
Data-Efficient Augmentation for Training Neural
Networks

Tian Yu Liu
Department of Computer Science

University of California, Los Angeles
tianyu@cs.ucla.edu

Baharan Mirzasoleiman
Department of Computer Science

University of California, Los Angeles
baharan@cs.ucla.edu

Abstract

Data augmentation is essential to achieve state-of-the-art performance in many
deep learning applications. However, the most effective augmentation techniques
become computationally prohibitive for even medium-sized datasets. To address
this, we propose a rigorous technique to select subsets of data points that when
augmented, closely capture the training dynamics of full data augmentation. We
first show that data augmentation, modeled as additive perturbations, improves
learning and generalization by relatively enlarging and perturbing the smaller
singular values of the network Jacobian, while preserving its prominent directions.
This prevents overfitting and enhances learning the harder to learn information.
Then, we propose a framework to iteratively extract small subsets of training
data that when augmented, closely capture the alignment of the fully augmented
Jacobian with labels/residuals. We prove that stochastic gradient descent applied
to the augmented subsets found by our approach has similar training dynamics
to that of fully augmented data. Our experiments demonstrate that our method
achieves 6.3x speedup on CIFAR10 and 2.2x speedup on SVHN, and outperforms
the baselines by up to 10% across various subset sizes. Similarly, on TinyImageNet
and ImageNet, our method beats the baselines by up to 8%, while achieving up to
3.3x speedup across various subset sizes. Finally, training on and augmenting 50%
subsets using our method on a version of CIFAR10 corrupted with label noise even
outperforms using the full dataset. 1

1 Introduction

Standard (weak) data augmentation transforms the training examples with e.g. rotations or crops for
images, and trains on the transformed examples in place of the original training data. While weak
augmentation is effective and computationally inexpensive, strong data augmentation (in addition to
weak augmentation) is a key component in achieving nearly all state-of-the-art results in deep learning
applications [35]. However, strong data augmentation techniques often increase the training time by
orders of magnitude. First, they often have a very expensive pipeline to find or generate more complex
transformations that best improves generalization [5, 15, 22, 40]. Second, appending transformed
examples to the training data is often much more effective than training on the (strongly or weakly)
transformed examples in-place of the original data. For example, appending one transformed example
to the training data is often much more effective than training on two transformed examples in place
of every original training data, while both strategies have the same computational cost (c.f. Appendix
D.6). Hence, to obtain the state-of-the-art performance, multiple augmented examples are added
for every single data point and to each training iteration [14, 40]. In this case, even if producing
transformations are cheap, such methods increases the size of the training data by orders of magnitude.

1Our code can be found at https://github.com/tianyu139/data-efficient-augmentation

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/tianyu139/data-efficient-augmentation


As a result, state-of-the-art data augmentation techniques become computationally prohibitive for
even medium-sized real-world problems. For example, the state-of-the-art augmentation of [40],
which appends every example with its highest-loss transformations, increases the training time of
ResNet20 on CIFAR10 by 13x on an Nvidia A40 GPU (c.f. Sec. 6).

To make state-of-the-art data augmentation more efficient and scalable, an effective approach is to
carefully select a small subset of the training data such that augmenting only the subset provides
similar training dynamics to that of full data augmentation. If such a subset can be quickly found,
it would directly lead to a significant reduction in storage and training costs. First, while standard
in-place augmentation can be applied to the entire data, the strong and expensive transformations
can be only produced for the examples in the subset. Besides, only the transformed elements of the
subset can be appended to the training data. Finally, when the data is larger than the training budget,
one can train on random subsets (with standard in-place augmentation) and augment coresets (by
strong augmentation and/or appending transformations) to achieve a superior performance.

Despite the efficiency and scalability that it can provide, this direction has remained largely unex-
plored. Existing studies are limited to fully training a network and subsampling data points based on
their loss or influence, for augmentation in subsequent training runs [20]. However, this method is
prohibitive for large datasets, provides a marginal improvement over augmenting random subsets,
and does not provide any theoretical guarantee for the performance of the network trained on the
augmented subsets. Besides, when the data contains mislabeled examples, augmentation methods
that select examples with maximum loss, and append their transformed versions to the data, degrade
the performance by selecting and appending several noisy labels.

A major challenge in finding the most effective data points for augmentation is to theoretically under-
stand how data augmentation affects the optimization and generalization of neural networks. Existing
theoretical results are mainly limited to simple linear classifiers and analyze data augmentation as
enlarging the span of the training data [40], providing a regularization effect [4, 9, 37, 40], enlarging
the margin of a linear classifier [32], or having a variance reduction effect [6]. However, such tools
do not provide insights on the effect of data augmentation on training deep neural networks.

Here, we study the effect of label invariant data augmentation on training dynamics of overparameter-
ized neural networks. Theoretically, we model data augmentation by bounded additive perturbations
[32], and analyze its effect on neural network Jacobian matrix containing all its first-order partial
derivatives [1]. We show that label invariant additive data augmentation proportionally enlarges but
more importantly perturbs the singular values of the Jacobian, particularly the smaller ones, while
maintaining prominent directions of the Jacobian. In doing so, data augmentation regularizes training
by adding bounded but varying perturbations to the gradients. In addition, it speeds up learning
harder to learn information. Thus, it prevents overfitting and improves generalization. Empirically,
we show that the same effect can be observed for various strong augmentations, e.g., AutoAugment
[7], CutOut [10], and AugMix [14].2

Next, we develop a rigorous method to iteratively find small weighted subsets (coresets) that when
augmented, closely capture the alignment between the Jacobian of the full augmented data with the
label/residual vector. We show that the most effective subsets for data augmentation are the set of
examples that when data is mapped to the gradient space, have the most centrally located gradients.
This problem can be formulated as maximizing a submodular function. The subsets can be efficiently
extracted using a fast greedy algorithm which operates on small dimensional gradient proxies, with
only a small additional cost. We prove that augmenting the coresets guarantees similar training
dynamics to that of full data augmentation. We also show that augmenting our coresets achieve a
superior accuracy in presence of noisy labeled examples.

We demonstrate the effectiveness of our approach applied to CIFAR10 (ResNet20, WideResNet-
28-10), CIFAR10-IB (ResNet32), SVHN (ResNet32), noisy-CIFAR10 (ResNet20), Caltech256
(ResNet18, ResNet50), TinyImageNet (ResNet50), and ImageNet (ResNet50) compared to random
and max-loss baselines [20]. We show the effectiveness of our approach (in presence of standard
augmentation) in the following cases:

• When producing augmentations is expensive and/or they are appended to the training data:

2We note that our results are in line with that of [34], that in parallel to our work, analyzed the effect of linear
transformations on a two-layer convolutional network, and showed that it can make the hard to learn features
more likely to be captured during training.

2



We show that for the state-of-the-art augmentation method of [40] applied to CIFAR10/ResNet20 it
is 3.43x faster to train on the whole dataset and only augment our coresets of size 30%, compared
to training and augmenting the whole dataset. At the same time, we achieve 75% of the accuracy
improvement of training on and augmenting the full data with the method of [40], outperforming
both max-loss and random baselines by up to 10%.

• When data is larger than the training budget: We show that we can achieve 71.99% test
accuracy on ResNet50/ImageNet when training on and augmenting only 30% subsets for 90
epochs. Compared to AutoAugment [7], despite using only 30% subsets, we achieve 86% of
the original reported accuracy while boasting 5x speedup in the training time. Similarly, on
Caltech256/ResNet18, training on and augmenting 10% coresets with AutoAugment yields 65.4%
accuracy, improving over random 10% subsets by 5.8% and over only weak augmentation by 17.4%.

• When data contains mislabeled examples: We show that training on and strongly augmenting
50% subsets using our method on CIFAR10 with 50% noisy labels achieves 76.20% test accuracy.
Notably, this yields a superior performance to training on and strongly augmenting the full data.

2 Additional Related Work

Strong data augmentation methods achieve state-of-the-art performance by finding the set of trans-
formations for every example that best improves the performance. Methods like AutoAugment [7],
RandAugment [8], and Faster RandAugment [8] search over a (possibly large) space of transfor-
mations to find sequences of transformations that best improve generalization [7, 8, 24, 40]. Other
techniques involve a very expensive pipeline for generating the transformations. For example, some
use Generative Adversarial Networks to directly learn new transformations [2, 24, 27, 33]. Strong
augmentations like Smart Augmentation [22], Neural Style Transfer-based [15], and GAN-based aug-
mentations [5] require an expensive forward pass through a deep network for input transformations.
For example, [15] increases training time by 2.8x for training ResNet18 on Caltech256. Similarly, [40]
generates multiple augmentations for each training example, and selects the ones with the highest loss.

Strong data augmentation methods either replace the original example by its transformed version,
or append the generated transformations to the training data. Crucially, appending the training data
with transformations is much more effective in improving the generalization performance. Hence,
the most effective data augmentation methods such as that of [40] and AugMix [14] append the
transformed examples to the training data. In Appendix D.6, we show that even for cheaper strong
augmentation methods such as AutoAugment [7], while replacing the original training examples with
transformations may decrease the performance, appending the augmentations significantly improves
the performance. Appending the training data with augmentations, however, increase the training
time by orders of magnitude. For example, AugMix [14] that outperforms AutoAugment increases
the training time by at least 3x by appending extra augmented examples, and [40] increases training
time by 13x due to appending and forwarding additional augmented examples through the model.

3 Problem Formulation

We begin by formally describing the problem of learning from augmented data. Consider a dataset
Dtrain = (Xtrain;ytrain), where Xtrain = (x1; � � � ;xn) 2 Rd�n is the set of n normalized data
points xi 2 [0; 1]d, from the index set V , and ytrain = (y1;� � �; yn) 2 fy 2 f�1; �2; � � � ; �Cgg with
f�jgCj=1 2 [0; 1].

