Dynamic Reconfiguration in Sensor Networks with Regenerative Energy Sources

Ani Nahapetian1, Paolo Lombardo2, Andrea Acquaviva3, Luca Benini2, Majid Sarrafzadeh1

1Computer Science Department, University of California, Los Angeles (UCLA)
2Dipartimento di Elettronica, Informatica e Sistemistica (DEIS), Università di Bologna
3Information Science and Technology Institute (ISTI), Università di Urbino
Talk Outline

- Introduction / Related Work
- Problem Formulation / Assumptions
- Statistical Approach
- Simulation Results
- Case Study – MicrelEye
- Conclusion

- Perpetual Operation
- Fast, Flexible, Energy Efficient
 with Dynamic Reconfiguration
 with Regenerative Energy
Talk Outline

- Introduction / Related Work
- Problem Formulation / Assumptions
- Statistical Approach
- Simulation Results
- Case Study – MicrelEye
- Conclusion
Regenerative Energy

- **Energy Harvesting** or **Energy Scavenging** - Capturing energy from the environment

- Systems with **Regenerative Energy** Sources - Systems that obtain or supplement their energy supply with energy captured from the environment
Regenerative Energy

- **Energy Harvesting** or Energy Scavenging - Capturing energy from the environment

- Systems with **Regenerative Energy** Sources - Systems that obtain or supplement their energy supply with energy captured from the environment

 - Applications with dependable energy sources
 - Supplementing battery technology
 - Perpetual operation
How are these Systems Different?

Battery-Powered Systems
- Limited total available energy
- Optimize for limited energy availability over time
- Energy consumption optimization based on battery characteristics

Regenerative Energy Systems
- Perpetual operation may be feasible
- Optimize for limited energy availability at any instance in time
- Instances where better to consume energy
- Considerable variability in energy availability
Regenerative Energy Related Work

- X. Jiang, J. Polastre, and D. Culler, Perpetual Environmentally Powered Sensor Networks. *IPSN/SPOTS’05*
Regenerative Energy Related Work

- Ambulatory motion energy harvesting shoe prototype - MIT
- Vibration energy harvesting – TIMA Labs
- Prometheus project utilizing solar power - Berkeley
- Heliomote project utilizing solar power - UCLA
- Network of mobile nodes roam in search of energy - USC
Regenerative Energy Related Work

- **DVS Approach**
 - C. Rusu, R. Melhem, and D. Mossé, Multi-version Scheduling in Rechargeable Energy-aware Real-time Systems. *ECRTS '03*

- **Online scheduling DVS-independent**
 - C. Moser, D. Brunelli, L. Thiele and L. Benini. Real-time Scheduling with Regenerative Energy. *ECRTS '06*
Dynamic Reconfigurability with Regenerative Energy Sources

- **Low Power**
 - Hardware execution more energy efficient
 - Low-power solutions that integrate FPGAs on chip (such as ATMEL)

- **Limited computational resources in sensor networks**
 - Execution of different types of task with the speed and the energy efficiency of hardware.
 - Variety or complexity dictates division into tasks

I. Folcarelli, A. Susu, T. Kluter, G. De Micheli, A. Acquaviva, An opportunistic reconfiguration strategy for environmentally powered devices. *CF '06*
Talk Outline

- Introduction / Related Work
- Problem Formulation / Assumptions
- Statistical Approach
- Simulation Results
- Case Study – MicrelEye
- Conclusion
Problem Statement

Intuitively:

Schedule tasks onto hardware or software for execution, while manipulating the energy provided by regenerative sources, while determining when to reconfigure the FPGA

Objective: Ensure the execution of the largest number of tasks, within their availability interval. (In the case of dependencies between tasks, without violating a dependency)
Problem Statement

Given: Task i
- Arrival time (a_i)
- Hard deadline (d_i)
- Energy requirement for execution on hardware (H_i)
- Energy requirement for execution software (S_i)
- Type distinguishing reconfiguration profile
Problem Statement

- **Given:** Task \(i \)
 - Arrival time \(a_i \)
 - Hard deadline \(d_i \)
 - Energy requirement for execution on hardware \(H_i \)
 - Energy requirement for execution software \(S_i \)
 - Type distinguishing reconfiguration profile

Task types identify whether a reconfiguration is needed between the execution of two consecutive tasks.

