Perceptron and Linear Regression

Professor Ameet Talwalkar
Outline

1 Administration

2 Review – Generative vs Discriminative

3 Review – Multiclass classification

4 Perceptron

5 Linear regression
Homeworks

- Homework 2: due now
- Homework 3 available online
 - Due on Monday, 2/13 (two days before the midterm)
Outline

1. Administration
2. Review – Generative vs Discriminative
3. Review – Multiclass classification
4. Perceptron
5. Linear regression
Generative vs Discriminative

Discriminative

- Requires only specifying a model for the conditional distribution \(p(y|x) \), and thus, maximizes the *conditional* likelihood
 \[
 \sum_n \log p(y_n|x_n).
 \]
- Models that try to learn mappings directly from feature space to the labels are also discriminative, e.g., perceptron, SVMs (covered later)
Generative vs Discriminative

Discriminative

- Requires only specifying a model for the conditional distribution $p(y|x)$, and thus, maximizes the *conditional* likelihood $\sum_n \log p(y_n|x_n)$.
- Models that try to learn mappings directly from feature space to the labels are also discriminative, e.g., perceptron, SVMs (covered later).

Generative

- Aims to model the joint probability $p(x, y)$ and thus maximize the *joint* likelihood $\sum_n \log p(x_n, y_n)$.
- The generative models we cover do so by modeling $p(x|y)$ and $p(y)$.
Generative approach

Model joint distribution of \(x = (\text{height, weight}), y = \text{sex} \)

our data

<table>
<thead>
<tr>
<th>Sex</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6’</td>
<td>175</td>
</tr>
<tr>
<td>0</td>
<td>5’2”</td>
<td>120</td>
</tr>
<tr>
<td>1</td>
<td>5’6”</td>
<td>140</td>
</tr>
<tr>
<td>1</td>
<td>6’2”</td>
<td>240</td>
</tr>
<tr>
<td>0</td>
<td>5.7”</td>
<td>130</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Intuition: we will model how heights vary (according to a Gaussian) in each sub-population (male and female).
Model of the joint distribution (1D)

\[p(x, y) = p(y)p(x|y) \]

\[
= \begin{cases}
 p_0 \frac{1}{\sqrt{2\pi}\sigma_0} e^{-\frac{(x-\mu_0)^2}{2\sigma_0^2}} & \text{if } y = 0 \\
 p_1 \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} & \text{if } y = 1
\end{cases}
\]

\[p_0 + p_1 = 1 \text{ are prior probabilities, and} \]
\[p(x|y) \text{ is a class conditional distribution} \]
Model of the joint distribution (1D)

\[p(x, y) = p(y)p(x|y) \]

\[= \begin{cases}
 p_0 \frac{1}{\sqrt{2\pi}\sigma_0} e^{-\frac{(x-\mu_0)^2}{2\sigma_0^2}} & \text{if } y = 0 \\
 p_1 \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} & \text{if } y = 1
\end{cases} \]

\[p_0 + p_1 = 1 \] are prior probabilities, and \(p(x|y) \) is a class conditional distribution.

What are the parameters to learn?
QDA Parameter estimation

Log Likelihood of training data \(\mathcal{D} = \{(x_n, y_n)\}_{n=1}^{N} \) with \(y_n \in \{0, 1\} \)

\[
\log P(\mathcal{D}) = \sum_{n} \log p(x_n, y_n)
\]

\[
= \sum_{n : y_n = 0} \log \left(p_0 \frac{1}{\sqrt{2\pi}\sigma_0} e^{-\frac{(x_n - \mu_0)^2}{2\sigma_0^2}} \right)
\]

\[
+ \sum_{n : y_n = 1} \log \left(p_1 \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x_n - \mu_1)^2}{2\sigma_1^2}} \right)
\]
QDA Parameter estimation

Log Likelihood of training data \(\mathcal{D} = \{(x_n, y_n)\}_{n=1}^{N} \) with \(y_n \in \{0, 1\} \)

\[
\log P(\mathcal{D}) = \sum_{n} \log p(x_n, y_n)
\]

\[
= \sum_{n: y_n = 0} \log \left(p_0 \frac{1}{\sqrt{2\pi}\sigma_0} e^{-\frac{(x_n-\mu_0)^2}{2\sigma_0^2}} \right) + \sum_{n: y_n = 1} \log \left(p_1 \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x_n-\mu_1)^2}{2\sigma_1^2}} \right)
\]

Max log likelihood \((p_0^*, p_1^*, \mu_0^*, \mu_1^*, \sigma_0^*, \sigma_1^*) = \arg \max \log P(\mathcal{D})\)
Log Likelihood of training data $D = \{(x_n, y_n)\}_{n=1}^N$ with $y_n \in \{0, 1\}$

$$\log P(D) = \sum_n \log p(x_n, y_n)$$

$$= \sum_{n: y_n = 0} \log \left(p_0 \frac{1}{\sqrt{2\pi}\sigma_0} e^{-\frac{(x_n - \mu_0)^2}{2\sigma_0^2}} \right)$$

$$+ \sum_{n: y_n = 1} \log \left(p_1 \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x_n - \mu_1)^2}{2\sigma_1^2}} \right)$$

Max log likelihood $(p_0^*, p_1^*, \mu_0^*, \mu_1^*, \sigma_0^*, \sigma_1^*) = \arg \max \log P(D)$

Max likelihood ($D = 2$) $(p_0^*, p_1^*, \mu_0^*, \mu_1^*, \Sigma_0^*, \Sigma_1^*) = \arg \max \log P(D)$
Decision boundary

Decision based on comparing conditional probabilities

\[p(y = 1|x) \geq p(y = 0|x) \]

which is equivalent to

\[p(x|y = 1)p(y = 1) \geq p(x|y = 0)p(y = 0) \]
Decision boundary

Decision based on comparing conditional probabilities

\[p(y = 1 | x) \geq p(y = 0 | x) \]

which is equivalent to

\[p(x | y = 1)p(y = 1) \geq p(x | y = 0)p(y = 0) \]