The additive perturbation model. Following [32] we model data augmentation as an arbitrary
bounded additive perturbation �, with k�k� �0. For a given �0 and the set of all possible transforma-
tions A, we study the transformations selected from S � A satisfying

S = fTi 2 A j kTi(x)� xk� �0 8x 2Xtraing: (1)

While the additive perturbation model cannot represent all augmentations, most real-world augmenta-
tions are bounded to preserve the regularities of natural images (e.g. AutoAugment [7] finds that a 6
degree rotation is optimal for CIFAR10). Thus, under local smoothness of images, additive pertur-
bation can model bounded transformations such as small rotations, crops, shearing, and pixel-wise
transformations like sharpening, blurring, color distortions, structured adversarial perturbation [24].
As such, we see the effects of additive augmentation on the singular spectrum holds even under

3



real-world augmentation settings (c.f. Fig. 3 in the Appendix). However, this model is indeed limited
when applied to augmentations that cannot be reduced to perturbations, such as horizontal/vertical
flips and large translations. We extend our theoretical analysis to augmentations modeled as arbitrary
linear transforms (e.g. as mentioned, horizontal flips) in B.5.

The set of augmentations at iteration t generating r augmented examples per data point can be
specified, with abuse of notation, as Dtaug = f

Sr
i=1 (T ti (Xtrain);ytrain)g, where jDtaugj= rn and

T ti (Xtrain) transforms all the training data points with the set of transformations T ti � S at iteration
t. We denoteXt

aug = f
Sr
i=1 T

t
i (Xtrain)g and ytaug = f

Sr
i=1 ytraing.

Training on the augmented data. Let f(W ;x) be an arbitrary neural network with m vectorized
(trainable) parameters W2Rm. We assume that the network is trained using (stochastic) gradient
descent with learning rate � to minimize the squared loss L over the original and augmented training
examples Dt = fDtrain [ Dtaugg with associated index set V t, at every iteration t. I.e.,

L(W t;X) :=
1

2

X
i2V t
Li(W t;xi) :=

1

2

X
(xi;yi)2Dt

kf(W t;xi)� yik22: (2)

The gradient update at iteration t is given by

W t+1 = W t � �rL(W t;X); s.t. rL(W t;X) = J T (W t;X)(f(W t;X)� y); (3)

where Xt = fXtrain [Xt
augg and yt = fytrain [ ytaugg are the set of original and augmented

examples and their labels, J (W ;X) 2 Rn�m is the Jacobian matrix associated with f , and
rt = f(W t;X)� y is the residual.

We further assume that J is smooth with Lipschitz constant L. I.e., kJ (W ;xi)�J (W ;xj)k�
Lk xi � xjk 8 xi;xj 2 X : Thus, for any transformation Tj 2 S, we have kJ (W ;xi)�
J (W ; Tj(xi))k� L�0. Finally, denoting J =J (W;Xtrain) and ~J = J (W;Tj(Xtrain)),we get
~J=J +E, where E is the perturbation matrix withkEk2�kEkF�

p
nL�0.

4 Data Augmentation Improves Learning

In this section, we analyze the effect of data augmentation on training dynamics of neural networks,
and show that data augmentation can provably prevent overfitting. To do so, we leverage the recent
results that characterize the training dynamics based on properties of neural network Jacobian and the
corresponding Neural Tangent Kernel (NTK) [16] defined as � = J (W ;X)J (W ;X)T . Formally:

rt=

nX
i=1

(1� ��i)(uiuTi )rt�1=

nX
i=1

(1� ��i)t(uiuTi )r0; (4)

where � = U�UT =
P
i=1 �iuiu

T
i is the eigendecomposition of the NTK [1]. Although the

constant NTK assumption holds only in the infinite width limit, [21] found close empirical agreement
between the NTK dynamics and the true dynamics for wide but practical networks, such as wide
ResNet architectures [41]. Eq. (4) shows that the training dynamics depend on the alignment of the
NTK with the residual vector at every iteration t. Next, we prove that for small perturbations �0,
data augmentation prevents overfitting and improves generalization by proportionally enlarging and
perturbing smaller eigenvalues of the NTK relatively more, while preserving its prominent directions.

4.1 Effect of Augmentation on Eigenvalues of the NTK

We first investigate the effect of data augmentation on the singular values of the Jacobian, and use
this result to bound the change in the eigenvalues of the NTK. To characterize the effect of data
augmentation on singular values of the perturbed Jacobian ~J , we rely on Weyl’s theorem [39]
stating that under bounded perturbations E, no singular value can move more than the norm of the
perturbations. Formally, j~�i � �ij� kEk2, where ~�i and �i are the singular values of the perturbed
and original Jacobian respectively. Crucially, data augmentation affects larger and smaller singular
values differently. Let P be orthogonal projection onto the column space of J T , and P? = I�P be
the projection onto its orthogonal complement subspace. Then, the singular values of the perturbed

4



(a) MNIST - ��i (b) CIFAR - ��i (c) MNIST - Subs. Angle (d) CIFAR - Sub. Angle

Figure 1: Effect of augmentations on the singular spectrum of the network Jacobian of ResNet20
trained on CIFAR10, and a MLP on MNIST, trained till epoch 15. (a), (b) Difference in singular
values and (c), (d) singular subspace angles between the original and augmented data with bounded
perturbations with �0 = 8 and �0 = 16 for different ranges of singular values. Note that augmentations
with larger bound �0 results in larger perturbations to the singular spectrum.

Jacobian ~J T are ~�2
i = (�i + �i)

2 + �2
i , where j�ij� kPEk2, and �min(P?E) � �i � kP?Ek2,

�min the smallest singular value of J T [36]. Since the eigenvalues of the projection matrix P are
either 0 or 1, as the number of dimensions m grows, for bounded perturbations we get that on average
�2
i = O(1) and �2

i = O(m). Thus, the second term dominates and increase of small singular values
under perturbation is proportional to

p
m. However, for larger singular values, first term dominates

and hence ~�i � �i �= �i. Thus in general, small singular values can become proportionally larger,
while larger singular values remain relatively unchanged. The following Lemma characterizes the
expected change to the eignvalues of the NTK.
Lemma 4.1. Data augmentation as additive perturbations bounded by small �0 results in the
following expected change to the eigenvalues of the NTK:

E[~�i] = E[~�2
i ] = �2

i + �i(1� 2pi)kEk+kEk2=3 (5)

where pi := P( ~�i � �i < 0) is the probability that �i decreases as a result of data augmentation,
and is smaller for smaller singular values.
The proof can be found in Appendix A.1.

Next, we discuss the effect of data augmentation on singular vectors of the Jacobian and show that
it mainly affects the non-prominent directions of the Jacobian spectrum, but to a smaller extent
compared to the singular values.

4.2 Effect of Augmentation on Eigenvectors of the NTK

Here, we focus on characterizing the effect of data augmentation on the eigenspace of the NTK.
Let the singular subspace decomposition of the Jacobian be J = U�V T . Then for the NTK, we
have � = JJ T = U�V TV �UT = U�2UT (since V TV = I). Hence, the perturbation of the
eigenspace of the NTK is the same as perturbation of the left singular subspace of the Jacobian J .
Suppose �i are singular values of the Jacobian. Let the perturbed Jacobian be ~J = J + E, and
denote the eigengap 
0 = minf�i � �i+1 : i = 1; � � � ; rg where �r+1 := 0. Assuming 
0 � 2kEk2,
a combination of Wedin’s theorem [38] and Mirsky’s inequality [26] implies

kui � ~uik� 2
p

2kEk=
0: (6)

This result provides an upper-bound on the change of every left singular vectors of the Jacobian.

However as we discuss below, data augmentation affects larger and smaller singular directions
differently. To see the effect of data augmentation on every singular vectors of the Jacobian, let
the subspace decomposition of Jacobian be J = U�V T = Us�sV

T
s + Un�nV

T
n , where Us

associated with nonzero singular values, spans the column space of J , which is also called the
signal subspace, and Un, associated with zero singular values (�n = 0), spans the orthogonal space
of Us, which is also called the noise subspace. Similarly, let the subspace decomposition of the
perturbed Jacobian be ~J = ~U ~� ~V T = ~Us ~�s

~V T
s + ~Un ~�n

~V T
n , and ~Us = Us + �Us, where �Us

is the perturbation of the singular vectors that span the signal subspace. Then the following general
first-order expression for the perturbation of the orthogonal subspace due to perturbations of the
Jacobian characterize the change of the singular directions: �Us = UnU

T
n EVs�

�1
s [23]. We

see that singular vectors associated to larger singular values are more robust to data augmentation,
compared to others. Note that in general singular vectors are more robust than singular values.

5



Fig. 1 shows the effect of perturbations with� 0 = 8 ; 16 on singular values and singular vectors of the
Jacobian matrix for a 1 hidden layer MLP trained on MNIST, and ResNet20 trained on CIFAR10. As
calculating the entire Jacobian spectrum is computationally prohibitive, data is subsampled from 3
classes. We report the effect of other real-world augmentation techniques, such as random crops, �ips,
rotations and Autoaugment [7] - which includes translations, contrast, and brightness transforms - in
Appendix C. We observe that data augmentation increases smaller singular values relatively more.
On the other hand, it affects prominent singular vectors of the Jacobian to a smaller extent.