Possibility of porting reconfiguration data from an external source.
Problem Statement

- **Given: Task** i
 - a_i, d_i, H_i, S_i, Type

- **Given: Resources**
 - Processor on which a software implementation can be executed
 - FPGA with a known reconfiguration cost (or costs)
Problem Statement

- Given: Task i
 - a_i, d_i, H_i, S_i, Type

- Given: Resources
 - Processor, FPGA

- Given: Regenerative energy source with an energy buffer
 - Energy loss insignificant
 - External source of energy, which can vary significantly
 - Limited storage capacity
Problem Statement

- Given: Task i
 - a_i, d_i, H_i, S_i, Type
- Given: Resources
 - Processor, FPGA
- Given: Regenerative energy source with an energy buffer
- Objective: Minimize the number of tasks that miss their deadlines
Assumptions

- Exists both a software and a hardware version of tasks
 - Can handle single implementation, but potential for energy savings is diminished

- Require knowledge of reconfiguration cost, energy consumption of hardware and software task executions
 - Can be profiled
Example

Task 1 run in hardware, reconfig cost paid

Task 2 run in hardware, reconfig cost paid

Task 3 can not execute in either hardware or software

<table>
<thead>
<tr>
<th>Task Type</th>
<th>SW Energy Req</th>
<th>HW Energy Req</th>
<th>Reconfig Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

E supply

19
Talk Outline

- Introduction / Related Work
- Problem Formulation / Assumptions
- Statistical Approach
- Simulation Results
- Case Study – MicrelEye
- Conclusion
Key Observations

- Only **last reconfiguration is important** for future reconfigurations and scheduling.

- Reconfiguration is valuable if
 - **IF** large supply of energy (i.e. larger than storage to capacity)
 - **IF** task has large differential between software and hardware execution cost
 - **IF** task is frequent
Expected Energy Calculation

Evaluate expected energy after some future task executions to determine benefit of reconfiguration now.

\[
Exp(E) = E_{current} - R - H_j + Exp(E_A) \cdot F \\
- \left(Exp(E_{type\neq j}) + Exp(E_{type=j}) \right) \cdot F
\]

- \(E_{current} \) – current available E
- \(H_i \) – HW execution energy
- \(R \) – Reconfig energy
- \(F \) – Number of tasks into future
Expected Energy Calculation

- Evaluate expected energy after some future task executions to determine benefit of reconfiguration now.

$$\text{Exp}(E) = E_{\text{current}} - R - H_j + \text{Exp}(E_A) \cdot F$$
$$-\left(\text{Exp}(E_{type\neq j}) + \text{Exp}(E_{type=j})\right) \cdot F$$

- E_{current} – current available E
- H_i – HW execution energy
- R – Reconfig energy
- F – Number of tasks into future
Expected Energy Calculation

- $\text{Exp}(E_{\text{type} \neq j})$ - expected cost of running the next task, of a type other than j on SW

- $\text{Exp}(E_{\text{type} = j})$ - expected cost of running the next task of type j on HW, scaled by the likelihood of such a task type occurring.

\[
\text{Exp}(E_{\text{type} \neq j}) = \frac{1}{TT} \sum_{l \neq j, l=1}^{TT} \frac{N_l}{\sum_{k=1}^{TT} N_k} S_i
\]

\[
\text{Exp}(E_{\text{type} = j}) = \frac{N_j}{\sum_{k=1}^{TT} N_k} H_j
\]

- TT – Number of task types
- N_i – Number of occurrences of task type i
- H_i – HW execution energy
- S_i – SW execution energy
Extended to Order-2 Statistics

- Consider the possibility of a task following another task.
- Maintain statistics on the pairs of tasks, instead of individual tasks.

