll

Friday 12/4: Nikos section (covers midterm, HW6 questions)
I Hand in HW6

Friday, 12/11: Poster Presentation + Project Report
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Gaussian mixture models: formal definition

A Gaussian mixture model has the following density function for x

p(x) =

K∑

k=1

ωkN(x|µk,Σk)

K: the number of Gaussians — they are called (mixture) components

µk and Σk: mean and covariance matrix of the k-th component

ωk: mixture weights – priors on each component that satisfy:

∀ k, ωk > 0, and
∑

k

ωk = 1

Given unlabeled data, D = {xn}Nn=1, we must learn:

I parameters of Gaussians
I mixture components
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Parameter estimation for GMMs: complete data

GMM Parameters
θ = {ωk,µk,Σk}Kk=1

Complete Data: We (unrealistically) assume z is observed for every x,

D′ = {xn, zn}Nn=1

MLE: Maximize the complete likelihood

θ = argmax logD′ =
∑

n

log p(xn, zn)

Easy problem to solve – intuitive, closed form solution exists!
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Parameter estimation for GMMs: Incomplete data

GMM Parameters
θ = {ωk,µk,Σk}Kk=1

Incomplete Data
Our data contains observed and unobserved data, and hence is incomplete

Observed: D = {xn}
Unobserved (hidden): {zn}

Goal Obtain the maximum likelihood estimate of θ:

θ = argmax `(θ) = argmax
∑

n

log p(xn|θ)

= argmax
∑

n

log
∑

zn

p(xn, zn|θ)

The objective function `(θ) is called the incomplete log-likelihood.
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Issue with Incomplete log-likelihood

No simple way to optimize the incomplete log-likelihood (exercise: try to
take derivative with respect to parameters, set it to zero and solve)

EM algorithm provides a strategy for iteratively optimizing this function

Two steps as they apply to GMM:

E-step: ‘guess’ values of the zn using existing values of θ

M-step: solve for new values of θ given imputed values for zn
(maximize complete likelihood!)
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E-step: Soft cluster assignments

We define γnk as p(zn = k|xn,θ)

This is the posterior distribution of zn given xn and θ

Recall that in complete data setting γnk was binary

Now it’s a “soft” assignment of xn to k-th component, with xn

assigned to each component with some probability

Given an estimate of θ = {ωk,µk,Σk}Kk=1, we can compute γnk as follows:

γnk = p(zn = k|xn)

=
p(xn|zn = k)p(zn = k)

p(xn)

=
p(xn|zn = k)p(zn = k)

∑K
k′=1 p(xn|zn = k′)p(zn = k′)
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M-step: Maximimize complete likelihood

Recall definition of complete likelihood from earlier:

∑

n

log p(xn, zn) =
∑

k

∑

n

γnk logωk +
∑

k

{∑

n

γnk logN(xn|µk,Σk)

}

Previously γnk was binary, but now we define γnk = p(zn = k|xn) (E-step)

We get the same simple expression for the MLE as before!

ωk =

∑
n γnk∑

k

∑
n γnk

, µk =
1∑
n γnk

∑

n

γnkxn

Σk =
1∑
n γnk

∑

n

γnk(xn − µk)(xn − µk)
T

Intuition: Each point now contributes some fractional component to each
of the parameters, with weights determined by γnk
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EM procedure for GMM

Alternate between estimating γnk and estimating θ

Initialize θ with some values (random or otherwise)

Repeat
I E-Step: Compute γnk using the current θ
I M-Step: Update θ using the γnk we just computed

Until Convergence

Remaining questions

How does GMM relate to K-means?

Is this procedure reasonable, i.e., are we optimizing a sensible
criterion?