4.3 Augmentation Improves Training & Generalization

Recent studies have revealed that the Jacobian matrix of common neural networks is low rank. That is
there are a number of large singular values and the rest of the singular values are small. Based on this,
the Jacobian spectrum can be divided into information and nuisance spaces [31]. Information space
is a lower dimensional space associated with the prominent singular value/vectors of the Jacobian.
Nuisance space is a high dimensional space corresponding to smaller singular value/vectors of the
Jacobian. While learning over information space is fast and generalizes well, learning over nuisance
space is slow and results in over�tting [31]. Importantly, recent theoretical studies connected the
generalization performance to small singular values (of the information space) [1].

Our results show that label-preserving additive perturbations relatively enlarge the smaller singular
values of the Jacobian in astochasticway and with a high probability. This bene�ts generalization in
2 ways. First, this stochastic behavior prevents over�tting along any particular singular directionin
the nuisance space, as stochastic perturbation of thesmallestsingular values results in a stochastic
noise to be added to the gradient at every training iteration. This prevents over�tting (thus a larger
training loss as shown in Appendix D.5), and improves generalization [8, 9]. Theorem B.1 in
the Appendix characterizes the expected training dynamics resulted by data augmentation. Second,
additive perturbations improve the generalization by enlarging the smaller (useful) singular values that
lie in theinformation space, while preserving eigenvectors. Hence, it enhances learning along these
(harder to learn) components. The following Lemma captures the improvement in the generalization
performance, as a result of data augmentation.

Lemma 4.2. Assume gradient descent with learning rate� is applied to train a neural network
with constant NTK and Lipschitz constantL , on data points augmented with additive perturbations
bounded by� 0 as de�ned in Sec. 3. Let� min be the minimum singular value of JacobianJ associated
with training dataX train . With probability1 � � , generalization error of the network trained with
gradient descent on augmented dataX aug enjoys the following bound:

s
2

(� min +
p

nL� 0)2 + O
�

log
1
�

�
: (7)

The proof can be found in Appendix A.2.

5 Effective Subsets for Data Augmentation

Here, we focus on identifying subsets of data that when augmented similarly improve generalization
and prevent over�tting. To do so, our key idea is to �nd subsets of data points that when augmented,
closely capture the alignment of the NTK (or equivalently the Jacobian) corresponding to the
full augmented data with the residual vector,J (W t ; X t

aug )T r t
aug . If such subsets can be found,

augmenting only the subsets will change the NTK and its alignment with the residual in a similar way
as that of full data augmentation, and will result in similar improved training dynamics. However,
generating the full set of transformationsX t

aug is often very expensive, particularly for strong
augmentations and large datasets. Hence, generating the transformations, and then extracting the
subsets may not provide a considerable overall speedup.

In the following, we show that weighted subsets (coresets)S that closely estimate the alignment of the
Jacobian associated to the original data with the residual vectorJ T (W t ; X train )r train can closely
estimate the alignment of the Jacobian of the full augmented data and the corresponding residual
J T (W t ; X t

aug )r t
aug . Thus, the most effective subsets for augmentation can be directly found from

the training data. Formally, subsetsSt
� weighted by
 t

S that capture the alignment of the full Jacobian

6



Algorithm 1 CORESETS FOREFFICIENT DATA AUGMENTATION

Require: The datasetD = f (x i ; yi )gn
i =1 , number of iterationsT.

Ensure: Output model parametersW T .
1: for t = 1 ; � � � ; T do
2: X t

aug = ; .
3: for c 2 f 1; � � � ; Cg do
4: St

c = ; , [GS t
c
]i: = c11 8i .

5: while kGS t
c
kF � � do . Extract a coreset from classc by solving Eq. (9)

6: St
c = f St

c [ arg maxs2 V nS t
c
(kGS t

c
kF �k G f S t

c [f sggkF )g
7: end while
8: 
 j =

P
i 2 Vc

I [j =arg min j 02 SkJ T (W t ; x i )r i �J T (W t ; x j 0)r j 0k] . Coreset weights
9: X t

aug = f X aug [ f[ r
i =1 T t

i (X S t
c
)gg . Augment the coreset

10: � t
j = 
 t

j =r
11: end for
12: Update the parametersW t using weighted gradient descent onX t

aug or f X train [ X t
aug g.

13: end for

with the residual by an error of at most� can be found by solving the following optimization problem:

St
� = arg min

S� V
jSj s.t. kJ T (W t ; X t )r t � diag(
 t

S )J T (W t ; X t
S )r t

Sk� �: (8)

Solving the above optimization problem is NP-hard. However, as we discuss in the Appendix A.5, a
near optimal subset can be found by minimizing the Frobenius norm of a matrixGS , in which thei th

row contains the euclidean distance between data pointi and its closest element in the subsetS, in
the gradient space. Formally,[GS ]i: = min j 02 SkJ T (W t ; x i )r i � J T (W t ; x j 0)r j 0k. WhenS = ; ,
[GS ]i: = c11, wherec1 is a big constant. Intuitively, such subsets contain the set of medoids of the
dataset in the gradient space. Medoids of a dataset are de�ned as the most centrally located elements
in the dataset [18]. The weight of every elementj 2 S is the number of data points closest to it in
the gradient space, i.e.,
 j =

P
i 2 V I [j = arg min j 02 SkJ T (W t ; x i )r i � J T (W t ; x j 0)r j 0k]. The

set of medoids can be found by solving the followingsubmodular3 cover problem:

St
� = arg min S� V jSj s:t: kGSkF � �: (9)

The classical greedy algorithm provides a logarithmic approximation for the above submodular
maximization problem, i.e.,jSj� (1 + ln (n)) . It starts with the empty setS0 = ; , and at each
iteration� , it selects the training examples 2 V n S� � 1 that maximizes the marginal gain, i.e.,
S� = S� � 1 [ f arg maxs2 V nS� � 1

(kGS� � 1 kF �k G f S� � 1 [f sggkF )g. The O(nk) computational
complexity of the greedy algorithm can be reduced toO(n) using randomized methods [28] and
further improved using lazy evaluation [25] and distributed implementations [30]. The rows of the
matrixG can be ef�ciently upper-bounded using the gradient of the loss w.r.t. the input to the last
layer of the network, which has been shown to capture the variation of the gradient norms closely
[17]. The above upper-bound is only marginally more expensive than calculating the value of the loss.
Hence the subset can be found ef�ciently. Better approximations can be obtained by considering
earlier layers in addition to the last two, at the expense of greater computational cost.

At every iterationt during training, we select a coreset from every classc 2 [C] separately, and apply
the set of transformationsf T t

i gr
i =1 only to the elements of the coresets, i.e.,X t

aug = f[ r
i =1 T t

i (X S t )g.
We divide the weight of every elementj in the coreset equally among its transformations, i.e. the
�nal weight � t

j = 
 t
j =r if j 2 St . We apply the gradient descent updates in Eq.(3) to the weighted

Jacobian matrix ofX t = X t
aug or X t = f X train [ X t

aug g (viewing � t as� t 2 Rn ) as follows:

W t +1 = W t � �
�
diag(� t )J (W t ; X t )

� T
r t : (10)

The pseudocode is illustrated in Alg. 1.

The following Lemma upper bounds the difference between the alignment of the Jacobian and residual
for augmented coreset vs. full augmented data.

3A set functionF : 2V ! R+ is submodular ifF (S [ f eg) � F (S) � F (T [ f eg) � F (T ); for any
S � T � V ande 2 V n T . F is monotoneif F (ejS) � 0 for anye2 V nS andS � V .

7



Table 1: Training ResNet20 (R20) and WideResnet-28-10 (W2810) on CIFAR10 (C10) using small
subsets, and ResNet18 (R18) on Caltech256 (Cal). We compare accuracies of training on and strongly
(and weakly) augmenting subsets. For CIFAR10, training and augmenting subsets selected by max-
loss performed poorly and did not converge. Average number of examples per class in each subset is
shown in parentheses. Appendix D.4 shows baseline accuracies from only weak augmentations.
Model/Data C10/R20 C10/W2810 Cal/R18

Subset 0.1% (5) 0.2% (10) 0.5% (25) 1% (50) 1% (50) 5% (3) 10% (6) 20% (12) 30% (18) 40% (24) 50% (30)

Max-loss < 15% < 15% < 15% < 15% < 15% 19:2 50:6 71:3 75:6 77:3 78:6
Random 33:5 42:7 58:7 74:4 57:7 41:5 61:8 72:5 75:7 77:6 78:5

Ours 37:8 45:1 63:9 74:7 62:1 52:7 65:4 73:1 76:3 77:7 78:9

Lemma 5.1. Let S be a coreset that captures the alignment of the full data NTK with residual
with an error of at most� as in Eq. 8. Augmenting the coreset with perturbations bounded by
� 0 � 1

n
3
2

p
L

captures the alignment of the fully augmented data with the residual by an error of at most

kJ T (W t ; X aug )r � diag(� t )J t (W t ; X Saug )r Sk� � + O
� p

L
�

: (11)

5.1 Coreset vs. Max-loss Data Augmentation

In the initial phase of training the NTK goes through rapid changes. This determines the �nal basin
of convergence and network's �nal performance [11]. Regularizing deep networks by weight decay
or data augmentation mainly affects this initial phase and matters little afterwards [12]. Crucially,
augmenting coresets that closely capture the alignment of the NTK with the residual during this
initial phase results in less over�tting and improved generalization performance. On the other hand,
augmenting points with maximum loss early in training decreases the alignment between the NTK
and the label vector and impedes learning and convergence. After this initial phase when the network
has good prediction performance, the gradients for majority of data points become small. Here, the
alignment is mainly captured by the elements with the maximum loss. Thus, as training proceeds, the
intersection between the elements of the coresets and examples with maximum loss increases. We
visualize this pattern in Appendix D.11. The following Theorem characterizes the training dynamics
of training on the full data and the augmented coresets, using our additive perturbation model.