\[
\begin{align*}
\text{Exp}(E_{\text{type}\neq j}) &= \sum_{l \neq j, l=1}^{\text{TT}} \frac{N_{j,l}}{\sum_{k=1}^{\text{TT}} N_k - 1} S_l \\
\text{Exp}(E_{\text{type}= j}) &= \frac{N_{j,j}}{\sum_{k=1}^{\text{TT}} N_k - 1} H_j
\end{align*}
\]

TT – Number of task types
\(N_{i,j}\) – Number of occurrences of task type \(j\) followed by \(i\)
\(N_i\) – Number of occurrences of task type \(i\)
\(H_i\) – HW execution energy
\(S_i\) – SW execution energy
Consider the possibility of a task following another task.

Maintain statistics on the pairs of tasks, instead of individual tasks.

\[
Exp(E_{type \neq j}) = \sum_{l \neq j, l=1}^{TT} \sum_{k=1}^{TT} \frac{N_{j,l}}{N_k - 1} S_l
\]

\[
Exp(E_{type = j}) = \frac{\sum_{k=1}^{TT} N_{j,j}}{\sum_{k=1}^{TT} N_k - 1} H_j
\]

TT – Number of task types

\(N_{i,j} \) – Number of occurrences of task type j followed by i

\(N_i \) – Number of occurrences of task type i

\(H_i \) – HW execution energy

\(S_i \) – SW execution energy
Expected Additional Energy Computation

- Studied by related work
- Use the product of the expected length of time until the arrival of the next task, D, and the estimated available power, P_{expected}

\[\text{Exp}(E_A) = P_{\text{expected}} \cdot \text{Exp}(D) \]
Talk Outline

- Introduction / Related Work
- Problem Formulation / Assumptions
- Statistical Approach
- Simulation Results
- Case Study – MicrelEye
- Conclusion
Comparison Approaches

<table>
<thead>
<tr>
<th>Approach</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>Run task on HW 50% of the time. If not enough energy, run in SW</td>
</tr>
<tr>
<td>All-HW</td>
<td>Always run task on HW</td>
</tr>
<tr>
<td>Reconfig-if-able</td>
<td>Run task on HW, by reconfiguring if needed. If not enough energy, run in SW</td>
</tr>
<tr>
<td>All-SW</td>
<td>Always run task in SW</td>
</tr>
<tr>
<td>Statistical</td>
<td>Calculates expected energy after execution of two tasks</td>
</tr>
<tr>
<td>Oracle</td>
<td>Aware of immediate harvested energy profile and future tasks</td>
</tr>
</tbody>
</table>
Deadline Misses for Various Software Energy Costs

- Random
- All HW
- Statistical
- All SW
- Reconfigure If Able
- Oracle

Percentage of Missed Deadlines vs. SW Energy Factor

- Bar chart showing the percentage of missed deadlines for different energy factors ranging from 0 to 10.
- The chart compares various strategies for handling missed deadlines, including random, specific hardware (HW), statistical methods, and reconfiguration if possible, with Oracle as a reference.
Deadline Misses for Various Hardware Energy Costs

The graph shows the percentage of missed deadlines for different hardware energy factors. The bars represent various scenarios:

- Random
- All SW
- Statistical
- All HW
- Reconfigure If Able
- Oracle

The x-axis represents the HW Energy Factor, ranging from 0 to 16, while the y-axis represents the Percentage of Missed Deadlines, ranging from 0 to 40. Each scenario is color-coded for easy identification.
Deadline Misses for Various Reconfiguration Costs

![Graph showing deadline misses for various reconfiguration costs. The x-axis represents reconfiguration energy, and the y-axis represents the percentage of missed deadlines. Different lines represent different strategies: Random, All HW, Reconfigure If Able, Statistical, All SW, and Oracle.](image-url)
Talk Outline

- Introduction / Related Work
- Problem Formulation / Assumptions
- Statistical Approach
- Simulation Results
- Case Study – MicrelEye
- Conclusion
MicrelEye Platform

- Single solar cell and battery
- Omnivision 7640 video sensor
- Bluetooth transceiver
- ATMEEL FPSLIC configurable platform, with AVR microcontroller and 40K gate FPGA
Vision Application Run on the MicrelEye

- **Thresholding:**
 - Converts a frame from its full 8-bit or 24-bit to a single bit representation for each pixel.
 - Used for object detection.

