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How to grasp machine learning well

Three pillars to machine learning

Statistics

Linear Algebra

Optimization

Resources to study them

Suggested Reading:
I Chapter 2 of MLAPA book
I Linear Algebra Review and Reference by Zico Kolter and Chuong Do

(http://www.cs.cmu.edu/~zkolter/course/15-884/
linalg-review.pdf)

I Convex Optimation Review by Zico Kolter and Honglak Lee
(http://www.cs.cmu.edu/~./15381/slides/cvxopt.pdf)

Wikipedia (some information might not be 100% accurate, though)
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Probability: basic definitions

Sample Space: a set of all possible outcomes or realizations of some
random trial.
Example: Toss a coin twice; the sample space is
Ω = {HH,HT, TH, TT}.
Event: A subset of sample space
Example: the event that at least one toss is a head is
A = {HH,HT, TH}.
Probability: We assign a real number P (A) to each event A, called the
probability of A.

Probability Axioms: The probability P must satisfy three axioms:

1 P (A) ≥ 0 for every A;

2 P (Ω) = 1;

3 If A1, A2, . . . are disjoint, then P (∪∞i=1Ai) =
∑∞

i=1 P (Ai)
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Random Variables

Definition: A random variable is a function that maps from the sample
space to the reals (X : Ω→ R), i.e., it assigns a real number X(ω) to
each outcome ω.

Example: X returns 1 if a coin is heads and 0 if a coin is tails. Y returns
the number of heads after 3 flips of a fair coin.

Random variables can take on many values, and we are often interested in
the distribution over the values of a random variable, e.g., P(Y = 0)
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Common Distributions

Discrete variable Probability function Mean Variance

Uniform X ∼ U [1, . . . , N ] 1/N N+1
2

Binomial X ∼ Bin(n, p)
(n
x

)
px(1− p)(n−x) np

Geometric X ∼ Geom(p) (1− p)x−1p 1/p

Poisson X ∼ Poisson(λ) e−λλx
x!

λ

Continuous variable Probability density function Mean Variance
Uniform X ∼ U(a, b) 1/ (b-a) (a + b)/2

Gaussian X ∼ N(µ, σ2) 1√
2πσ

exp(− 1
2σ2 (x− µ)2) µ

Gamma X ∼ Γ(α, β) (x ≥ 0) 1
Γ(α)βa

xa−1e−x/β αβ

Exponential X ∼ exponen(β) 1
β
e
− x
β β
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Distribution Function

Definition: Suppose X is a random variable, x is a specific value that it
can take,
Cumulative distribution function (CDF) is the function F : R→ [0, 1],
where F (x) = P (X ≤ x).

If X is discrete ⇒ probability mass function: f(x) = P (X = x).
If X is continuous ⇒ probability density function for X if there exists a
function f such that f(x) ≥ 0 for all x,

∫∞
−∞ f(x)dx = 1 and for every

a ≤ b,

P (a ≤ X ≤ b) =

∫ b

a
f(x)dx.

If F (x) is differentiable everywhere, f(x) = F ′(x).
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Expectation

Expected Values

Discrete random variable X, E[g(X)] =
∑

x∈X g(x)f(x);

Continuous random variable X, E[g(X)] =
∫∞
−∞ g(x)f(x)

Mean and Variance µ = E[X] is the mean; var[X] = E[(X − µ)2] is the
variance.
We also have var[X] = E[X2]− µ2.
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Multivariate Distributions

Definition:
FX,Y (x, y) := P (X ≤ x, Y ≤ y),

and

fX,Y (x, y) :=
∂2FX,Y (x, y)

∂x∂y
,

Marginal Distribution of X (Discrete case):

fX(x) = P (X = x) =
∑

y

P (X = x, Y = y) =
∑

y

fX,Y (x, y)

or fX(x) =
∫
y fX,Y (x, y)dy for continuous variable.
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Conditional Probability and Bayes Rule

Conditional probability of X given Y = y is

fX|Y (x|y) = P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
=
fX,Y (x, y)

fY (y)

Bayes Rule:

P (X|Y ) =
P (Y |X)P (X)

P (Y )
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Independence

Independent Variables X and Y are independent if and only if:

P (X = x, Y = y) = P (X = x)P (Y = y)

or fX,Y (x, y) = fX(x)fY (y) for all values x and y.

IID variables: Independent and identically distributed (IID) random
variables are drawn from the same distribution and are all mutually
independent.