Will this procedure converge?
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GMMs and K-means

GMMs provide probabilistic interpretation for K-means

GMMs reduce to K-means under the following assumptions (in which case
EM for GMM parameter estimation simplifies to K-means):

Assume all Gaussians have σ2I covariance matrices

Further assume σ → 0, so we only need to estimate µk, i.e., means

K-means is often called “hard” GMM or GMMs is called “soft” K-means

The posterior γnk provides a probabilistic assignment for xn to cluster k
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EM algorithm: motivation and setup

General procedure to estimate parameters for probabilistic models
with hidden/latent variables

Suppose the model is given by a joint distribution

p(x|θ) =
∑

z

p(x, z|θ)

Given incomplete data D = {xn} our goal is maximimize incomplete
log likelihood, `(θ) =

∑
n log

∑
zn
p(xn, zn|θ)

log-sum form of incomplete log-likelihood is difficult to work with

EM: construct lower bound on `(θ) (E-step) and optimize it (M-step)
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A lower bound

Jensen’s inequality: f(EX) ≥ Ef(X) for concave function f

Using Jensen’s, we can show that for any distribution q(z) over z:

`(θ) ≥
∑

n

∑

zn

q(zn) log
p(xn, zn|θ)
q(zn)

We want a tight lower bound, and given some current estimate θt, we
will pick q(·) such that our lower bound holds with equality at θt

To achieve f(EX) = Ef(X) it is sufficient for X to be a constant
random variable, i.e., choose q(zn) ∝ p(xn, zn|θt)!
We can show that q(zn) = p(zn|xn;θ

t), which is the posterior
distribution of zn given xn and θt
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E and M Steps

Our simplified expression

`(θt) =
∑

n

∑

zn

p(zn|xn;θ
t) log

p(xn, zn|θt)
p(zn|xn;θt)

=
∑

n

∑

zn

p(zn|xn;θ
t) log p(xn, zn|θt)− p(zn|xn;θ

t) log p(zn|xn;θ
t)

E-Step: For all n, compute q(zn) = p(zn|xn;θ
t)

We can view it as computing the expected (complete) log-likelihood:

Q(θ|θt) =
∑

n

∑

zn

p(zn|xn;θ
t) log p(xn, zn|θ) = Eq

∑

n

log p(xn, zn|θ)

M-Step: Maximize Q(θ|θt), i.e., θt+1 = argmaxθ Q(θ|θt)
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Example: applying EM to GMMs

What is the E-step in GMM?

γnk = p(z = k|xn;θ
(t))

What is the M-step in GMM? The Q-function is

Q(θ|θ(t)) =
∑

n

∑

k

p(z = k|xn;θ
(t)) log p(xn, z = k|θ)

=
∑

n

∑

k

γnk log p(xn, z = k|θ)

=
∑

k

∑

n

γnk log p(z = k)p(xn|z = k)

=
∑

k

∑

n

γnk [logωk + logN(xn|µk,Σk)]

We have recovered the parameter estimation problem for GMMs that we
previously discussed
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Iterative and monotonic improvement

We can show that `(θt+1) ≥ `(θt)
Recall that we chose q(·) in the E-step such that:

`(θt) =
∑

n

∑

zn

q(zn) log
p(xn, zn|θt)

q(zn)

However, in the M-step, θt+1 is chosen to maximize the right hand
side of the equation with respect to θ, thus proving our desired result

Note: the EM procedure converges but only to a local optimum
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Instructions for filling out online course evaluation

You should have recieved an email with a direct link

You can also access the evaluation from MyUCLA

www.oid.ucla.edu/assessment/eip/onlineeval/studentaccess
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To understand a phenomenon we measure various related quantities

If we knew what to measure or how to represent our measurements 
we might find simple relationships

But in practice we often measure redundant signals, e.g., US and 
European shoe sizes

We also represent data via the method by which it was gathered, 
e.g., pixel representation of brain imaging data

Raw data can be Complex, High-dimensional



Issues 
• Measure redundant signals 
• Represent data via the method by which it was gathered 

Goal: Find a ‘better’ representation for data 
• To visualize and discover hidden patterns 
• Preprocessing for supervised task

Dimensionality Reduction



Issues 
• Measure redundant signals 
• Represent data via the method by which it was gathered 

Goal: Find a ‘better’ representation for data 
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• Preprocessing for supervised task

Dimensionality Reduction

How do we define ‘better’?
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Minimize Euclidean distances between 
original points and their projections

PCA solution solves this problem!