Namely,

\[-\frac{(x - \mu_1)^2}{2\sigma_1^2} - \log \sqrt{2\pi\sigma_1} + \log p_1 \geq -\frac{(x - \mu_0)^2}{2\sigma_0^2} - \log \sqrt{2\pi\sigma_0} + \log p_0 \]
Decision boundary

Decision based on comparing conditional probabilities

\[p(y = 1 | x) \geq p(y = 0 | x) \]

which is equivalent to

\[p(x | y = 1) p(y = 1) \geq p(x | y = 0) p(y = 0) \]

Namely,

\[- \left(\frac{x - \mu_1}{2\sigma_1} \right)^2 - \log \sqrt{2\pi \sigma_1} + \log p_1 \geq - \left(\frac{x - \mu_0}{2\sigma_0} \right)^2 - \log \sqrt{2\pi \sigma_0} + \log p_0 \]

\[\Rightarrow ax^2 + bx + c \geq 0 \quad \leftarrow \text{the QDA decision boundary not } \textit{linear!} \]
QDA vs LDA vs NB

Max likelihood ($D = 2$) $(p_0^*, p_1^*, \mu_0^*, \mu_1^*, \Sigma_0^*, \Sigma_1^*) = \arg \max \log P(D)$
QDA vs LDA vs NB

Max likelihood \((D = 2)\) \((p^*_0, p^*_1, \mu^*_0, \mu^*_1, \Sigma^*_0, \Sigma^*_1) = \arg \max \log P(D) \)

- QDA: Allows distinct, arbitrary covariance matrices for each class
- LDA: Requires the same arbitrary covariance matrix across classes
- GNB: Allows for distinct covariance matrices across each class, but these covariance matrices must be diagonal
- GNB in HW2 Problem 1: Requires the same diagonal covariance matrix across classes
There is no fixed rule

- It depends on how well your modeling assumption fits the data
- When data follows the generative assumption, generative models will likely yield a model that better fits the data
- But, discriminative models are less sensitive to incorrect modelling assumptions (and often require less parameters to train)
Outline

1. Administration

2. Review – Generative vs Discriminative

3. Review – Multiclass classification
 - Use binary classifiers as building blocks
 - Multinomial logistic regression

4. Perceptron

5. Linear regression
Setup

Predict multiple classes/outcomes: C_1, C_2, \ldots, C_K

- Weather prediction: sunny, cloudy, raining, etc
- Optical character recognition: 10 digits + 26 characters (lower and upper cases) + special characters, etc

Studied methods

- Nearest neighbor classifier
- Naive Bayes
- Gaussian discriminant analysis
- Logistic regression
From multiclass to binary classification

“one versus the rest”

- Train a binary classifier for each class C_k:
 1. Relabel training data with label C_k, into POSITIVE (or ‘1’)
 2. Relabel all the rest data into NEGATIVE (or ‘0’)

- Train K total binary classifiers

- Aggregate predictions at test time
From multiclass to binary classification

“one versus the rest”

- Train a binary classifier or each class C_k:
 1. Relabel training data with label C_k, into **positive** (or ‘1’)
 2. Relabel all the rest data into **negative** (or ‘0’)
- Train K total binary classifiers
- Aggregate predictions at test time

“one versus one”

- Train a binary classifier for each pair of classes C_k and C_k'
 1. Relabel training data with label C_k, into **positive** (or ‘1’)
 2. Relabel training data with label C_k' into **negative** (or ‘0’)
 3. **Disregard** all other data
- Train $K(K - 1)/2$ total binary classifiers
- Tally ‘votes’ from each classifier at test time
Contrast these two approaches

Pros of each approach

- **one versus the rest**: only needs to train K classifiers.
 - Makes a *big* difference if you have a lot of *classes* to go through.

- **one versus one**: only needs to train a smaller subset of data (only those labeled with those two classes would be involved).
 - Makes a *big* difference if you have a lot of *data* to go through.
Contrast these two approaches

Pros of each approach

- **one versus the rest**: only needs to train K classifiers.
 - Makes a *big* difference if you have a lot of *classes* to go through.
- **one versus one**: only needs to train a smaller subset of data (only those labeled with those two classes would be involved).
 - Makes a *big* difference if you have a lot of *data* to go through.

Bad about both of them

Combining classifiers’ outputs seem to be a bit tricky.

Is there a more natural approach to generalize logistic regression?
First try

Can we just define the following conditional model for each class?

\[p(y = C_k | x) = \sigma [w_k^T x] \]

This would not work because:

\[\sum_k p(y = C_k | x) = \sum_k \sigma [w_k^T x] \neq 1 \]

as each summand can be any number (independently) between 0 and 1.

But we are close! We can learn the \(K \) linear models jointly to ensure this property holds!
First try

Can we just define the following conditional model for each class?

\[p(y = C_k | x) = \sigma[w_k^T x] \]

This would \textit{not} work because:

\[\sum_k p(y = C_k | x) = \sum_k \sigma[w_k^T x] \neq 1 \]

as each summand can be any number (independently) between 0 and 1.