Linearity of Expectation: Even if X1, . . . , Xn are not independent,

E[
n∑

i=1

Xi] =
n∑

i=1

E[Xi].
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Statistics

Suppose X1, . . . , Xn are random variables:
Sample Mean:

X̄ =
1

N

N∑

i=1

Xi

Sample Variance:

S2
N−1 =

1

N − 1

N∑

i=1

(Xi − X̄)2.

If Xi are iid:

E[X̄] = E[Xi] = µ,

V ar(X̄) = σ2/N,

E[S2
N−1] = σ2
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Point Estimation

Definition The point estimator θ̂N is a function of samples X1, . . . , XN

that approximates a parameter θ of the distribution of Xi.

Sample Bias: The bias of an estimator is

bias(θ̂N ) = Eθ[θ̂N ]− θ

An estimator is unbiased estimator if Eθ[θ̂N ] = θ
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Example

Suppose we have observed N realizations of the random variable X:

x1, x2, · · · , xN

Then,

Sample mean X̄ = 1
N

∑
n xn is an unbiased estimator of X’s mean.

Sample variance S2
N−1 = 1

N−1

∑
n(xn − X̄)2 is an unbiased estimator

of X’s variance

Sample variance S2
N = 1

N

∑
n(xn − X̄)2 is not an unbiased estimator

of X’s variance

Professor Ameet Talwalkar CS260 Machine Learning Algorithms September 23, 2015 16 / 17



Outline

1 Overview

2 Review on Probability

3 Review on Statistics

4 An integrative example

Professor Ameet Talwalkar CS260 Machine Learning Algorithms September 23, 2015 17 / 17



Outline

Maximum likelihood estimation

Optimization

Convexity



Maximum likelihood estimation 
(MLE)

Intuitive example

Estimate a coin toss

I have seen 3 flips of heads, 2 flips of tails, what is the chance of 
heads (or tails) of my next flip?

Model

Each flip is a Bernoulli random variable X

X can take only two values: 1 (heads), 0 (tails)

p(X = 1) = � p(X = 0) = 1 � �

Parameter to be identified from data



Principles of MLE

5 (independent) trials

Observations 

Likelihood of all the 5 observations

Intuition

choose θ such that L is maximized

✓ (1 � ✓) ✓ ✓ (1 � ✓)⇥ ⇥ ⇥ ⇥

L = ✓3(1 � ✓)2

X1 = 1 X2 = 0 X3 = 1 X4 = 1 X5 = 0



Maximizing the likelihood

Solution

Intuition

Probability of head is the percentage of heads in the 
total flips.

L = ✓3(1 � ✓)2 ✓MLE =
3

3 + 2

(Detailed derivation later)



More generally,

Model (ie, assuming how data is distributed)

Training data (observations)

Maximum likelihood estimate 

X ⇠ P (X; ✓)

D = {x1, x2, · · · , xN}

L(D) =

NY

i=1

P (xi; ✓) ✓MLE = arg max
✓

L(D)

= arg max
✓

NX

i=1

log P (xi; ✓)

log-likelihood



Ex:  estimate parameters of 
Gaussian distribution

Model with unknown parameters

Observations

Log-likelihood

p(x) =
1p
2⇡�

e�
(x�µ)2

2�2

D = {x1, x2, · · · , xN}

`(µ,�) =

NX

n=1

⇢
� (xn � µ)2

2�2
� log

p
2⇡�

�



Solution

We will solve the following later 

But the solution is given in the below

arg max
µ,�

`(µ,�) =

NX

n=1

⇢
� (xn � µ)2

2�2
� log

p
2⇡�

�

�2 =
1

N

NX

n=1

(xn � x̄)2µ = x̄ =
1

N

NX

n=1

xn



Caveats for complicated models

No closed-form solution

Use numerical optimization

many easy-to-use, robust packages are available

Stuck in local optimum (more on this later)

Restart optimization with random initialization

Computational tractability

Can be difficult to compute likelihood L(D) exactly

Need to approximate



Optimization

Given an objective function 

how do we find its minimum

optionally, under constraints

f(x)

min f(x)

such that g(x) = 0

difference between 
global and local optimal



Unconstrained optimization

Fermat’s Theorem

Local optima occurs at stationary 
points, namely, where gradients 
vanish

f 0(x) = 0



Simple example

What is the minimum of 

Gradient is

Set the gradient to zero

f(x) = x2

f 0(x) = 2x

f 0(x) = 0 ! x = 0

Namely, x = 0 is locally optimum (minimum and global, 
actually)



Remember the MLE of tossing 
coin?