Theorem 5.2. Let L i be � -smooth,L be � -smooth and satisfy the� -PL condition, that is for
� > 0, krL (W )k2 � � L (W ) for all weightsW . Let f be Lipschitz inX with constantL 0, and
�L = max f L; L 0g. Let G0 be the gradient at initializaion,� max the maximum singular value of
the coreset Jacobian at initialization. Choosing� 0 � 1

� max

p
�Ln

and running SGD on full data with
augmented coreset using constant step size� = �

�� , result in the following bound:

E[krL f + caug (W t )k] �
1

p
�

�
1 �

��
2

� t
2

 

2G0 + � + O

 p
�L

� max

!!

:

The proof can be found in Appendix A.4.

Theorem 5.2 shows that training on full data and augmented coresets converges to a close neighbor-
hood of the optimal solution, with the same rate as that of training on the fully augmented data. The
size of the neighborhood depends on the error of the coreset� in Eq. (8), and the error in capturing
the alignment of the full augmented data with the residual derived in Lemma 5.1. The �rst term
decrease as the size of the coreset grows, and the second term depends on the network structure.

We also analyze convergence of training only on the augmented coresets, and augmentations modelled
as arbitrary linear transformations using a linear model [40] in Appendix B.5.

6 Experiments

Setup and baselines.We extensively evaluate the performance of our approach in three different
settings. Firstly, we consider training only on coresets and their augmentations. Secondly, we
investigate the effect of adding augmented coresets to the full training data. Finally, we consider
adding augmented coresets to random subsets. We compare our coresets with max-loss and random
subsets as baselines. For all methods, we select a new augmentation subset everyR epochs. We note
that the original max-loss method [20] selects points using a fully trained model, hence it can only

8



Table 2: Caltech256/ResNet18 with same set-
tings as Tab. 1 with default weak augmenta-
tions but varying strong augmentations.

Augmentation Random Ours

30% 40% 50% 30% 40% 50%

CutOut 43.32 62.84 76.2155.53 66.10 76.91
AugMix 40.77 61.81 72.1752.72 64.91 73.01
Perturb 48.51 66.20 75.3458.29 67.47 76.50

Table 3: Training on full data and strongly (and
weakly) augmenting random subsets, max-loss
subsets and coresets on TinyImageNet/ResNet50,
R = 15.

Random Max-loss Ours

20% 30% 50% 20% 30% 50% 20% 30% 50%

50.97 52.00 54.92 51.30 52.34 53.3751.99 54.30 55.16

Table 4: Accuracy improvement by augmenting subsets found by our method vs. max-loss and
random, over improvement of full (weak and strong) data augmentation (F.A.) compared to weak
augmentation only (W.A.). The table shows the results for training on CIFAR10(C10)/ResNet20
(R20), SVHN/ResNet32(R32), and CIFAR10-Imbalanced(C10-IB)/ResNet32, withR = 20.

Dataset W.A. F.A. Random Max-loss Ours

Acc Acc 5% 10% 30% 5% 10% 30% 5% 10% 30%

C10/R20 89:46 93:50 21:8% 39:9% 65:6% 32:9% 47:8% 73:5% 34:9% 51:5% 75:0%
C10-IB/R32 87:08 92:48 25:9% 45:2% 74:6% 31:3% 39:6% 74:6% 37:4% 49:4% 74:8%
SVHN/R32 95:68 97:07 5:8% 36:7% 64:1% 35:3% 49:7% 76:4% 31:7% 48:3% 80:0%

select one subset throughout training. To maximize fairness, we modify our max-loss baseline to select
a new subset at every subset selection step. For all experiments, standard weak augmentations (random
crop and horizontal �ips) are always performed on both the original and strongly augmented data.

6.1 Training on Coresets and their Augmentations

First, we evaluate the effectiveness of our approach for training on the coresets and their augmenta-
tions. Our main goal here is to compare the performance of training on and augmenting coresets vs.
random and max-loss subsets. Tab. 1 shows the test accuracy for training ResNet20 and Wide-ResNet
on CIFAR10 when we only train on small augmented coresets of size0:1%to 1%selected at every
epoch (R = 1 ), and training ResNet18 on Caltech256 using coresets of size5%to 50%with R = 5 .
We see that the augmented coresets outperform augmented random subsets by a large margin, particu-
larly when the size of the subset is small. On Caltech256/ResNet18, training on and augmenting 10%
coresets yields 65.4% accuracy, improving over random by 5.8%, and over only weak augmentation
by 17.4%. This clearly shows the effectiveness of augmenting the coresets. Note that for CIFAR10
experiments, training on the augmented max-loss points did not even converge in absence of full data.

Generalization across augmentation techniques.We note that our coresets are not dependent on
the type of data augmentation. To con�rm this, we show the superior generalization performance of
our method in Tab. 2 for training ResNet18 withR = 5 on coresets vs. random subsets of Caltech256,
augmented with CutOut [10], AugMix [14], and noise perturbations (color jitter, gaussian blur). For
example, on30%subsets, we obtain 28.2%, 29.3%, 20.2% relative improvement over augmenting
random subsets when using CutOut, AugMix, and noise perturbation augmentations, respectively.

6.2 Training on Full Data and Augmented Coresets

Next, we study the effectiveness of our method for training on full data and augmented coresets.
Tab. 4 demonstrates the percentage of accuracy improvement resulted by augmenting subsets of
size 5%, 10%, and 30% selected from our method vs. max-loss and random subsets, over that of
full data augmentation. We observe that augmenting coresets effectively improves generalization,
and outperforms augmenting random and max-loss subsets across different models and datasets.
For example, on 30% subsets, we obtain 13.1% and 2.3% relative improvement over random and
max-loss on average. We also report results on TinyImageNet/ResNet50 (R =15) in Tab. 3, where
we show that augmenting coresets outperforms max-loss and random baselines, e.g. by achieving
3.7% and 4.4% relative improvement over 30% max-loss and random subsets, respectively.

Training speedup. In Fig. 2, we measure the improvement in training time in the case of training on
full data and augmenting subsets of various sizes. While our method yields similar or slightly lower
speedup to the max-loss and random baselines, our resulting accuracy outperforms the baselines
on average. For example, for SVHN/Resnet32 using30%coresets, we sacri�ce11%of the relative
speedup to obtain an additional24:8%of the relative gain in accuracy from full data augmentation,
compared to random baseline. Notably, we get 3.43x speedup for training on full data and augmenting

9



Table 5: Training ResNet20 on CIFAR10 with50%label noise,R = 20. Accuracy without strong
augmentation is70:72 � 0:20 and the accuracy of full (weak and strong) data augmentation is
75:87� 0:77. Note that augmenting50%subsets outperforms augmenting the full data (marked�� ).

Subset Random Max-loss Ours

10% 72:32 � 0:14 71:83 � 0:13 73:02 � 1:06
30% 74:46 � 0:27 72:45 � 0:48 74:67 � 0:15
50% 75:36 � 0:05 73:23 � 0:72 76:20 � 0:75��

30% coresets, while obtaining 75% of the improvement of full data augmentation. We provide wall-
clock times for �nding coresets from Caltech256 and TinyImageNet in Appendix D.7.

(a) CIFAR10/ResNet20 (b) CIFAR10/ResNet20 (c) SVHN/ResNet32 (d) SVHN/ResNet32
Figure 2: Accuracy improvement and speedups by augmenting subsets found by our method vs.
max-loss and random on (a), (b) ResNet20/CIFAR10 and (c), (d) ResNet32/SVHN.
Augmenting noisy labeled data.Next, we evaluate the robustness of our coresets to label noise.
Tab. 5 shows the result of augmenting coresets vs. max-loss and random subsets of different sizes
selected from CIFAR10 with 50% label noise on ResNet20. Notably, our method not only outperforms
max-loss and random baselines, but also achieves superior performance over full data augmentation.

6.3 Training on Random Data and Augmented Coresets
Finally, we evaluate the performance of our method for training on random subsets and augmenting
coresets, applicable when data is larger than the training budget. We report results on TinyImageNet
and ImageNet on ResNet50 (90 epochs,R = 15). Tab. 6 shows the results of training on random
subsets, and augmenting random subsets and coresets of the same size. We see that our results
hold for large-scale datasets, where we obtain7:9%, 4:9%, and5:3% relative improvement over
random baseline with10%, 20%, 30%subset sizes respectively on TinyImageNet, and7:6%, 2:3%,
and1:3% relative improvement over random baseline with10%, 30%, and50% subset sizes on
ImageNet. Notably, compared to AutoAugment, despite using only 30% subsets, we achieve 71.99%
test accuracy, which is 86% of the original reported accuracy, while boasting 5x speedup in training.

Table 6: Training on random subsets and strongly (and weakly) augmenting random and max loss
subsets vs coresets for TinyImageNet (left) and ImageNet (right) with ResNet50.

Random Max-loss Ours

10% 20% 30% 10% 20% 30% 10% 20% 30%

28.64 38.97 44.10 27.6441.40 45.75 30.90 40.88 46.42

Random Maxloss Ours

10% 30% 50% 10% 30% 50% 10% 30% 50%

63.67 70.39 72.35 65.43 71.55 72.7768.53 71.99 73.28

7 Conclusion
We showed that data augmentation improves training and generalization by relatively enlarging
and perturbing the smaller singular values of the neural network Jacobian while preserving its
prominent directions. Then, we proposed a framework to iteratively extract small coresets of training
data that when augmented, closely capture the alignment of the fully augmented Jacobian with the
label/residual vector. We showed the effectiveness of augmenting coresets in providing a superior
generalization performance when added to the full data or random subsets, in presence of noisy labels,
or as a standalone subset. Under local smoothness of images, our additive perturbation can be applied
to model many bounded transformations such as small rotations, crops, shearing, and pixel-wise
transformations like sharpening, blurring, color distortions, structured adversarial perturbation [24].
However, the additive perturbation model is indeed limited when applied to augmentations that cannot
be reduced to perturbations, such as horizontal/vertical �ips and large translations. Further theoretical
analysis of complex data augmentations is indeed an interesting direction for future work.