Goal: Minimize Reconstruction Error
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Linear Regression — predict y from x. 
Evaluate accuracy of predictions 
(represented by blue line) by vertical 
distances between points and the line

PCA — reconstruct 2D data via 2D 
data with single degree of freedom. 
Evaluate reconstructions (represented 
by blue line) by Euclidean distances
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Another Goal: Maximize Variance

To identify patterns we want to study 
variation across observations 

Can we do ‘better’, i.e., find a compact 
representation that captures variation? 
 
PCA solution finds directions of 
maximal variance!
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PCA Formulation 
PCA: find lower-dimensional representation of raw data               
•     is n × d (raw data)
•                is n × k (reduced representation, PCA ‘scores’)
•     is d × k (columns are k principal components)
• Variance constraints

P

X

Z = XP

Linearity assumption (               ) simplifies 
problem

Z = XP ≈ ≈

≈

X

P

Z =



Given n training points with d features:
•                  : matrix storing points
•      : jth feature for ith point
•      : mean of jth feature

X � Rn�d

x(i)
j

μj
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• Symmetric:                    
• Zero → uncorrelated 
• Large magnitude → (anti) correlated / redundant 
•                        → features are the same

σ12 = σ21

Given n training points with d features: 
•                  : matrix storing points 
•      : jth feature for ith point 
•      : mean of jth feature

X � Rn�d

x(i)
j

μj

σ12 =
1
n

n�

i=1

x(i)1 x(i)2
Covariance of 1st and 2nd 

features (assuming zero mean)

σ12 = σ21 = σ22



Covariance Matrix
Covariance matrix generalizes this idea for many features 
 
 

• ith diagonal entry equals variance of ith feature
• ijth entry is covariance between ith and jth features
• Symmetric (makes sense given definition of covariance)

CX =
1
n
X�X

d × d covariance matrix with 
zero mean features
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What constraints make sense in reduced representation?
• No feature correlation, i.e., all off-diagonals in       are zero
• Rank-ordered features by variance, i.e., sorted diagonals of       

PCA Formulation 
PCA: find lower-dimensional representation of raw data                
•     is n × d (raw data) 
•                is n × k (reduced representation, PCA ‘scores’) 
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PCA Formulation 
PCA: find lower-dimensional representation of raw data                
•     is n × d (raw data) 
•                is n × k (reduced representation, PCA ‘scores’) 
•     is d × k (columns are k principal components) 
• Variance / Covariance constraints

P

X

Z = XP

    equals the top k eigenvectors of CXP ≈ ≈

≈

X

P

Z =



PCA Solution 
All covariance matrices have an eigendecomposition 
•                       (eigendecomposition) 
•     is d × d (column are eigenvectors, sorted by their eigenvalues) 
•     is d × d (diagonals are eigenvalues, off-diagonals are zero)

U
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PCA Solution 
All covariance matrices have an eigendecomposition 
•                       (eigendecomposition) 
•     is d × d (column are eigenvectors, sorted by their eigenvalues) 
•     is d × d (diagonals are eigenvalues, off-diagonals are zero)

The d eigenvectors are orthonormal directions of max variance 
• Associated eigenvalues equal variance in these directions 
• 1st eigenvector is direction of max variance (variance is     )

U

Λ

CX = UΛU�

λ1
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Choosing k
How should we pick the dimension of the new representation?

Visualization: Pick top 2 or 3 dimensions for plotting purposes

Other analyses: Capture ‘most’ of the variance in the data 
• Recall that eigenvalues are variances in the directions specified 

by eigenvectors, and that eigenvalues are sorted 

• Fraction of retained variance:
�k

i=1 λi�d
i=1 λi

Can choose k such that we 
retain some fraction of the 

variance, e.g., 95%



Other Practical Tips
PCA assumptions (linearity, orthogonality) not always appropriate 
• Various extensions to PCA with different underlying 

assumptions, e.g., manifold learning, Kernel PCA, ICA



Other Practical Tips
PCA assumptions (linearity, orthogonality) not always appropriate 
• Various extensions to PCA with different underlying 

assumptions, e.g., manifold learning, Kernel PCA, ICA

Centering is crucial, i.e., we must preprocess data so that all 
features have zero mean before applying PCA 

