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How to grasp machine learning well

Three pillars to machine learning
@ Statistics
@ Linear Algebra
@ Optimization

Resources to study them

@ Suggested Reading:

» Chapter 2 of MLAPA book

» Linear Algebra Review and Reference by Zico Kolter and Chuong Do
(http://www.cs.cmu.edu/~zkolter/course/15-884/
linalg-review.pdf)

» Convex Optimation Review by Zico Kolter and Honglak Lee
(http://www.cs.cmu.edu/~./15381/slides/cvxopt.pdf)

o Wikipedia (some information might not be 100% accurate, though)
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Probability: basic definitions

Sample Space: a set of all possible outcomes or realizations of some
random trial.

Example: Toss a coin twice; the sample space is
Q={HH,HT,TH, TT}.

Event: A subset of sample space

Example: the event that at least one toss is a head is
A={HH,HT, TH}.

Probability: We assign a real number P(A) to each event A, called the
probability of A.

Probability Axioms: The probability P must satisfy three axioms:
@ P(A) > 0 for every A;
Q@ P(Q) =1,
Q If Ay, Ag, ... are disjoint, then P(U2, A4;) = > 2, P(4;)
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Random Variables

Definition: A random variable is a function that maps from the sample
space to the reals (X : Q2 — R), i.e., it assigns a real number X (w) to
each outcome w.

Example: X returns 1 if a coin is heads and O if a coin is tails. Y returns
the number of heads after 3 flips of a fair coin.

Random variables can take on many values, and we are often interested in
the distribution over the values of a random variable, e.g., P(Y = 0)
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Common Distributions

Discrete variable Probability function Mean Variance
Uniform X ~ U[1,..., N] 1/N %
Binomial X ~ Bin(n,p) (™M)p=(1 — p)(n—) np
Geometric X ~ Geom(p) (1—p)*1p 1/p
Poisson X ~ Poisson()) e A" A
Continuous variable Probability density function Mean Variance
Uniform X ~ U(a,b) 1/ (b-a) (a + b)/2
Gaussian X ~ N(u,o0?) \/21_7m exp(—#(az — 1)?) [
Gamma X ~ I'(a, 8) (z > 0) F(al),Ba x“_ie—x/ﬁ af
Exponential X ~ exponen(f3) %6_3 15
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Distribution Function

Definition: Suppose X is a random variable, x is a specific value that it
can take,

Cumulative distribution function (CDF) is the function F': R — |0, 1],
where F(x) = P(X < x).

If X is discrete = probability mass function: f(x) = P(X = x).

If X is continuous = probability density function for X if there exists a
function f such that f(z) > 0 for all x, [°__ f(z)dz =1 and for every
a < b,

Pla< X <b) = /bf(x)dx.

If F(x) is differentiable everywhere, f(x) = F'(x).
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Expectation

Expected Values
@ Discrete random variable X, E[g(X)] Z g(x)f(x);

cX
e Continuous random variable X, Elg = [T g(z)f(x)

Mean and Variance ;. = E[X] is the mean; var[X] = E[(X — p)?] is the

variance.
We also have var[X| = E[X?] — p?
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Multivariate Distributions

Definition:
FX,Y(:an) = P(XSZC,YSy),
and 52 : )
O Fxy(z,y
fX,Y(CE,y) T away 9

Marginal Distribution of X (Discrete case):

fx(w)=P(X =2)=3 P(X=uY=y)=) [y

or fx(x) = J, fx,y(x,y)dy for continuous variable.
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Conditional Probability and Bayes Rule

Conditional probability of X given Y =y is

P(X =2Y =y) _ fxy(x,y)
P(Y =y) fyv(y)

fxpy(zly) = P(X =z]Y =y) =

Bayes Rule:

Pixly) - PYIXIPOO)

P(Y)
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Independence

Independent Variables X and Y are independent if and only if:
P X=z,Y=y) =P X=x)P(Y =vy)

or fxy(z,y) = fx(x)fy(y) for all values = and y.

IID variables: Independent and identically distributed (11D) random

variables are drawn from the same distribution and are all mutually
independent.

Linearity of Expectation: Even if X,....,X,, are not independent,

E[ZXz'] = ZE[Xz']-
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Statistics

Suppose X1, ..
Sample Mean:

Sample Variance:

If X, are iid:

., X,, are random variables:

N
X==3 X
v
Lo
Si_1 = N1 Z(Xz — X)?
i—1

E[S]2V—1] =0’
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Point Estimation

Definition The point estimator Oy is a function of samples Xq,..., Xy
that approximates a parameter 6 of the distribution of X;.

Sample Bias: The bias of an estimator is

AN A

biCLS(@N) — EQ[@N] — 0

A

An estimator is unbiased estimator if Ey|0y]| = 0
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Example

Suppose we have observed N realizations of the random variable X:

L1, X2, TN

Then,
@ Sample mean X = % > .. Tp is an unbiased estimator of X's mean.

o Sample variance S%_| = = >, (zn — X)? is an unbiased estimator
of X's variance

o Sample variance 5% = + >_ (x, — X)? is not an unbiased estimator

of X's variance

— N
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Maximum likelihood estimation

Optimization

Convexity




Maximum likelihood est:matlon
(MLE) o

Intuitive example

Estimate a coin toss

I have seen 3 flips of heads, 2 flips of tails, what is the chance of
heads (or tails) of my next flip?