8 Acknowledgements
This research was supported in part by the National Science Foundation CAREER Award 2146492,
and the UCLA-Amazon Science Hub for Humanity and AI.

10



References

[1] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. InInternational
Conference on Machine Learning, pages 322–332. PMLR, 2019.

[2] Shumeet Baluja and Ian Fischer. Adversarial transformation networks: Learning to generate
adversarial examples.arXiv preprint arXiv:1703.09387, 2017.

[3] Raef Bassily, Mikhail Belkin, and Siyuan Ma. On exponential convergence of sgd in non-convex
over-parametrized learning.arXiv preprint arXiv:1811.02564, 2018.

[4] Chris M Bishop. Training with noise is equivalent to tikhonov regularization.Neural computa-
tion, 7(1):108–116, 1995.

[5] Christopher Bowles, Roger Gunn, Alexander Hammers, and Daniel Rueckert. Gansfer learning:
Combining labelled and unlabelled data for gan based data augmentation.arXiv preprint
arXiv:1811.10669, 2018.

[6] Shuxiao Chen, Edgar Dobriban, and Jane H Lee. Invariance reduces variance: Understanding
data augmentation in deep learning and beyond.arXiv preprint arXiv:1907.10905, 2019.

[7] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation strategies from data. InProceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 113–123, 2019.

[8] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical
automated data augmentation with a reduced search space. InProceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pages 702–703, 2020.

[9] Tri Dao, Albert Gu, Alexander Ratner, Virginia Smith, Chris De Sa, and Christopher Ré. A
kernel theory of modern data augmentation. InInternational Conference on Machine Learning,
pages 1528–1537. PMLR, 2019.

[10] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural
networks with cutout.arXiv preprint arXiv:1708.04552, 2017.

[11] Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M Roy,
and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape
geometry and the time evolution of the neural tangent kernel.Advances in Neural Information
Processing Systems, 33, 2020.

[12] Aditya Sharad Golatkar, Alessandro Achille, and Stefano Soatto. Time matters in regularizing
deep networks: Weight decay and data augmentation affect early learning dynamics, matter
little near convergence.Advances in Neural Information Processing Systems, 32:10678–10688,
2019.

[13] Gregory Grif�n, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. 2007.

[14] Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. Augmix: A simple data processing method to improve robustness and uncertainty.
arXiv preprint arXiv:1912.02781, 2019.

[15] Philip TG Jackson, Amir Atapour Abarghouei, Stephen Bonner, Toby P Breckon, and Boguslaw
Obara. Style augmentation: data augmentation via style randomization. InCVPR Workshops,
volume 6, pages 10–11, 2019.

[16] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks.arXiv preprint arXiv:1806.07572, 2018.

[17] Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning
with importance sampling. InInternational conference on machine learning, pages 2525–2534.
PMLR, 2018.

11



[18] L Kaufman, PJ Rousseeuw, and Y Dodge. Clustering by means of medoids in statistical data
analysis based on the, 1987.

[19] Byungju Kim and Junmo Kim. Adjusting decision boundary for class imbalanced learning.
IEEE Access, 8:81674–81685, 2020.

[20] Michael Kuchnik and Virginia Smith. Ef�cient augmentation via data subsampling. InInterna-
tional Conference on Learning Representations, 2018.

[21] Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Roman Novak, Jascha
Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear
models under gradient descent. InNeurIPS, 2019.

[22] Joseph Lemley, Shabab Bazrafkan, and Peter Corcoran. Smart augmentation learning an optimal
data augmentation strategy.Ieee Access, 5:5858–5869, 2017.

[23] Fu Li, Hui Liu, and Richard J Vaccaro. Performance analysis for doa estimation algorithms:
uni�cation, simpli�cation, and observations.IEEE Transactions on Aerospace and Electronic
Systems, 29(4):1170–1184, 1993.

[24] Calvin Luo, Hossein Mobahi, and Samy Bengio. Data augmentation via structured adversarial
perturbations.arXiv preprint arXiv:2011.03010, 2020.

[25] Michel Minoux. Accelerated greedy algorithms for maximizing submodular set functions. In
Optimization techniques, pages 234–243. Springer, 1978.

[26] Leon Mirsky. Symmetric gauge functions and unitarily invariant norms.The quarterly journal
of mathematics, 11(1):50–59, 1960.

[27] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets.arXiv preprint
arXiv:1411.1784, 2014.

[28] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and Andreas
Krause. Lazier than lazy greedy. InTwenty-Ninth AAAI Conference on Arti�cial Intelligence,
2015.

[29] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-ef�cient training of
machine learning models. InInternational Conference on Machine Learning, pages 6950–6960.
PMLR, 2020.

[30] Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed submodu-
lar maximization: Identifying representative elements in massive data. InAdvances in Neural
Information Processing Systems, pages 2049–2057, 2013.

[31] Samet Oymak, Zalan Fabian, Mingchen Li, and Mahdi Soltanolkotabi. Generalization guaran-
tees for neural networks via harnessing the low-rank structure of the jacobian.arXiv preprint
arXiv:1906.05392, 2019.

[32] Shashank Rajput, Zhili Feng, Zachary Charles, Po-Ling Loh, and Dimitris Papailiopoulos. Does
data augmentation lead to positive margin? InInternational Conference on Machine Learning,
pages 5321–5330. PMLR, 2019.

[33] Alexander J Ratner, Henry R Ehrenberg, Zeshan Hussain, Jared Dunnmon, and Christopher
Ré. Learning to compose domain-speci�c transformations for data augmentation.Advances in
neural information processing systems, 30:3239, 2017.

[34] Ruoqi Shen, Sébastien Bubeck, and Suriya Gunasekar. Data augmentation as feature manipula-
tion: a story of desert cows and grass cows.arXiv preprint arXiv:2203.01572, 2022.

[35] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep
learning.Journal of Big Data, 6(1):1–48, 2019.

[36] GW Stewart. A note on the perturbation of singular values.Linear Algebra and Its Applications,
28:213–216, 1979.

12



[37] Stefan Wager, Sida Wang, and Percy Liang. Dropout training as adaptive regularization.arXiv
preprint arXiv:1307.1493, 2013.

[38] Per-Åke Wedin. Perturbation bounds in connection with singular value decomposition.BIT
Numerical Mathematics, 12(1):99–111, 1972.

[39] Hermann Weyl. The asymptotic distribution law of the eigenvalues of linear partial differential
equations (with an application to the theory of cavity radiation).mathematical annals, 71(4):441–
479, 1912.

[40] Sen Wu, Hongyang Zhang, Gregory Valiant, and Christopher Ré. On the generalization effects of
linear transformations in data augmentation. InInternational Conference on Machine Learning,
pages 10410–10420. PMLR, 2020.

[41] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. InBritish Machine Vision
Conference 2016. British Machine Vision Association, 2016.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately re�ect the paper's
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] In Supp
Mat.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you're

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identi�able

information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13



Supplementary Material:
Data-Ef�cient Augmentation for Training Neural Networks

A Proof of Main Results

A.1 Proof for Lemma 4.1

Proof. Let � i := ~� i � � i , whereP(� i < 0) = pi . Assuming uniform probability between�k E k to
0, and between0 to kE k, we have pdf� i (x) for � i :

� i (x) =

8
><

>:

pi
kE k ; if � k E k� x < 0
1� pi
kE k ; 0 � x � k E k
0; otherwise

(12)

Taking expectation,

E(~� i � � i ) = E(� i ) =

1Z

�1

x� i (x)dx (13)

=

0Z

�k E k

x
pi

kE k
dx +

Z kE k

0
x

1 � pi

kE k
dx (14)

= �
kE kpi

2
+

(1 � pi )kE k
2

(15)

=
(1 � 2pi )kEk

2
(16)

We also have

E(� 2
i ) =

1Z

�1

x2� i (x)dx (17)

=

0Z

�k E k

x2 pi

kE k
dx +

Z kE k

0
x2 1 � pi

kE k
dx (18)

=
kE k2pi

3
+

(1 � pi )kE k2

3
(19)

=
kE k2

3
(20)

Thus, we have

E(~� i ) = E(~� 2
i ) (21)

= E(( � i + � i )2) (22)

= E(� 2
i + 2 � i � i + � 2

i ) (23)

= � 2
i + 2 � i E[� i ] + E[� 2

i ] (24)

= � 2
i + 2 � i

(1 � 2pi )kE k
2

+
kE k2

3
(25)

= � 2
i + � i (1 � 2pi )kE k+

kE k2

3
(26)

14



A.2 Proof of Corollary 4.2

Under the assumptions of Theorem 5.1 of [1], i.e. where the minimum eigenvalue of the NTK is
� min (J J T ) � � 0 for a constant� 0 > 0, and training dataX of sizen sampled i.i.d. from distribu-
tion D and 1-Lipschitz lossL , we have that with probability�=3, training the over-parameterized

neural network with gradient descent fort � 

�

1
n� 0

log n
�

�
iterations results in the following

population lossL D (generalization error)

L D (W t ; X ) �

r
2y T (J J T ) � 1y

n
+ O

� log n
� 0 �

n

�
; (27)

with high probability of at least1 � � over random initialization and training samples.