\textit{But we are close!} We can learn the \(K \) linear models jointly to ensure this property holds!
Definition of multinomial logistic regression

Model

For each class C_k, we have a parameter vector w_k and model the posterior probability as

$$p(C_k | x) = \frac{e^{w_k^T x}}{\sum_{k'} e^{w_{k'}^T x}} \quad \leftarrow \text{This is called softmax function}$$
Definition of multinomial logistic regression

Model

For each class C_k, we have a parameter vector w_k and model the posterior probability as

$$p(C_k|x) = \frac{e^{w_k^T x}}{\sum_{k'} e^{w_{k'}^T x}}$$

This is called softmax function

Decision boundary: assign x with the label that is the maximum of posterior

$$\arg \max_k P(C_k|x) \rightarrow \arg \max_k w_k^T x$$
Definition of multinomial logistic regression

Model

For each class \(C_k \), we have a parameter vector \(\mathbf{w}_k \) and model the posterior probability as

\[
p(C_k|\mathbf{x}) = \frac{e^{\mathbf{w}_k^T \mathbf{x}}}{\sum_{k'} e^{\mathbf{w}_{k'}^T \mathbf{x}}} \quad \leftarrow \quad \text{This is called softmax function}
\]

Decision boundary: assign \(\mathbf{x} \) with the label that is the maximum of posterior

\[
\arg \max_k P(C_k|\mathbf{x}) \rightarrow \arg \max_k \mathbf{w}_k^T \mathbf{x}
\]

Properties:
- Preserves relative ordering of ‘scores’ \(\mathbf{w}_k^T \mathbf{x} \) for each class
- Maps scores to values between 0 and 1 that also sum to 1
- Reduces to binary logistic regression when \(K = 2 \)
Parameter estimation

Discriminative approach: maximize conditional likelihood

\[
\log P(D) = \sum_n \log P(y_n|x_n)
\]
Parameter estimation

Discriminative approach: maximize conditional likelihood

\[
\log P(D) = \sum_n \log P(y_n|\mathbf{x}_n)
\]

We will change \(y_n\) to \(y_n = [y_{n1} \ y_{n2} \ \cdots \ y_{nK}]^T\), a \(K\)-dimensional vector using 1-of-\(K\) encoding, e.g., if \(y_n = 2\), then, \(y_n = [0 \ 1 \ 0 \ 0 \ \cdots \ 0]^T\).
Parameter estimation

Discriminative approach: maximize conditional likelihood

\[
\log P(D) = \sum_{n} \log P(y_n|x_n)
\]

We will change \(y_n \) to \(y_n = [y_{n1} \ y_{n2} \ \cdots \ y_{nK}]^T \), a \(K \)-dimensional vector using 1-of-K encoding, e.g., if \(y_n = 2 \), then, \(y_n = [0 \ 1 \ 0 \ 0 \ \cdots \ 0]^T \).

\[
\Rightarrow \sum_n \log P(y_n|x_n) = \sum_n \log \left(\prod_{k=1}^{K} P(C_k|x_n)^{y_{nk}} \right) = \sum_n \sum_k y_{nk} \log P(C_k|x_n)
\]

Optimization requires numerical procedures, analogous to those used for binary logistic regression.
Outline

1 Administration

2 Review – Generative vs Discriminative

3 Review – Multiclass classification

4 Perceptron
 - Intuition
 - Algorithm

5 Linear regression
Consider a linear model for binary classification

\[w^T x \]

We use this model to distinguish between two classes \([-1, +1]\).

One goal

\[\varepsilon = \sum_n \mathbb{I}[y_n \neq \text{sign}(w^T x_n)] \]

i.e., to minimize errors on the training dataset.
Hard, but easy if we have only one training example

How can we change \mathbf{w} such that

$$y_n = \text{sign}(\mathbf{w}^T \mathbf{x}_n)$$

Two cases

- If $y_n = \text{sign}(\mathbf{w}^T \mathbf{x}_n)$, do nothing.
- If $y_n \neq \text{sign}(\mathbf{w}^T \mathbf{x}_n)$,

$$\mathbf{w}^{\text{NEW}} \leftarrow \mathbf{w}^{\text{OLD}} + y_n \mathbf{x}_n$$
Why would it work?

If \(y_n \neq \text{sign}(\mathbf{w}^T \mathbf{x}_n) \), then

\[
y_n (\mathbf{w}^T \mathbf{x}_n) < 0
\]
Why would it work?

If \(y_n \neq \text{sign}(w^T x_n) \), then

\[
y_n(w^T x_n) < 0
\]

What would happen if we change to new \(w^{\text{NEW}} = w + y_n x_n \)?

\[
y_n[(w + y_n x_n)^T x_n] = y_n w^T x_n + y_n^2 x_n^T x_n
\]
Why would it work?

If \(y_n \neq \text{sign}(w^T x_n) \), then

\[
y_n(w^T x_n) < 0
\]

What would happen if we change to new \(w^\text{NEW} = w + y_n x_n \)?

\[
y_n[(w + y_n x_n)^T x_n] = y_n w^T x_n + y_n^2 x_n^T x_n
\]

We are adding a positive number, so it is possible that

\[
y_n(w^\text{NEW}^T x_n) > 0
\]

i.e., we are more likely to classify correctly
Perceptron

Iteratively solving one case at a time

- **REPEAT**
- Pick a data point \(x_n \) (can be a fixed order of the training instances)
- Make a prediction \(y = \text{sign}(w^T x_n) \) using the *current* \(w \)
- If \(y = y_n \), do nothing. Else,

 \[
 w \leftarrow w + y_n x_n
 \]

- **UNTIL** converged.
Perceptron

Iteratively solving one case at a time

- REPEAT
- Pick a data point \(x_n \) (can be a fixed order of the training instances)
- Make a prediction \(y = \text{sign}(w^T x_n) \) using the current \(w \)
- If \(y = y_n \), do nothing. Else,

\[
w \leftarrow w + y_n x_n
\]

- UNTIL converged.