Model
Each flip is a Bernoulli random variable X
X can take only two values: | (heads), 0 (tails)
o p(le)z@\ & px=0=1-0

Parameter to be identified from data



I
Principles of MLE

5 (independent) trials

Observations

Likelihood of all the 5 observations
0 X (1—-6) x 6 X 6 x (1-0)
* L=0°(1-0)
Intuition

choose 0 such that L is maximized



Maximizing the likelihood

Solution

L=0°1-0)

(Detailed derivation later)

Intuition

Probability of head is the percentage of heads in the
total flips.



More generally,

Model (ie, assuming how data is distributed)

X ~ P(X;0)
Training data (observations)
D = {x1,x27... ’ajN}
Maximum likelihood estimate log-likelihood
N
i=1

N
arg m@axiz_; og P(x;;0)
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Ex: estimate parameters of

Gaussian distribution

Model with unknown parameters

1 _ (z—p)?
2

p(w) — \/%O’e 20

Observations

D={z1,22," - ,ZN}

Log-likelihood

0, 0) = i {— (x”2;2“)2 ~log \/%a}

n=1



Solution

We will solve the following later

2
arg max f((, o Z { 2'u) — log v/ 2770}

w,o

But the solution is given in the below

1 1 &
P IR S oI

n=1 n=1



Caveats for complicated models

No closed-form solution

Use numerical optimization

many easy-to-use, robust packages are available

Stuck in local optimum (more on this later)

Restart optimization with random initialization
Computational tractability
Can be difficult to compute likelihood £(D) exactly

Need to approximate



I
Optimization

difference between

i n f ive function
Given an objective functio global and local optimal

f(z)

how do we find its minimum

min f(x) .

optionally, under constraints

such that g(z) =0



Unconstrained optimization

T

Fermat’s Theorem

Local optima occurs at stationary
points, namely, where gradients
vanish

f'(z) =0




Simple example

What is the minimum of

f(z) = 2*

Gradient is
fi(r) =22

Set the gradient to zero

ff(x)=0—2=0

Namely, x = 0 is locally optimum (minimum and global,
actually)



I
Remember the MLE of tossing

coin?

5 (independent) trials

Observation

Likelihood of all the 5 observations

0 X (1—-6) x 6 X 6 x (1-0)
=) L =6%(1-6)



Maximizing the likelihood

the objective function is
L(0) = 6°(1 — 9)°

The gradient is
L'(0) = 30%(1 — 0)* —20°(1 — )

Set gradient to zero




Wait a second

The gradient also vanishes if 0=0

L'(0) = 30%(1 — ) —20°(1 — 0)

Obviously, 0= 0 does not maximize L(0)

Stationary points are only necessary for (local) optimum




Multivariate optimization

Log-likelihood for Gaussian distribution

arg max £(p1, o) = i {— (2 —p)” log \/%a}

o — 202
Partial derivatives
or i 2(x, — 1)
o - 202
N

Sy {2




I
Stationary points defined by sets

of equations

o 1
8—M:O—>u:N;xn

or > 1 5
%—O—Mf —NZ(a:n 1)

We can use the first one to solve the mean

and the second one to compute the standard
deviation



a loophole?

In both models, parameters are constrained
0: should be non-negative and be less |

o: should be non-negative

But the optimization did not enforce the
constraint

yes, we are lucky




Constrained optimization

Equality Constraints

min  f(x)
s.t. g(x) =0

Method of Lagrange multipliers

Construct the following function (Lagrangian)

L(z,A) = f(x) + Ag(=)



More difficult situations

Inequality constraints

min  f(x)
s.t. g(x) <0
generally are harder

We won’t deal with these types of problems in its most
general case

However, we will see some special instances.




Optimizing Convex functions

Definition
A function f(x) is convex if

Fha+ (1= \)b) < Af(a) + (1 — ) f(b)

for

Graphically,



Local vs. global optimal

For general objective Consider rolling a ball on a hill

functions f(x)

We get local optimum

For convex functions /

depends on where you
the local optimum is the global start
optimum




Local vs. global optimal

In practice, convexity can be a very nice thing

In general, convex problems -- minimizing a convex
function over a convex set -- can be solved nhumerically

very efficiently

This is advantageous especially if stationary points
cannot be found analytically in closed-form

nonconvex: local optimum

Convex: unique global optimum




Examples
Convex functions
flx) =
f(z) =2’
flx) =€
f@) = = when x>0




I
Examples

Nonconvex function

f(z) = cos(z)
Difference in convex

flz) = e — 72 /functions is hot convex

f(z) =logx

\ log (Xx) is called concave as

its negation is convex




How to determine convexity?
f(x) is convex if

f'(z) =0

Examples

(—1log(x))" = —




Multivariate functions

Definition
f(x) is convex if
f(Aa+ (1= X2)b) < Af(a)+ (1 —N)f(b)
How to determine convexity in this case?

Second-order derivative becomes Hessian matrix

- 9 f(w) 9 f(m) .. Of(x) T
833% 8901855'2 890183:19
0% f(x)  0°f(x) 5% f ()
H —= Ox10x2 8113% o Ox20xp
O f@)  Df@) . (@)
| Ox10xp O0x20xp Oz, _
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Convexity for multivariate

function

If the Hessian is positive semidefinite, then the

function is convex
2

Xz
L2
- 2 _ 21 T
— 2 2x — 3 . 2
_% x—:al Lo L1L2 L1
_ ) 2 -




I
What does this function look like?