PCA results dependent on scaling of data 
• Data is sometimes rescaled in practice before applying PCA



Orthogonal and Orthonormal Vectors
Orthogonal vectors are perpendicular to each other
• Equivalently, their dot product equals zero
•                and                , but c isn’t orthogonal to others

Orthonormal vectors are orthogonal and have unit norm 
• a are b are orthonormal, but b are d are not orthonormal

a =
�
1 0

��
b =

�
0 1

��
c =

�
1 1

��
d =

�
2 0

��

a�b = 0 d�b = 0



PCA Iterative Algorithm 
k = 1: Find direction of max variance, project onto this direction 
• Locations along this direction are the new 1D representation
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PCA Iterative Algorithm 
k = 1: Find direction of max variance, project onto this direction 
• Locations along this direction are the new 1D representation
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More generally, for i in {1, …, k}:
• Find direction of max variance that is 

orthonormal to previously selected 
directions, project onto this direction

• Locations along this direction are the 
ith feature in new representation



Eigendecomposition
All covariance matrices have an eigendecomposition
•                       (eigendecomposition)
•     is d × d (column are eigenvectors, sorted by their eigenvalues)
•     is d × d (diagonals are eigenvalues, off-diagonals are zero)
 
Eigenvector / Eigenvalue equation:
• By definition                (unit norm)  

• Example:

U

Λ

CX = UΛU�

Cxu = λu
u�u = 1

�
1 0
0 1

� �
1
0

�
=

�
1
0

�
⟹ eigenvector:

eigenvalue: λ = 1
u =

�
1 0

��



PCA Formulation 
PCA: find lower-dimensional representation of raw data                
•     is n × d (raw data) 
•                is n × k (reduced representation, PCA ‘scores’) 
•     is d × k (columns are k principal components) 
• Variance / Covariance constraints

P

X

Z = XP

≈ ≈

≈

X

P

Z =



PCA Formulation, k = 1  
PCA: find one-dimensional representation of raw data                
•     is n × d (raw data) 
•               is n × 1 (reduced representation, PCA ‘scores’) 
•     is d × 1 (columns are k principal components) 
• Variance constraint 

X

p

z = Xp

σ2 =
1
n

n�

i=1

�
z(i)

�2
= ||z||22 = ||Xp||22σ2z



PCA Formulation, k = 1  

Goal: Maximizes variance, i.e.,             max
p

||z||22

σ2 =
1
n

n�

i=1

�
z(i)

�2
= ||z||22 = ||Xp||22

σ2z ||p||2 = 1where  

σ2z

PCA: find one-dimensional representation of raw data                
•     is n × d (raw data) 
•               is n × 1 (reduced representation, PCA ‘scores’) 
•     is d × 1 (columns are k principal components) 
• Variance constraint

X

p

z = Xp



σ2z =
1
n
||z||22

=
1
n
z�z

=
1
n
(Xp)�(Xp)

=
1
n
p�X�Xp

= p�CXp

Relationship between Euclidean distance and dot product 

z = XpDefinition:

Transpose property:                         ; associativity of multiply(Xp)� = p�X�

Definition: CX =
1
n
X�X
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z = XpDefinition:

Transpose property:                         ; associativity of multiply(Xp)� = p�X�

Definition: CX =
1
n
X�X

Goal: Maximizes variance, i.e.,             max
p

||z||22σ2z ||p||2 = 1where  

max
p

p�CxpRestated Goal: ||p||2 = 1where  
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Recall eigenvector / eigenvalue equation:
• By definition               , and thus  
• But this is the expression we’re optimizing, and thus maximal 

variance achieved when     is top eigenvector of 
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Recall eigenvector / eigenvalue equation:
• By definition               , and thus  
• But this is the expression we’re optimizing, and thus maximal 

variance achieved when     is top eigenvector of 

Similar arguments can be used for k > 1  

max
p

p�CxpRestated Goal: ||p||2 = 1where  

Cxu = λu

u�u = 1 u�Cxu = λ

CXp

Connection to Eigenvectors
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