Properties

- This is an online algorithm.
- If the training data is linearly separable, the algorithm stops in a finite number of steps.
- The parameter vector is always a linear combination of training instances (requires initialization of \(w_0 = 0 \))
Convergence under linear separability

Let $x_1, \ldots, x_T \in \mathbb{R}^D$ be a sequence of T points processed until convergence.
Convergence under linear separability

- Let \(x_1, \ldots, x_T \in \mathbb{R}^D \) be a sequence of \(T \) points processed until convergence.
- Assume \(\|x_t\| \leq r \) for all \(t \in [1, T] \), for some \(r > 0 \).
Convergence under linear separability

- Let $x_1, \ldots, x_T \in \mathbb{R}^D$ be a sequence of T points processed until convergence.
- Assume $\|x_t\| \leq r$ for all $t \in [1, T]$, for some $r > 0$.
- Assume that there exist $\rho > 0$ and $v \in \mathbb{R}^D$ s.t. for all $t \in [1, T]$,
 \[\rho \leq \frac{y_t (v \cdot x_t)}{\|v\|} \]
Convergence under linear separability

- Let \(\mathbf{x}_1, \ldots, \mathbf{x}_T \in \mathbb{R}^D \) be a sequence of \(T \) points processed until convergence
- Assume \(\|\mathbf{x}_t\| \leq r \) for all \(t \in [1, T] \), for some \(r > 0 \)
- Assume that there exist \(\rho > 0 \) and \(\mathbf{v} \in \mathbb{R}^D \) s.t. for all \(t \in [1, T] \),
 \[
 \rho \leq \frac{y_t (\mathbf{v} \cdot \mathbf{x}_t)}{\|\mathbf{v}\|}
 \]

Then, the number of updates \(M \) made by the Perceptron algorithm when processing \(\mathbf{x}_1, \ldots, \mathbf{x}_T \) is bounded by

\[
M \leq \frac{r^2}{\rho^2}
\]
Recall that $\rho \leq \frac{y_t(v \cdot x_t)}{\|v\|}$, $w_{t+1} = w_t + y_t x_t$, and $w_0 = 0$

Let I be the subset of the T rounds with an update, i.e., $|I| = M$

$$M \rho \leq \frac{v \cdot \sum_{t \in I} y_t x_t}{\|v\|}$$
Recall that $\rho \leq \frac{y_t (v \cdot x_t)}{||v||}$, $w_{t+1} = w_t + y_t x_t$, and $w_0 = 0$

Let I be the subset of the T rounds with an update, i.e., $|I| = M$

$$M \rho \leq \frac{v \cdot \sum_{t \in I} y_t x_t}{||v||} \leq \left\| \sum_{t \in I} y_t x_t \right\|$$

(Cauchy-Schwarz inequality)
Recall that $\rho \leq \frac{y_t(v \cdot x_t)}{\|v\|}$, $w_{t+1} = w_t + y_t x_t$, and $w_0 = 0$

Let I be the subset of the T rounds with an update, i.e., $|I| = M$

\[
M \rho \leq \frac{v \cdot \sum_{t \in I} y_t x_t}{\|v\|} \leq \left\| \sum_{t \in I} y_t x_t \right\| \quad \text{(Cauchy-Schwarz inequality)}
\]

\[
= \left\| \sum_{t \in I} (w_{t+1} - w_t) \right\| \quad \text{(definition of updates)}
\]
- Recall that $\rho \leq \frac{y_t (v \cdot x_t)}{\|v\|}$, $w_{t+1} = w_t + y_t x_t$, and $w_0 = 0$
- Let I be the subset of the T rounds with an update, i.e., $|I| = M$

$$M \rho \leq \frac{v \cdot \sum_{t \in I} y_t x_t}{\|v\|} \leq \left\| \sum_{t \in I} y_t x_t \right\|$$

(Cauchy-Schwarz inequality)

$$= \left\| \sum_{t \in I} (w_{t+1} - w_t) \right\|$$

(definition of updates)

$$= \left\| w_{T+1} \right\|$$

(telescoping sum, $w_0 = 0$)
Recall that $\rho \leq \frac{y_t (v \cdot x_t)}{\|v\|}$, $w_{t+1} = w_t + y_t x_t$, and $w_0 = 0$.

Let I be the subset of the T rounds with an update, i.e., $|I| = M$.

$$M \rho \leq \frac{v \cdot \sum_{t \in I} y_t x_t}{\|v\|} \leq \left\| \sum_{t \in I} y_t x_t \right\|$$

(Cauchy-Schwarz inequality)

$$= \left\| \sum_{t \in I} (w_{t+1} - w_t) \right\|$$

(definition of updates)

$$= \|w_{T+1}\|$$

(telescoping sum, $w_0 = 0$)

$$= \sqrt{\sum_{t \in I} \|w_{t+1}\|^2 - \|w_t\|^2}$$

(telescoping sum, $w_0 = 0$)
Recall that $\rho \leq \frac{y_t(v \cdot x_t)}{\|v\|}$, $w_{t+1} = w_t + y_t x_t$, and $w_0 = 0$

Let I be the subset of the T rounds with an update, i.e., $|I| = M$

$$M \rho \leq \frac{v \cdot \sum_{t \in I} y_t x_t}{\|v\|} \leq \left\| \sum_{t \in I} y_t x_t \right\|$$

(Cauchy-Schwarz inequality)

$$= \left\| \sum_{t \in I} (w_{t+1} - w_t) \right\|$$

(definition of updates)

$$= \left\| w_{T+1} \right\|$$

(telescoping sum, $w_0 = 0$)

$$= \sqrt{\sum_{t \in I} \|w_{t+1}\|^2 - \|w_t\|^2}$$

(telescoping sum, $w_0 = 0$)

$$= \sqrt{\sum_{t \in I} \|w_t + y_t x_t\|^2 - \|w_t\|^2}$$

(definition of updates)
Recall that \(\rho \leq \frac{y_t(v \cdot x_t)}{\|v\|} \), \(w_{t+1} = w_t + y_t x_t \), and \(w_0 = 0 \).