Hence, using� min ; � min to denote minimum eigen and singular value respectively of the NTK
corresponding to full data, we get

L D train (W t ; X train ) �

s
2 1

� min
kyk2

n
+ O

�
log

1
�

�
(28)

�

s
2

� 2
min

+ O
�

log
1
�

�
: (29)

For augmented datasetX aug , we have~� i � � i +
p

nL� 0, hence the improvement in the generalization
error is at most

L D aug (W t ; X aug ) �

s
2

(� min +
p

nL� 0)2 + O
�

log
1
�

�
: (30)

Combining these two results, we obtain Corollary 4.2.

A.3 Proof of Lemma 5.1

Proof.

kJ T (W t ; X aug )r � diag(� t )J t (W t ; X Saug )r Sk (31)

= k(J T (W t ; X ) + E )r � (diag(� t )J t (W t ; X S ) + E S )r Sk (32)

� k (J T (W t ; X )r � diag(� t )J t (W t ; X S )r S ) + Er � E S r Sk (33)

� k (J T (W t ; X )r � diag(� t )J t (W t ; X S )r S )k+ kEr k+ kE S r Sk (34)
Applying de�nition of coresets, we obtain

k(J T (W t ; X )r � diag(� t )J t (W t ; X S )r S )k+ kEr k+ kE S r Sk (35)
� � + kEr k+ kE S r Sk (36)

� � + 2n
3
2 L� 0 (37)

� � + 2
p

L (38)

A.4 Proof of Theorem 5.2

Proof. In this proof, as shorthand notation, we useX f andX train interchangeably. We further use
X c to represent the coreset selected from the full data, andX caug to represent the augmented coreset.

By Theorem 1 of[3], under the� -PL assumption forL and interpolation assumption (i.e. for every
sequenceW 1; W 2; : : : such thatlim t !1 L (W t ; X ) = 0 , we have that the loss for each data point
lim t !1 L (W t ; x i ) = 0 ), the convergence of SGD with constant step size is given by

E[krL (W t ; X f + caug )k2] �
�

1 �
��
2

� t
L (W 0; X f + caug ) (39)

�
1
�

�
1 �

��
2

� t
krL (W 0; X f + caug )k2 (40)

15



Using Jensen's inequality, we have

E[krL (W 0; X f + caug )k] (41)

�
q

E[krL (W t ; X f + caug )k2] (42)

�
1

p
�

�
1 �

��
2

� t
2

krL (W 0; X f + caug )k (43)

�
1

p
�

�
1 �

��
2

� t
2 �

krL (W 0; X f )k+ krL (W 0; X caug )k
�

(44)

�
1

p
�

�
1 �

��
2

� t
2 �

G0 + k(J (W 0; X c) + E )(y � f (W 0; X c + � ))k
�

(45)

�
1

p
�

�
1 �

��
2

� t
2

(46)
�
G0 + k(J (W 0; X c) + E )T (y � f (W 0; X c) � r x f (W 0; X c)T � � O (� T � )k

�
(47)

=
1

p
�

�
1 �

��
2

� t
2

(G0 + kr L (W 0; X c) � (J (W 0; X c)T (r x f (W 0; X c)T � + O(� T � ))+

(48)

E (y � f (W 0; X c + � ))k) (49)

�
1

p
�

�
1 �

��
2

� t
2

(G0 + kr L (W 0; X c) � (J (W 0; X c)T (r x f (W 0; X c)T � + O(� T � ))k+

(50)
p

2kE k) (51)

�
1

p
�

�
1 �

��
2

� t
2

(G0 + kr L (W 0; X c)k+ � max �L
p

n� 0 + � max O(n� 2
0)) +

p
2n �L� 0) (52)

=
1

p
�

�
1 �

��
2

� t
2

(G0 + kr L (W 0; X f )k+ � + � max �L
p

n� 0 + � max O(n� 2
0)) +

p
2n �L� 0)

(53)

�
1

p
�

�
1 �

��
2

� t
2

(2G0 + � + � max �L
p

n� 0 + � max O(n� 2
0)) +

p
2n �L� 0) (54)

A.5 Finding Subsets

Let S be a subset of training data points. Furthermore, assume that there is a mapping� w;S : V ! S
that for everyW assigns every data pointi 2 V to its closest elementj 2 S, i.e. j = � w;S (i ) =
arg maxj 02 S sij 0(W ), wheresij (W ) = C � kJ T (W t ; x i )r i � J T (W t ; x j )r j k is the similarity
between gradients ofi andj , andC � maxij sij (W ) is a constant. Consider a matrixG � w;S 2
Rn � m , in which every rowi contains gradient of� w (i ), i.e.,[G � w;S ]i: = J T (W t ; x � w;S ( i ) )r � w;S ( i ) .
The Frobenius norm of the matrixG � w provides an upper-bound on the error of the weighted subsetS
in capturing the alignment of the residuals of the full training data with the Jacobian matrix. Formally,

kJ T (W t ; X train )r t
train � 
 S t J T (W t ; [X train ]:S t )r S t k� k G � w;S kF ; (55)

where the weight vector
 S t 2 RjSj contains the number of elements that are mapped to every
elementj 2 S by mapping� w;S , i.e. 
 j =

P
i 2 V 1 [� w;S (i ) = j ]. Hence, the set of training points

that closely estimate the projection of the residuals of the full training data on the Jacobian spectrum
can be obtained by �nding a subsetS that minimizes the Frobenius norm of matrixG � w;S .

16



B Additional Theoretical Results

B.1 Convergence analysis for training on augmented full data

Theorem B.1. Gradient descent with learning rate� applied to a neural network with constant NTK
and Lipschitz constantL , and data pointsDaug augmented withr additive perturbations bounded by
� 0 results in the following training dynamics:

E[ky � f (X aug ; W t )k2] �
vu
u
t

nX

i =1

�
1 � �

�
� 2

i + � i (1 � 2pi )kEk+
kEk2

3

�� 2t

((u i y )2 + 2n
p

2kEk=
 0)
(56)

whereE with kE k�
p

nL� 0 is the perturbation to the Jacobian, andpi := P( ~� i � � i < 0) is the
probability that� i decreases as a result of data augmentation.

B.2 Proof of Theorem B.1

Using Jensen's inequality, we have

E
�
ky � f (X aug ; W t )k2

�
(57)

= E

2

4

vu
u
t

nX

i =1

(1 � � ~� i )2t ( ~u T
i y )2 � �

3

5 (58)

�

vu
u
t E

"
nX

i =1

(1 � � ~� i )2t ( ~u T
i y )2

#

(59)

�

vu
u
t

nX

i =1

E
h
(1 � � ~� i )2t ((u i y )2 + 2n

p
2kEk=
 0)

i
(60)

�

vu
u
t

nX

i =1

(1 � � E
h
~� i

i
)2t ((u i y )2 + 2n

p
2kEk=
 0) (61)

=

vu
u
t

nX

i =1

�
1 � �

�
� 2

i + � i (1 � 2pi )kEk+
kEk2

3

�� 2t

((u i y )2 + 2n
p

2kEk=
 0) (62)

B.3 Convergence analysis for training on the coreset and its augmentation

Theorem B.2. Let L i be� -smooth,L be� -smooth and satisfy the� -PL condition, that is for� > 0,
krL (W ; X )k2 � � L (W ; X ) for all weightsW . Let � upper-bound the normed difference in
gradients between the weighted coreset and full dataset. Assume that the networkf (W ; X ) is
Lipschitz inW , X with Lipschitz constant L and L' respectively, and�L = max f L; L 0g. Let G0
the gradient over the full dataset at initialization,� max the maximum Jacobian singular value at
initialization. Choosing perturbation bound� 0 � 1

� max

p
�Ln

where� max is the maximum singular
value of the coreset Jacobian andn is the size of the original dataset, running SGD on the coreset
and its augmentation using constant step size� = �

�� , we get the following convergence bound:

E[krL (W t ; X c+ caug )k] �
1

p
�

�
1 �

��
2

� t
2

�
2G0 + 2 � + O

� �L
� max

��
; (63)

whereX c+ caug represents the dataset containing the (weighted) coreset and its augmentation.

17



Proof. As in the proof for Theorem 5.2, we begin with the following inequality

E[krL (W t ; X c+ caug )k2] �
�

1 �
��
2

� t
L (W 0; X c+ caug ) (64)

�
1
�

�
1 �

��
2

� t
krL (W 0; X c+ caug )k2 (65)

Thus, we can write

E[krL (W 0; X c+ caug )k] (66)

�
q

E[krL (W t ; X c+ caug )k2] (67)

�
1

p
�

�
1 �

��
2

� t
2

krL (W 0; X c+ caug )k (68)

�
1

p
�

�
1 �

��
2

� t
2 �

krL (W 0; X c)k+ krL (W 0; X caug )k
�

(69)

�
1

p
�

�
1 �

��
2

� t
2 �

G0 + � + k(J (W 0; X c) + E )( � f (W 0; X c + � ))k
�

(70)

The rest of the proof is similar to that of Theorem5:2.

B.4 Lemma for eigenvalues of coreset

The following Lemma characterizes the sum of eigenvalues of the NTK associated with the coreset.
Lemma B.3. Let � be an upper bound of the normed difference in gradient of the weighted coreset
and the original dataset, i.e. for full dataX and its corresponding coresetX S with weights
 S ,
and respective residualsr , r S , we have the boundkJ T (W t ; X )r t � 
 SJ T (W t ; X S )r t

Sk� � . Let
f � i gk

i =1 be the eigenvalues of the NTK associated with the coreset. Then we have that

vu
u
t

kX

i =1

� i �
jkJ T (W t ; X )r t k� � j

kr t
Sk

:

Proof. Let singular values of coreset Jacobian be� i . LetJ T (W t ; X )r t = 
 SJ T (W t ; X S )r t
S + � S

wherek� Sk� � .

