CS m51A: Logic Design of Digital Systems UCLA Computer Science Department Winter 2010 Midterm 2

Time: 100 minutes

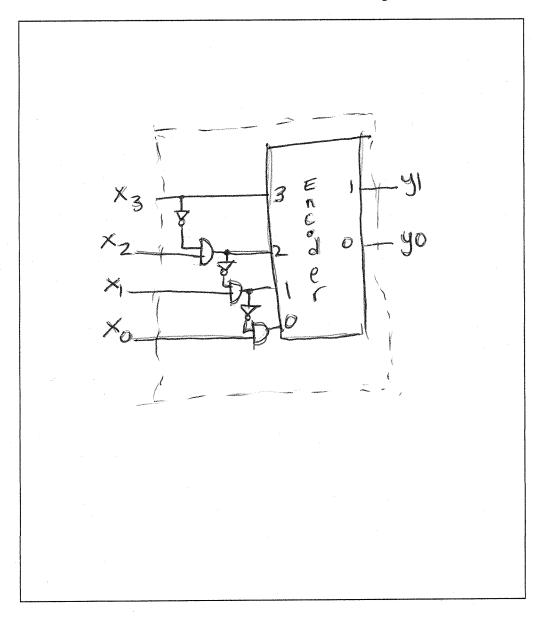
Note: Closed book, closed notes, no electronic computing or communications devices.

Name:		
Student ID:	 	

Soldright

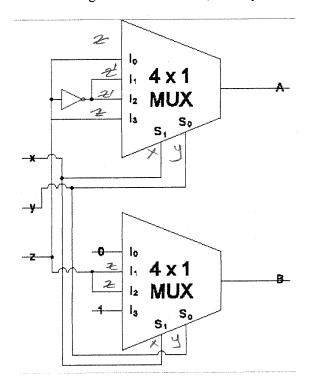
Question	Points	Grades
1	20	
2	20	
3	15	
4	20	·
5	25	
Total	100	

Donald E. Knuth


[&]quot;The process of preparing programs for a digital computer is especially attractive, not only because it can be economically and scientifically rewarding, but also because it can be an aesthetic experience much like composing poetry or music."

Question 1: Priority Encoder

Design a 4-bit priority encoder, where a priority encoder converts a 4-bit input into a binary representation of the signal with the highest priority. The table below summarizes the functionality.


Input	Output
x3,x2,x1,x0	y1,y0
1	11
01	10
001-	01
000-	00

For full credit use an encoder and the minimum number of gates.

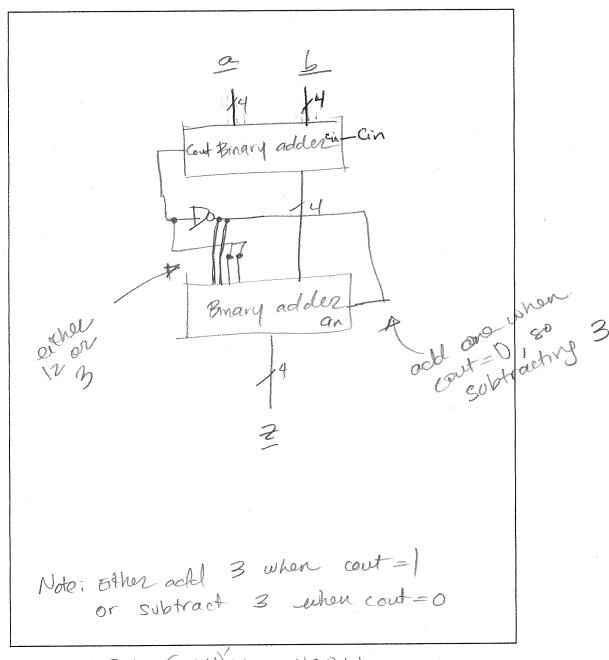
Question 2:

a) Give switching functions to describe the functionality of the outputs A and B, in the following circuit. For credit, show your work.

$$A = x'y'^2 + x'yz' + xy'z' + xyz$$

$$B = xy + x'yz + xy'z$$

b) The circuit shown in a) has the functionality of a commonly used arithmetic component. What does the circuit do and what are other names for A and B?


A = sum of X+y+Z

B = carry out of X+y+Z

= Jadder.

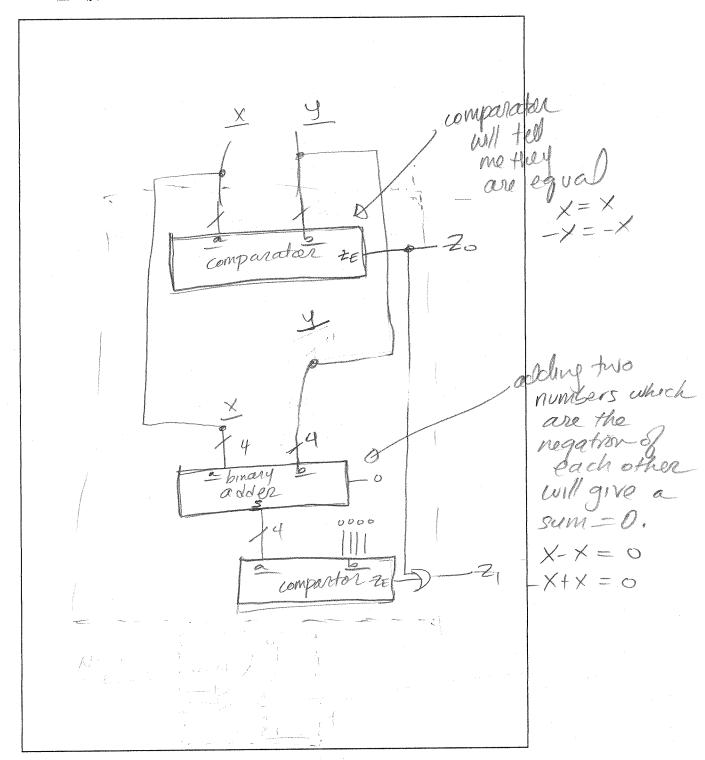
Question 3: Excess-3 Addition

Design a one-digit decimal adder in the Excess-3 code, which takes as input two Excess-3 coded digits, \underline{a} and \underline{b} and outputs an Excess-3 coded digit, \underline{s} , and a one-bit carry-out bit. For example, the inputs $\underline{a} = 0111$ and $\underline{b} = 1011$, would produce the output cout = 1 and $\underline{s} = 0101$. Use two four-bit binary adders and one inverter, for full credit.

-3 = (001) + 1 = 1100 + 1

Question 4: One's Complement Addition

Implement a 2-bit one's complement adder using only an encoder, a decoder, and a minimal number of gates. For full credit, show your work. Make sure to consider the carry-in and the carry-out bits.


Question 4:

Design a 3-bit prime number detector (PND). PND gets a three digit binary number, $\underline{n}=(a,b,c)$, and outputs 1 if \underline{n} is prime. Design this module using only one 8-1 multiplexer with no additional logic. Note: 0 and 1 are not prime numbers.

9,1,4,6-not prime numbers 2,3,5,7-prime numbers

Question 5:

Using standard modules and a minimum number of gates, design a combinational system that given two's complement 4-bit inputs, \underline{x} and \underline{y} , outputs $z_0=1$ when $\underline{x}=\underline{y}$, and $z_1=1$ when $|\underline{x}|=|\underline{y}|$. Make sure to define user-defined modules when appropriate.