5 (independent) trials

Observation 

Likelihood of all the 5 observations

✓ (1 � ✓) ✓ ✓ (1 � ✓)⇥ ⇥ ⇥ ⇥

L = ✓3(1 � ✓)2

X1 = 1 X2 = 0 X3 = 1 X4 = 1 X5 = 0



Maximizing the likelihood

the objective function is 

The gradient is 

Set gradient to zero

L(✓) = ✓3(1 � ✓)2

L0(✓) = 3✓2(1 � ✓)2 � 2✓3(1 � ✓)

L0(✓) = 0 ! ✓ =
3

3 + 2



Wait a second

The gradient also vanishes if  θ= 0

Obviously, θ= 0 does not maximize L(θ)

Stationary points are only necessary for (local) optimum

L0(✓) = 3✓2(1 � ✓)2 � 2✓3(1 � ✓)



Multivariate optimization

Log-likelihood for Gaussian distribution

Partial derivatives

arg max
µ,�

`(µ,�) =

NX

n=1

⇢
� (xn � µ)2

2�2
� log

p
2⇡�

�

@`

@µ
=

NX

n

�2(xn � µ)

2�2

@`

@�
=

NX

n

⇢
(xn � µ)2

�3
� 1

�

�



Stationary points defined by sets 
of equations

We can use the first one to solve the mean

and the second one to compute the standard 
deviation

@`

@�
= 0 ! �2 =

1

N

X

n

(xn � µ)2

@`

@µ
= 0 ! µ =

1

N

X

n

xn



a loophole?

In both models, parameters are constrained

θ:  should be non-negative and be less 1

σ:  should be non-negative

But the optimization did not enforce the 
constraint

yes, we are lucky



Constrained optimization

Equality Constraints 

Method of Lagrange multipliers

Construct the following function (Lagrangian)

min f(x)

s.t. g(x) = 0

L(x,�) = f(x) + �g(x)



More difficult situations

Inequality constraints

generally are harder

We won’t deal with these types of problems in its most 
general case 

However, we will see some special instances.

 

min f(x)

s.t. g(x)  0



Definition

A function f(x) is convex if 

for 

Graphically, 

Optimizing Convex functions

f(�a + (1 � �)b)  �f(a) + (1 � �)f(b)

0  �  1

a b



Local vs. global optimal

For general objective 
functions f(x)

We get local optimum

For convex functions

the local optimum is the global 
optimum

Computational tractability

Convex optimization

has no local minima.

Nonconvex optimization

can get “stuck”.Computational tractability

Convex optimization

has no local minima.

Nonconvex optimization

can get “stuck”.

Consider rolling a ball on a hill

depends on where you 
start

does not depend on 
where you start



Local vs. global optimal

In practice, convexity can be a very nice thing

In general, convex problems -- minimizing a convex 
function over a convex set -- can be solved numerically 
very efficiently

This is advantageous especially if stationary points 
cannot be found analytically in closed-form

Computational tractability

Convex optimization

has no local minima.

Nonconvex optimization

can get “stuck”.

Computational tractability

Convex optimization

has no local minima.

Nonconvex optimization

can get “stuck”.

Convex: unique global optimum nonconvex: local optimum



Examples

Convex functions

f(x) = x

f(x) = x2

f(x) = ex

f(x) =
1

x
when x � 0



Examples 

Nonconvex function

f(x) = cos(x)

f(x) = ex � x2

f(x) = log x

Difference in convex 
functions is not convex

log (x) is called concave as 
its negation is convex



How to determine convexity?

f(x) is convex if

Examples

f 00(x) � 0

(� log(x))00 =
1

x2

(log(1 + ex))00 =

✓
ex

1 + ex

◆0
=

ex

(1 + ex)2



Multivariate functions

Definition

           is convex if 

How to determine convexity in this case?

Second-order derivative becomes Hessian matrix

f(�a + (1 � �)b)  �f(a) + (1 � �)f(b)

f(x)

H =

2
66664

�2f(x)
�x2

1

�2f(x)
�x1�x2

· · · �2f(x)
�x1�xD

�2f(x)
�x1�x2

�2f(x)
�x2

2
· · · �2f(x)

�x2�xD

· · · · · · · · · · · ·
�2f(x)
�x1�xD

�2f(x)
�x2�xD

· · · �2f(x)
�x2

D

3
77775



Convexity for multivariate 
function

If the Hessian is positive semidefinite, then the 
function is convex

Ex:  f(x) =
x2

1

x2

H =

" 2
x2

� 2x1

x2
2

� 2x1

x2
2

2x2
1

x3
2

#
=

2

x3
2


x2

2 �x1x2

�x1x2 x2
1

�



What does this function look like?

x2 x1

x2
1

x2


