Why Multi-core?

Based on slides from Katherine Yelick
http://www.cs.berkeley.edu/~yelick/

Technology Trends: Microprocessor Capacity

2X transistors/Chip Every 1.5 years Called "Moore's Law"

Microprocessors have become smaller, denser, and more powerful.

Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of semiconductor chips would double roughly every 18 months.

Slide source: Jack Dongarra

Microprocessor Transistors and Clock Rate

Growth in transistors per chip

Increase in clock rate

Why bother with multicore? Just wait a year or two...

Limit \#1: Power density

Can soon put more transistors on a chip than can afford to turn on.
-- Patterson ‘07

Parallelism Saves Power

- Exploit explicit parallelism for reducing power

Capacitance Voltage Frequency

- Using additional cores
- Increase density (= more transistors = more capacitance)
- Can increase cores (2x) and performance (2x)
- Or increase cores (2x), but decrease frequency (1/2): same performance at $1 / 4$ the power
- Additional benefits
- Small/simple cores \rightarrow more predictable performance

Limit \#2: Hidden Parallelism Tapped Out

Application performance was increasing by 52\% per year as measured by the SpecInt benchmarks here

1978198019821984198619881990199219941996199820002002

Limit \#2: Hidden Parallelism Tapped Out

- Superscalar (SS) designs were the state of the art; many forms of parallelism not visible to programmer
- multiple instruction issue
- dynamic scheduling: hardware discovers parallelism between instructions
- speculative execution: look past predicted branches
- non-blocking caches: multiple outstanding memory ops
- Unfortunately, these sources have been used up

Limit \#3: Chip Yield

Manufacturing costs and yield problems limit use of density

Cost of semiconductor factories in millions of 1995 dollars

- Moore's (Rock's) 2 ${ }^{\text {nd }}$ law: fabrication costs go up
- Yield (\% usable chips) drops
- Parallelism can help
-More smaller, simpler processors are easier to design and validate
-Can use partially working chips: -E.g., Cell processor (PS3) is sold with 7 out of 8 "on" to improve yield

Revolution is Happening Now

- Chip density is continuing increase $\sim 2 x$ every 2 years
- Clock speed is not
- Number of processor cores may double instead
- There is little or no hidden parallelism to be found
- Parallelism must be exposed to and managed by software

Source: Intel, Microsoft (Sutter) and Stanford (Olukotun, Hammond)

Multicore in Products

- "We are dedicating all of our future product development to multicore designs. ... This is a sea change in computing"

Paul Otellini, President, Intel (2005)

- All microprocessor companies switch to MP (2X CPUs / 2 yrs) \Rightarrow Procrastination penalized: 2 X sequential perf. / 5 yrs

Manufacturer/Year	AMD/'05	Intel/'06	$\mathrm{IBM} /{ }^{\prime} 04$	Sun/'07
Processors/chip	2	2	2	8
Threads/Processor	1	2	2	16
Threads/chip	2	4	4	128

And at the same time,

- The STI Cell processor (PS3) has 8 cores
- The latest NVidia Graphics Processing Unit (GPU) has 128 cores
- Intel has demonstrated an 80-core research chip