- **Laplacian edge detection:**
 - Using Laplacian matrix multiplication
 - Used for tracking

<table>
<thead>
<tr>
<th>Application</th>
<th>SW E (mJ)</th>
<th>HW E (mJ)</th>
<th>Reconfig E (mJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thresholding</td>
<td>25.0</td>
<td>8.93</td>
<td>4.48</td>
</tr>
<tr>
<td>Edge Detection</td>
<td>37.4</td>
<td>28.08</td>
<td>6.60</td>
</tr>
</tbody>
</table>
Deadline Misses for Various Frame Sequences

![Graph showing percentage of missed deadlines for different frame sequences and policies.
- Random
- All SW
- All HW
- Statistical
- Reconfigure If Able
- Oracle

The x-axis represents the range of frames (e.g., 1-1000, 1001-2000), while the y-axis shows the percentage of missed deadlines. The graph compares the performance of different scheduling policies across various frame sequences.]
Conclusion

- **Paradigm shift** caused by regenerative energy sources and need to integrate reconfigurable devices into sensor networks nodes
- Statistically based approach to schedule tasks
- Evaluation using simulations and MicrelEye prototype system
Related Work on Regenerative Energy

- Discussion of regenerative energy sources / Sensor networks adapting to perpetual operation
 - X. Jiang, J. Polastre, and D. Culler, Perpetual Environmentally Powered Sensor Networks. *IPSN/SPOTS ’05*
Related Work: Prototypes using Regenerative Energy

- Ambulatory motion energy harvesting shoe prototype

- Vibration energy harvesting
 - Y. Ammar, A. Buhrig, M. Marzencki, B. Charlot, S. Basrour and M. Renaudin, Wireless sensor network node with asynchronous architecture and vibration harvesting micro power generator. Conference on Smart Objects and Ambient intelligence: innovative Context-Aware Services: Usages and Technologies, 2005

- Prometheus project utilizing solar power
 - X. Jiang, J. Polastre, and D. Culler, Perpetual Environmentally Powered Sensor Networks. IPSN/SPOTS '05

- Heliomote project utilizing solar power
 - http://research.cens.ucla.edu/portal/page?_pageid=56,55124,56_55125&_dad=portal&_schema=PORTAL

- Network of mobile nodes roam in search of energy
Related Work: Scheduling with Regenerative Energy

- Utilize dynamic voltage scaling to approach the problem
 - C. Rusu, R. Melhem, and D. Mossé, Multi-version Scheduling in Rechargeable Energy-aware Real-time Systems. *ECRTS '03*

- Online scheduling approach independent of a dynamic voltage scaling
 - C. Moser, D. Brunelli, L. Thiele and L. Benini. Real-time Scheduling with Regenerative Energy. *ECRTS '06*
Related Work: Reconfigurability in Sensor Networks

- Dynamic software reconfiguration in sensor networks
 - T. Tuan, S.F. Li, J. Rabaey. Reconfigurable platform design for wireless protocol processors. *ICASSP '01*

- Combination of a regenerative energy system with dynamic reconfigurability has first been examined
 - I. Folcarelli, A. Susu, T. Kluter, G. De Micheli, A. Acquaviva, An opportunistic reconfiguration strategy for environmentally powered devices. *CF '06*
Assumptions

- Software execution is more convenient than performing reconfiguration followed by hardware execution

\[S_i \leq H_i + R_i \]

\(H_i \) – HW execution energy

\(S_i \) – SW execution energy

\(R_i \) – Reconfig energy

for task \(i \)
Assumptions

- Cost of running a task on hardware is less expensive, than running a task on software, ignoring the cost of reconfiguration.

\[H_i \leq S_i \]

- \(H_i \) – HW execution energy
- \(S_i \) – SW execution energy
- \(R_i \) – Reconfig energy
- for task i