Taking Frobenius norm, we get

k
 SJ T (W t ; X S )r t
Sk= kJ T (W t ; X )r t � � Sk (71)

)k 
 SJ T (W t ; X S )kkr t
Sk� kJ T (W t ; X )r t � � Sk (72)

)k 
 SJ T (W t ; X S )k�
kJ T (W t ; X )r t � � Sk

kr t
Sk

(73)

)

vu
u
t

sX

i =1

� 2
i �

kJ T (W t ; X )r t � � Sk
kr t

Sk
(74)

)

vu
u
t

sX

i =1

� i �
kJ T (W t ; X )r t � � Sk

kr t
Sk

(75)

)

vu
u
t

sX

i =1

� i �
jkJ T (W t ; X )r t k� � j

kr t
Sk

by reverse triangle inequality (76)

We can make the following observations: For overparameterized networks, with bounded activation
functions and labels, e.g. softmax and one-hot encoding, the norm of the residual vector is bounded,

18



and the gradient norm is likely to be much larger than residual, especially when dimension of gradient
is large. In this case, the Jacobian matrix associated with small weighted coresets found by solving
Eq. (9), have large singular values.

B.5 Augmentation as Linear Transformation: Linear Model Analysis

We introduce a simpli�ed linear model to extend our theoretical analysis to augmentations modelled
as linear transformation matricesF applied to the original training data. These augmentations are
also originally studied by [40]. In this section, we speci�cally study the effect of these augmentations
using a linear model when applied to coresets.

Lemma B.4 (Augmented coreset gradient bounds: Linear). Let f be a simple linear model with
weightsW 2 Rd� C wheref (W ; x i ) = W T x i , trained on mean squared loss functionL . Let
F 2 Rd� d be a common linear augmentation matrix with normkF k with augmentationx aug

i given
by F x i . Let coreset be of sizek and full dataset be of sizen. Further assume that the predicted
label ofx i and its augmentationF x i are suf�ciently close, i.e. there exists! such thatW T (F x i )
= W T x i + zi , kzi k� ! 8i . Let � upper-bound the normed difference in gradients between the
weighted coreset and full dataset. Then, the normed difference between the gradient of the augmented
full data and augmented coreset is given by

k
X

i 2 V

rL (W ; x aug
i ) �

kX

j =1


 sj rL (W ; x aug
sj

)k� k F k(� +
p

dn! )

for some (small) constant� .

Proof. By our assumption, we can begin with,

k
X

i 2 V

rL (W ; x i ) �
kX

j =1


 sj rL (W ; x sj )k� � (77)

Furthermore, by [29], we know that sum of the coreset weights
 sj is given by
P k=1

j =1 
 sj � n.

Hence,

k
X

i 2 V

rL (W ; x aug
i ) �

kX

j =1


 sj rL (W ; x aug
sj

)k (78)

= k
X

i 2 V

(J (W ; x aug
i ))T [W T (F x i ) � yi ] �

kX

j =1


 sj (J (W ; x aug
sj

))T [W T (F x sj ) � ysj ]k (79)

= k
X

i 2 V

F x i [W T (F x i ) � yi ] �
kX

j =1


 sj F x sj [W T (F x sj ) � ysj ]k (80)

= kF
X

i 2 V

x i (W T x i � yi ) � F
kX

j =1


 sj x sj (W T x sj + zi � ysj )k (81)

= kF
X

i 2 V

r L (W ; x i ) � F
kX

j =1


 sj r L (W ; x sj ) � F
kX

j =1


 sj x sj zsj k (82)

� k F kk
X

i 2 V

r L (W ; x i ) �
kX

j =1


 sj r L (W ; x sj )k+ kF kk
kX

j =1


 sj x sj zsj k (83)

� k F k� +
p

dkF kn! (84)

= kF k(� +
p

dn! ) (85)

19



Corollary B.5. In the simpli�ed linear case above, the difference in gradients of the full training
data with its augmentations (rL (W ; X f + aug )) and gradients of the coreset with its augmentations
(rL (W ; X c+ caug )) can be bounded by

krL (W ; X f + aug ) � rL (W ; X c+ caug )k� (kF k+1) � +
p

dkF kn!

Proof. Applying Eq. (77) and Lemma B.4, we obtain

krL (W ; X f + aug ) � rL (W ; X c+ caug )k (86)

= k(rL (W ; X f ) + rL (W ; X aug )) � (rL (W ; X c) + rL (W ; X caug ))k (87)

= k(rL (W ; X f ) � rL (W ; X c)) + ( rL (W ; X aug ) � rL (W ; X caug ))k (88)

� k (rL (W ; X f ) � rL (W ; X c))k+ k(rL (W ; X aug ) � rL (W ; X caug ))k (89)

� � + kF k(� +
p

dn! ) (90)

= ( kF k+1) � +
p

dkF kn! (91)

Theorem B.6(Convergence of linear model). Let f be a linear model with weightsW and augmen-
tation be represented by the common linear transformationF . LetL i be� -smooth,L be� -smooth
and satisfy the� -PL condition, that is for� > 0, krL (W ; X )k2 � � L (W ; X ) for all weights
W . Let � upper-bound the normed difference in gradients between the weighted coreset and full
dataset and! boundW T (F x i ) = W T x i + zi , kzi k� ! 8i . LetG0

0 be the gradient over the full
dataset and its augmentations at initialization. Then, running SGD on the sizek coreset with its
augmentation using constant step size� = �

�� , we get the following convergence bound:

E[krL (W t ; X c+ caug )k] �
1

p
�

�
1 �

��
2

� t
2

�
G0

0 + ( kF k+1) � +
p

dkF kn!
�

Proof. From[3], we have

E[krL (W t ; X c+ caug )k2] �
�

1 �
��
2

� t
L (W 0; X c+ caug ) (92)

�
1
�

�
1 �

��
2

� t
krL (W 0; X c+ caug )k2 (93)

(94)

Using Jensen's inequality, we have

E[krL (W t ; X c+ caug )k] (95)

�
q

E[krL (W t ; X c+ caug )k2] (96)

�
1

p
�

�
1 �

��
2

� t
2

krL (W 0; X c+ caug )k (97)

�
1

p
�

�
1 �

��
2

� t
2

�
G0

0 + ( kF k+1) � +
p

dkF kn!
�

(98)

where the last inequality follows from applying Corollary B.5.

C Singular spectrum analysis

C.1 Experiment details

We generate singular spectrum plots for both MNIST and CIFAR10 datasets in Figures 1 and 3. Due
to the computational infeasbility of computing the network Jacobian for the full datasets in deep
network settings, we instead construct and use a reduced version of these datasets by uniformly select
900 images from the �rst 3 classes. For our experiments on MNIST, we pretrain a MLP model with 1

20



hidden layer for 15 epochs. For our experiments on CIFAR10, we pretrain a ResNet20 model for 15
epochs. We then compute the singular spectrums for augmented and non-augmented data based on
these pretrained networks.

Since it is dif�cult to perform a one-to-one matching of singular values produced from augmented and
non-augmented datasets, we instead bin our singular values into 30 separate and uniformly distributed
bins each containing the same number of singular values. To measure perturbation to singular values
resulted from augmentation, we compute the mean difference between each bin. On the other hand,
to measure perturbation to singular vectors, we compute mean subspace angle between the singular
subspace spanned by singular vectors in each bin.

C.2 Real-world strong augmentations

We study the effects of real-world, unbounded augmentations on the singular spectrum of the network
Jacobian. In particular, in additional to the plots in the main paper, we show the effect of strong
augmentations through (1) random rotation (up to30� and AutoAugment [7] for MNIST and (2)
random horizontal �ips/random crops and AutoAugment for CIFAR10. The policies implemented by
AutoAugment include translations, shearing, as well as contrast and brightness transforms. We study
the effects of these augmentations on the singular spectrum in Figure 3. Despite these augmentations
being unbounded transformations, we note that the results of our theory still holds. In particular,
it can be observed that data augmentation increases smaller singular values relatively more with a
higher probability. On the other hand, data augmentation affects the prominent singular vectors of
the Jacobian to a smaller extent, and preserves the prominent directions. As such, our argument
empirically extends to real-world, unbounded label-invariant transformations characteristic of strong
augmentations.

D Experiment Setup and Additional Experiments

D.1 Experiment setup

For all experiments, we train using SGD with 0.9 momentum and learning rate decay. For experiments
on CIFAR10 and variants/ResNet20, we train for 200 epochs, for Caltech256 (ImageNet pretrained)/
ResNet18, we trained for 40 epochs starting at learning rate0:001and batch size 64. We also report
results for Caltech256 without ImageNet pretraining in Sec. D.8, where we train for 400 epochs
to ensure convergence with a starting learning rate of0:05 and batch size 64. For experiments on
ImageNet/ResNet50 and TinyImageNet/ResNet50, we use the standard 90 epoch learning schedule
starting at learning rate of 0.1 and batch size 64.

Data and augmentation.We apply our method to training ResNet20 and Wide-ResNet-28-10 on
CIFAR10, and ResNet32 on CIFAR10-IMB (Long-Tailed CIFAR10 with Imbalance factor of 100
following [19]) and SVHN datasets. We train Caltech256 [13] on ImageNet-pretrained ResNet18,
and include experiments with random initialization in Appendix D. TinyImageNet and ImageNet are
trained on with ResNet50. We use [40] for CIFAR10/SVHN, and AutoAugment [7] for Caltech256,
TinyImageNet, and ImageNet as the strong augmentation method. Note that we append strong
augmentations rather than apply them in-place, which we show to be more effective in Appendix D.
All results are averaged over 5 runs using an Nvidia A40 GPU.