Let \(I \) be the subset of the \(T \) rounds with an update, i.e., \(|I| = M \).

\[
M \rho \leq \frac{v \cdot \sum_{t \in I} y_t x_t}{\|v\|} \leq \left\| \sum_{t \in I} y_t x_t \right\| \quad \text{(Cauchy-Schwarz inequality)}
\]

\[
= \left\| \sum_{t \in I} (w_{t+1} - w_t) \right\| \quad \text{(definition of updates)}
\]

\[
= \|w_{T+1}\| \quad \text{(telescoping sum, \(w_0 = 0 \))}
\]

\[
= \sqrt{\sum_{t \in I} \|w_{t+1}\|^2 - \|w_t\|^2} \quad \text{(telescoping sum, \(w_0 = 0 \))}
\]

\[
= \sqrt{\sum_{t \in I} \|w_t + y_t x_t\|^2 - \|w_t\|^2} \quad \text{(definition of updates)}
\]

\[
= \sqrt{\sum_{t \in I} 2y_t w_t \cdot x_t + \|x_t\|^2} \leq 0
\]

\(\leq 0 \)
Recall that $\rho \leq \frac{y_t (v \cdot x_t)}{\|v\|}$, $w_{t+1} = w_t + y_t x_t$, and $w_0 = 0$

Let I be the subset of the T rounds with an update, i.e., $|I| = M$

$$M \rho \leq \frac{v \cdot \sum_{t \in I} y_t x_t}{\|v\|} \leq \left\| \sum_{t \in I} y_t x_t \right\|$$

(Cauchy-Schwarz inequality)

$$= \left\| \sum_{t \in I} (w_{t+1} - w_t) \right\|$$

(definition of updates)

$$= \left\| w_{T+1} \right\|$$

(telescoping sum, $w_0 = 0$)

$$= \sqrt{\sum_{t \in I} \left(\left\| w_{t+1} \right\|^2 - \left\| w_t \right\|^2 \right)}$$

(telescoping sum, $w_0 = 0$)

$$= \sqrt{\sum_{t \in I} \left(\left\| w_t + y_t x_t \right\|^2 - \left\| w_t \right\|^2 \right)}$$

(definition of updates)

$$= \sqrt{\sum_{t \in I} \left(\begin{array}{c} 2 y_t w_t \cdot x_t + \|x_t\|^2 \\ \leq 0 \end{array} \right)}$$

$$\leq \sqrt{\sum_{t \in I} \|x_t\|^2}$$
Recall that $\rho \leq \frac{y_t (v \cdot x_t)}{\|v\|}$, $w_{t+1} = w_t + y_t x_t$, and $w_0 = 0$

Let I be the subset of the T rounds with an update, i.e., $|I| = M$

$$M \rho \leq \frac{v \cdot \sum_{t \in I} y_t x_t}{\|v\|} \leq \left\| \sum_{t \in I} y_t x_t \right\|$$

(Cauchy-Schwarz inequality)

$$= \left\| \sum_{t \in I} (w_{t+1} - w_t) \right\|$$

(definition of updates)

$$= \left\| w_{T+1} \right\|$$

(telescoping sum, $w_0 = 0$)

$$= \sqrt{\sum_{t \in I} \|w_{t+1}\|^2 - \|w_t\|^2}$$

(telescoping sum, $w_0 = 0$)

$$= \sqrt{\sum_{t \in I} \|w_t + y_t x_t\|^2 - \|w_t\|^2}$$

(definition of updates)

$$\leq \sqrt{\sum_{t \in I} 2 y_t w_t \cdot x_t + \|x_t\|^2} \leq 0$$

$$\leq \sqrt{\sum_{t \in I} \|x_t\|^2} \leq \sqrt{Mr^2}$$
Recall that $\rho \leq \frac{y_t(v \cdot x_t)}{\|v\|}$, $w_{t+1} = w_t + y_t x_t$, and $w_0 = 0$

Let I be the subset of the T rounds with an update, i.e., $|I| = M$

$$M \rho \leq \frac{v \cdot \sum_{t \in I} y_t x_t}{\|v\|} \leq \left\| \sum_{t \in I} y_t x_t \right\|$$ \hspace{1cm} (Cauchy-Schwarz inequality)

$$= \left\| \sum_{t \in I} (w_{t+1} - w_t) \right\|$$ \hspace{1cm} (definition of updates)

$$= \left\| w_{T+1} \right\|$$ \hspace{1cm} (telescoping sum, $w_0 = 0$)

$$= \sqrt{\sum_{t \in I} \|w_{t+1}\|^2 - \|w_t\|^2}$$ \hspace{1cm} (telescoping sum, $w_0 = 0$)

$$= \sqrt{\sum_{t \in I} \|w_t + y_t x_t\|^2 - \|w_t\|^2}$$ \hspace{1cm} (definition of updates)

$$= \sqrt{\sum_{t \in I} \left[2y_t w_t \cdot x_t + \|x_t\|^2 \right]} \leq 0$$

$$\leq \sqrt{\sum_{t \in I} \|x_t\|^2} \leq \sqrt{Mr^2}$$ \hspace{1cm} (Therefore, $M \rho \leq \sqrt{Mr^2} \rightarrow M \leq \frac{r^2}{\rho^2}$)
Outline

1. Administration
2. Review – Generative vs Discriminative
3. Review – Multiclass classification
4. Perceptron
5. Linear regression
 - Motivation
 - Algorithm
 - Univariante solution
 - Probabilistic interpretation
Regression

Predicting a continuous outcome variable

- Predicting shoe size from height, weight and gender
- Predicting a company’s future stock price using its profit and other financial info
- Predicting annual rainfall based on local flora/fauna
- Predicting song year from audio features
Regression

Predicting a continuous outcome variable
- Predicting shoe size from height, weight and gender
- Predicting a company’s future stock price using its profit and other financial info
- Predicting annual rainfall based on local flora / fauna
- Predicting song year from audio features

Key difference from classification
Regression

Predicting a continuous outcome variable

- Predicting shoe size from height, weight and gender
- Predicting a company’s future stock price using its profit and other financial info
- Predicting annual rainfall based on local flora / fauna
- Predicting song year from audio features

Key difference from classification

- We can measure ‘closeness’ of prediction and labels, leading to different ways to evaluate prediction errors.
 - Predicting shoe size: better to be off by one size than by 5 sizes
 - Predicting song year: better to be off by one year than by 20 years
- This will lead to different learning models and algorithms
Ex: predicting the sale price of a house

Retrieve historical sales records
(This will be our training data)
Features used to predict

Five unit apartment complex within 2 blocks of USC campus, Gate #6. Great for students (most student units have parents as guarantor). Most USC students live off campus, so housing units like this are always fully leased. Situated on a gated, corner lot, and across from an elementary school, this complex was recently renovated, and has in-unit laundry hook ups, wall -unit AC, and 12 parking spaces. It is within a CPS (Department of Public Safety) and Campus Cruiser policed area. This is a great income-generating property, not to be missed.

Property Details for 3620 South BUDLONG, Los Angeles, CA 90007

Details provided by i-Tech MLS and may not match the public record. Learn More

Interior Features

- Kitchen Information:
 - Remodeled
 - Oven, Range

- Laundry Information:
 - Inside Laundry

- Heating & Cooling:
 - Wall Cooling Units

Multi-Unit Information

- Community Features:
 - Units in Complex (Total): 5
 - Multi-Family Information:
 - # of Leased: 5
 - # of Bedrooms: 1
 - Owner Pays Water
 - Tenant Pays Electric, Tenant Pays Gas

- Unit 1 Information:
 - # of Beds: 2
 - # of Baths: 1
 - Unfurnished
 - Monthly Rent: $1,700

- Unit 2 Information:
 - # of Beds: 3
 - # of Baths: 1
 - Unfurnished
 - Monthly Rent: $2,250

- Unit 3 Information:
 - # of Beds: 3
 - Unfurnished

- Unit 4 Information:
 - # of Beds: 3
 - # of Baths: 1
 - Unfurnished

Property / Lot Details

- Property Features:
 - Automatic Gate, Card/Code Access

- Lot Information:
 - Lot Size (Bd. Fl.): 9,649
 - Lot Size (Area): 9,649

- Lot Information Source:
 - Public Records

- Property Information:
 - Updated: Remodeled
 - Square Footage Source: Public Records

- Building Information:
 - Total Floors: 2

Parking / Garage, Exterior Features, Utilities & Financing

- Parking Information:
 - # of Parking Spaces (Total): 12
 - Parking Spots

- Garage

Location Details, Misc. Information & Listing Information

- Location Information:
 - Cross Streets: W. 36th PI

- Expense Information:
 - Operating: $37,884

- Financial Information:
 - Capitalization Rate (%): 6.25

- Actual Annual Gross Rent: $126,331

- Gross Rent Multiplier: 11.29

- Listing Information:
 - Listing Terms: Cash, Cash To Existing Loan, Buyer Financing Cash
Correlation between square footage and sale price

Note: colors here do NOT represent different labels as in classification
Roughly linear relationship

Sale price ≈ price per sqft × square footage + fixed expense
Roughly linear relationship

Sale price $\approx price_per_sqft \times square_footage + fixed_expense$
How to learn the unknown parameters?

training data (past sales record)

<table>
<thead>
<tr>
<th>sqft</th>
<th>sale price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>800K</td>
</tr>
<tr>
<td>2100</td>
<td>907K</td>
</tr>
<tr>
<td>1100</td>
<td>312K</td>
</tr>
<tr>
<td>5500</td>
<td>2,600K</td>
</tr>
<tr>
<td>(\cdot)</td>
<td>(\cdot)</td>
</tr>
</tbody>
</table>
Reduce prediction error

How to measure errors?

- The classification error (hit or miss) is not appropriate for continuous outcomes.
- How should we evaluate quality of a prediction?
Reduce prediction error

How to measure errors?

- The classification error (*hit* or *miss*) is not appropriate for continuous outcomes.
- How should we evaluate quality of a prediction?
 - *absolute* difference: $|\text{prediction} - \text{sale price}|$
 - *squared* difference: $(\text{prediction} - \text{sale price})^2$ [differentiable]

<table>
<thead>
<tr>
<th>sqft</th>
<th>sale price</th>
<th>prediction</th>
<th>error</th>
<th>squared error</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>810K</td>
<td>720K</td>
<td>90K</td>
<td>8100</td>
</tr>
<tr>
<td>2100</td>
<td>907K</td>
<td>800K</td>
<td>107K</td>
<td>107^2</td>
</tr>
<tr>
<td>1100</td>
<td>312K</td>
<td>350K</td>
<td>38K</td>
<td>38^2</td>
</tr>
<tr>
<td>5500</td>
<td>2,600K</td>
<td>2,600K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Minimize squared errors

Our model

Sale price = price_per_sqft × square_footage + fixed_expense + unexplainable_stuff

Training data

<table>
<thead>
<tr>
<th>sqft</th>
<th>sale price</th>
<th>prediction</th>
<th>error</th>
<th>squared error</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>810K</td>
<td>720K</td>
<td>90K</td>
<td>8100</td>
</tr>
<tr>
<td>2100</td>
<td>907K</td>
<td>800K</td>
<td>107K</td>
<td>107^2</td>
</tr>
<tr>
<td>1100</td>
<td>312K</td>
<td>350K</td>
<td>38K</td>
<td>38^2</td>
</tr>
<tr>
<td>5500</td>
<td>2,600K</td>
<td>2,600K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>(8100 + 107^2 + 38^2 + 0 + \cdots)</td>
</tr>
</tbody>
</table>
Minimize squared errors

Our model
Sale price = price_per_sqft × square_footage + fixed_expense + unexplainable_stuff

Training data

<table>
<thead>
<tr>
<th>sqft</th>
<th>sale price</th>
<th>prediction</th>
<th>error</th>
<th>squared error</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>810K</td>
<td>720K</td>
<td>90K</td>
<td>8100</td>
</tr>
<tr>
<td>2100</td>
<td>907K</td>
<td>800K</td>
<td>107K</td>
<td>107²</td>
</tr>
<tr>
<td>1100</td>
<td>312K</td>
<td>350K</td>
<td>38K</td>
<td>38²</td>
</tr>
<tr>
<td>5500</td>
<td>2,600K</td>
<td>2,600K</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>8100 + 107² + 38² + 0 + ...</td>
</tr>
</tbody>
</table>

Aim
Adjust price_per_sqft and fixed_expense such that the sum of the squared error is minimized — i.e., the residual/remaining unexplainable_stuff is minimized.
Linear regression

Setup

- **Input**: \(x \in \mathbb{R}^D \) (covariates, predictors, features, etc)
- **Output**: \(y \in \mathbb{R} \) (responses, targets, outcomes, outputs, etc)

Model:

\[
\begin{align*}
\text{f}: x & \to y \\
\text{f}(x) & = w_0 + \sum_{d} w_d x_d \\
& = w_0 + w^T x \\
& = \begin{bmatrix} w_1 & w_2 & \cdots & w_D \end{bmatrix}^T \\
\end{align*}
\]

▶ \(w_0 \) is called bias

We also sometimes call \(\tilde{w} = \begin{bmatrix} w_0 & w_1 & w_2 & \cdots & w_D \end{bmatrix}^T \) parameters too

Training data:

\(\mathcal{D} = \{(x_n, y_n), n = 1, 2, \ldots, N\} \)
Linear regression

Setup

- **Input**: \(x \in \mathbb{R}^D \) (covariates, predictors, features, etc)
- **Output**: \(y \in \mathbb{R} \) (responses, targets, outcomes, outputs, etc)
- **Model**: \(f : x \rightarrow y \), with \(f(x) = w_0 + \sum_d w_d x_d = w_0 + \mathbf{w}^T \mathbf{x} \)
 - \(\mathbf{w} = [w_1 \ w_2 \cdots \ w_D]^T \): weights, parameters, or parameter vector
 - \(w_0 \) is called **bias**
 - We also sometimes call \(\tilde{\mathbf{w}} = [w_0 \ w_1 \ w_2 \cdots \ w_D]^T \) parameters too
Linear regression

Setup

- **Input:** $x \in \mathbb{R}^D$ (covariates, predictors, features, etc)
- **Output:** $y \in \mathbb{R}$ (responses, targets, outcomes, outputs, etc)
- **Model:** $f : x \to y$, with $f(x) = w_0 + \sum_d w_d x_d = w_0 + w^T x$
 - $w = [w_1 \; w_2 \; \cdots \; w_D]^T$: weights, parameters, or parameter vector
 - w_0 is called bias
 - We also sometimes call $\tilde{w} = [w_0 \; w_1 \; w_2 \; \cdots \; w_D]^T$ parameters too
- **Training data:** $\mathcal{D} = \{(x_n, y_n), n = 1, 2, \ldots, N\}$
How do we learn parameters?

Minimize prediction error on training data

- Use squared difference to measure error
- Residual sum of squares

\[RSS(\tilde{w}) = \sum_n [y_n - f(x_n)]^2 = \sum_n [y_n - (w_0 + \sum_d w_d x_{nd})]^2 \]
A simple case: \(x \) is just one-dimensional \((D=1)\)

Residual sum of squares

\[
RSS(\tilde{w}) = \sum_{n}[y_n - f(x_n)]^2 = \sum_{n}[y_n - (w_0 + w_1 x_n)]^2
\]
A simple case: \(x \) is just one-dimensional (\(D=1 \))

Residual sum of squares

\[
RSS(\tilde{w}) = \sum_n [y_n - f(x_n)]^2 = \sum_n [y_n - (w_0 + w_1 x_n)]^2
\]

Identify stationary points by taking derivative with respect to parameters and setting to zero

\[
\frac{\partial RSS(\tilde{w})}{\partial w_0} = 0 \Rightarrow -2 \sum_n [y_n - (w_0 + w_1 x_n)] = 0
\]

\[
\frac{\partial RSS(\tilde{w})}{\partial w_1} = 0 \Rightarrow -2 \sum_n [y_n - (w_0 + w_1 x_n)] x_n = 0
\]
\[
\frac{\partial \text{RSS}(\tilde{w})}{\partial w_0} = 0 \Rightarrow -2 \sum_n [y_n - (w_0 + w_1 x_n)] = 0
\]

\[
\frac{\partial \text{RSS}(\tilde{w})}{\partial w_1} = 0 \Rightarrow -2 \sum_n [y_n - (w_0 + w_1 x_n)] x_n = 0
\]

Simplify these expressions to get “Normal Equations”
\[
\frac{\partial \text{RSS}(\tilde{w})}{\partial w_0} = 0 \Rightarrow -2 \sum_n [y_n - (w_0 + w_1 x_n)] = 0
\]

\[
\frac{\partial \text{RSS}(\tilde{w})}{\partial w_1} = 0 \Rightarrow -2 \sum_n [y_n - (w_0 + w_1 x_n)] x_n = 0
\]

Simplify these expressions to get “Normal Equations”

\[
\sum y_n = N w_0 + w_1 \sum x_n
\]

\[
\sum x_n y_n = w_0 \sum x_n + w_1 \sum x_n^2
\]
\[
\frac{\partial RSS(\tilde{w})}{\partial w_0} = 0 \Rightarrow -2 \sum_n [y_n - (w_0 + w_1 x_n)] = 0
\]

\[
\frac{\partial RSS(\tilde{w})}{\partial w_1} = 0 \Rightarrow -2 \sum_n [y_n - (w_0 + w_1 x_n)] x_n = 0
\]

Simplify these expressions to get “Normal Equations”

\[
\sum y_n = N w_0 + w_1 \sum x_n
\]

\[
\sum x_n y_n = w_0 \sum x_n + w_1 \sum x_n^2
\]

We have two equations and two unknowns! Do some algebra to get:

\[
w_1 = \frac{\sum(x_n - \bar{x})(y_n - \bar{y})}{\sum(x_i - \bar{x})^2}
\]

and

\[
w_0 = \bar{y} - w_1 \bar{x}
\]

where \(\bar{x} = \frac{1}{n} \sum_n x_n \) and \(\bar{y} = \frac{1}{n} \sum_n y_n \).
Why is minimizing RSS sensible?

Probabilistic interpretation

- Noisy observation model

\[Y = w_0 + w_1 X + \eta \]

where \(\eta \sim N(0, \sigma^2) \) is a Gaussian random variable
Why is minimizing RSS sensible?

Probabilistic interpretation

- Noisy observation model
 \[Y = w_0 + w_1 X + \eta \]
 where \(\eta \sim N(0, \sigma^2) \) is a Gaussian random variable
- Conditional likelihood of one training sample:
 \[
 p(y_n | x_n) = N(w_0 + w_1 x_n, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y_n - (w_0 + w_1 x_n))^2}{2\sigma^2}}
 \]
Probabilistic interpretation (cont’d)

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$\log P(\mathcal{D}) = \log \prod_{n=1}^{N} p(y_n | x_n) = \sum_{n} \log p(y_n | x_n)$$
Probabilistic interpretation (cont’d)

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$\log P(\mathcal{D}) = \log \prod_{n=1}^{N} p(y_n|x_n) = \sum_n \log p(y_n|x_n)$$

$$= \sum_n \left\{ -\frac{[y_n - (w_0 + w_1x_n)]^2}{2\sigma^2} - \log \sqrt{2\pi\sigma} \right\}$$
Probabilistic interpretation (cont’d)

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$
\log P(\mathcal{D}) = \log \prod_{n=1}^{N} p(y_n | x_n) = \sum_{n} \log p(y_n | x_n)
$$

$$
= \sum_{n} \left\{ -\frac{(y_n - (w_0 + w_1 x_n))^2}{2\sigma^2} - \log \sqrt{2\pi\sigma} \right\}
$$

$$
= -\frac{1}{2\sigma^2} \sum_{n} [y_n - (w_0 + w_1 x_n)]^2 - \frac{N}{2} \log \sigma^2 - N \log \sqrt{2\pi}
$$
Probabilistic interpretation (cont’d)

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$
\log P(\mathcal{D}) = \log \prod_{n=1}^{N} p(y_n|x_n) = \sum_{n} \log p(y_n|x_n)
$$

$$
= \sum_{n} \left\{ -\frac{[y_n - (w_0 + w_1 x_n)]^2}{2\sigma^2} - \log \sqrt{2\pi\sigma} \right\}
$$

$$
= -\frac{1}{2\sigma^2} \sum_{n} [y_n - (w_0 + w_1 x_n)]^2 - \frac{N}{2} \log \sigma^2 - N \log \sqrt{2\pi}
$$

$$
= -\frac{1}{2} \left\{ \frac{1}{\sigma^2} \sum_{n} [y_n - (w_0 + w_1 x_n)]^2 + N \log \sigma^2 \right\} + \text{const}
$$

What is the relationship between minimizing RSS and maximizing the log-likelihood?
Maximum likelihood estimation

Estimating σ, w_0 and w_1 can be done in two steps

- Maximize over w_0 and w_1

\[
\max \log P(D) \iff \min \sum_n [y_n - (w_0 + w_1 x_n)]^2 \leftarrow \text{That is } \text{RSS}(\tilde{w})!
\]
Maximum likelihood estimation

Estimating σ, w_0 and w_1 can be done in two steps

- Maximize over w_0 and w_1

 $$\max \log P(D) \Leftrightarrow \min \sum_n [y_n - (w_0 + w_1 x_n)]^2 \leftarrow \text{That is } \text{RSS}(\tilde{w})!$$

- Maximize over $s = \sigma^2$

 $$\frac{\partial \log P(D)}{\partial s} = -\frac{1}{2} \left\{ -\frac{1}{s^2} \sum_n [y_n - (w_0 + w_1 x_n)]^2 + N \frac{1}{s} \right\} = 0$$
Maximum likelihood estimation

Estimating σ, w_0 and w_1 can be done in two steps

1. Maximize over w_0 and w_1

 $$\max \log P(D) \iff \min \sum_n [y_n - (w_0 + w_1 x_n)]^2 \leftarrow \text{That is RSS}(\tilde{w})!$$

2. Maximize over $s = \sigma^2$

 $$\frac{\partial \log P(D)}{\partial s} = -\frac{1}{2} \left\{ -\frac{1}{s^2} \sum_n [y_n - (w_0 + w_1 x_n)]^2 + N \frac{1}{s} \right\} = 0$$

 $$\rightarrow \sigma^*^2 = s^* = \frac{1}{N} \sum_n [y_n - (w_0 + w_1 x_n)]^2$$
How does this probabilistic interpretation help us?

- It gives a solid footing to our intuition: minimizing $\text{RSS}(\tilde{w})$ is a sensible thing based on reasonable modeling assumptions.
- Estimating σ^* tells us how much noise there could be in our predictions. For example, it allows us to place confidence intervals around our predictions.