D.2 Experiment setup

For all experiments, we train using SGD with 0.9 momentum and learning rate decay. We also set
weight decay as For experiments on CIFAR10 and variants/ResNet20, we train for 200 epochs, for
Caltech256 (ImageNet pretrained)/ ResNet18, we trained for 40 epochs starting at learning rate0:001
and batch size 64. We also report results for Caltech256 without ImageNet pretraining in Sec. D.8,
where we train for 400 epochs to ensure convergence with a starting learning rate of0:05and batch
size 64. For experiments on ImageNet/ResNet50 and TinyImageNet/ResNet50, we use the standard
90 epoch learning schedule starting at learning rate of 0.1 and batch size 64.

Data and augmentation.We apply our method to training ResNet20 and Wide-ResNet-28-10 on
CIFAR10, and ResNet32 on CIFAR10-IMB (Long-Tailed CIFAR10 with Imbalance factor of 100
following [19]) and SVHN datasets. We train Caltech256 [13] on ImageNet-pretrained ResNet18,

21



(a) MNIST � 0 = 8 - Val-
ues

(b) MNIST � 0 = 8 - Vec-
tors

(c) CIFAR10 � 0 = 8 -
Values

(d) CIFAR10 � 0 = 8 -
Vectors

(e) MNIST - � 0 = 16 -
Values

(f) MNIST � 0 = 16 - Vec-
tors

(g) CIFAR10 � 0 = 16 -
Values

(h) CIFAR10 � 0 = 16 -
Vectors

(i) MNIST Rotate - Val-
ues

(j) MNIST Rotate - Vec-
tors

(k) CIFAR10 Flip-Crop -
Values

(l) CIFAR10 Flip-Crop -
Vectors

(m) MNIST AutoAug-
ment - Values

(n) MNIST AutoAug-
ment - Vectors

(o) CIFAR10 AutoAug-
ment - Values

(p) CIFAR10 AutoAug-
ment - Vectors

(q) MNIST Rotate + Au-
toAugment - Values

(r) MNIST Rotate + Au-
toAugment - Vectors

(s) CIFAR10 Flip + Crop
+ AutoAugment - Values

(t) CIFAR10 Flip + Crop
+ AutoAugment - Vectors

Figure 3: Difference in mean singular values (Cols 1 & 3) between augmented and non-augmented
data and mean angular difference (Cols 2 & 4) between subspaces spanned by singular vectors for
augmented and non-augmented data.

and include experiments with random initialization in Appendix D. TinyImageNet and ImageNet are
trained on with ResNet50. We use [40] for CIFAR10/SVHN, and AutoAugment [7] for Caltech256,
TinyImageNet, and ImageNet as the strong augmentation method. Note that we append strong
augmentations rather than apply them in-place, which we show to be more effective in Appendix D.
All results are averaged over 5 runs using an Nvidia A40 GPU.

D.3 Full Results for Table 4

This section contains full experiment results including standard deviations and the full augmentation
benchmark for Table4. Augmenting coresets of size 10% achieves 51% of the improvement obtained
from augmentation of the full data and further enjoys a 6x speedup in training time on CIFAR10.

22



This speedup becomes more signi�cant when using strong augmentation techniques which are mostly
computationally demanding, especially when applied to the entire dataset.

Table 7: Supplementary table for Table 4 - Test accuracy on CIFAR10 + ResNet20, SVHN +
ResNet32, CIFAR10-Imbalanced + ResNet32 including standard deviation errors and full dataset
augmentation accuracy.

Method Size CIFAR10 CIFAR10-IMB SVHN

None 0% 89:46 � 0:17% 87:08 � 0:50% 95:676� 0:108%

5% 90:34 � 0:18% 88:48 � 0:25% 95:760� 0:084%
Random 10% 91:07 � 0:13% 89:52 � 0:15% 96:187� 0:112%

30% 92:11 � 0:12% 91:11 � 0:18% 96:569� 0:073%

5% 90:79 � 0:19% 88:77 � 0:35% 96:165 � 0:108%
Max-Loss 10% 91:39 � 0:08% 89:22 � 0:48% 96:370 � 0:076%

30% 92:43 � 0:07% 91:11 � 0:25% 96:735� 0:068%

5% 90:87 � 0:05% 89:10 � 0:41% 96:121� 0:055%
Coreset 10% 91:54 � 0:19% 89:75 � 0:52% 96:354� 0:091%

30% 92:49 � 0:15% 91:12 � 0:26% 96:791 � 0:051%

All 100% 93:50 � 0:25% 92:48 � 0:34% 97:068� 0:030%

D.4 Supplementary results for Tab. 1

Table 8: Supplementary results for Tab. 1. Training ResNet20 (R20) and WideResnet-28-10 (W2810)
on CIFAR10 (C10) using small subsets, and ResNet18 (R18) on Caltech256 (Cal).

Model/Dataset Subset Random Ours

Weak Aug. Strong Aug. Weak Aug. Strong Aug.

C10/R20

0.1% (5) 31:7 � 3:2 33:5 � 2:7 29:6 � 3:8 37:8 � 4:5
0.2% (10) 35:9 � 2:1 42:7 � 3:9 33:6 � 3:2 45:1 � 2:3
0.5% (25) 51:1 � 2:3 58:7 � 1:3 55:8 � 3:1 63:9 � 2:1
1% (50) 66:2 � 1:0 74:4 � 0:8 65:9 � 4:0 74:7 � 1:1

C10/W2810 1% (50) 61:3 � 2:4 57:7 � 0:8 59:9 � 2:4 62:1 � 3:1

Cal/R18 5% (3) 24:8 � 1:5 41:5 � 0:5 33:8 � 1:7 52:7 � 1:2
10% (6) 49:5 � 0:6 61:8 � 0:8 55:7 � 0:3 65:4 � 0:3
20% (12) 66:6 � 0:2 72:5 � 0:1 67:5 � 0:3 73:1 � 0:1
30% (18) 72:0 � 0:1 75:7 � 0:2 71:9 � 0:2 76:3 � 0:2
40% (24) 74:6 � 0:3 77:6 � 0:4 74:2 � 0:4 77:7 � 0:5
50% (30) 76:1 � 0:5 78:5 � 0:3 76:1 � 0:1 78:9 � 0:2

D.5 Training dynamics vs generalization

Figure 4 demonstrates the relationship between training loss and validation accuracy resulted from
data augmentation. While training loss of augmented datasets do not decrease as quickly as non-
augmented datasets, generalization performance (shown by val. acc.) improves.

23



Figure 4: Training loss vs validation accuracy of CIFAR10/ResNet20 using AutoAugment.

D.6 Augmentations applied through appending vs in-place

Our experiments on Caltech256/ResNet18/AutoAugment (R =5 ) show that even for cheaper strong
augmentation methods (AutoAugment), while in-place augmentation may decrease the performance,
appending Random (R) and Coresets (C) augmentations (Append) outperforms in-place augmentation
of 2x data points (In-place 2x) for various subset sizes.

Table 9: Caltech256/AutoAugment in-place vs. appending for Caltech256.

No Aug. In-place In-place (2x) Append

C5% 33.8% 26.4% 48.2% 52.7%
R5% 24.8% 17.4% 40.2% 41.5%
C10% 55.7% 48.2% 62.8% 65.4%
R10% 50.6% 40.2% 62.0% 61.8%
C30% 71.9% 68.8% 74.9% 76.3%
R30% 72.0% 68.7% 75.1% 75.7%

D.7 Speed-up measurements

We measure the improvement in training time in the case of training on full data and augmenting
subsets of various sizes. While our method yields similar or slightly lower speed-up to the max-loss
policy and random approach respectively, our resulting accuracy outperforms these two approaches.
We show this in Fig. D.7. For example, for SVHN/Resnet32 using30%coresets, we sacri�ce11%of
the speed-up to obtain an additional24:8% of the gain in accuracy from full data augmentation when
compared to a random subset of the same size. We show the speed-up obtained for our method and
various subset sizes in Tab. 10, and provide wall-clock times for our method in Tab. D.7.

Table 10: Speedup on CIFAR10 + ResNet20 (C10/R20), SVHN + ResNet32 (SVHN/R32).

Dataset Full Aug. Ours Max loss. Random.

100% 5% 10% 15% 20% 25% 30% 30% 30%

C10 / R20 1x 7:93x 6:31x 4:46x 4:27x 3:41x 3:43x 3:48x 4:03x
SVHN / R32 1x 5:35x 3:93x 3:40x 2:80x 2:49x 2:18x 2:21x 2:43x

(a) CIFAR10/ResNet20 (b) SVHN/Resnet32

Figure 5: Speedup/Accuracy of augmenting30%coresets compared to original max-loss policy for
(a) ResNet20 trained on CIFAR10 and (b) ResNet32 trained on SVHN.

24



Table 11: Wall-clock times to find various sized coresets from all classes of Caltech256 and TinyIma-
gene at1epoch. Note, training ResNet20/CIFAR10 with [40] takes 14.4 hrs. In practice, coresets can
be found in parallel (p threads) from different classes, and selection happens everyR=5�15 epochs.
Hence, the numbers divide by p�R.

Caltech256 TinyImageNet

10% 30% 50% 10% 30% 50%

10.50s 10.52s 10.53s 7.85s 8.09s 8.17s

D.8 End to end training on Caltech256

As Caltech256 contains many classes and higher resolution images, training on smaller subset without
pretraining has a low accuracy. Thus, many works (e.g. Achille et al., 2020) finetune from ImageNet
pretrained initialization. However, we show that our results still hold even when training form scratch.
We demonstrate our results in Tab. 12, where we train Caltech256 on ResNet50 without pretraining
for 400 epochs, and with R = 40, where our method consistently outperfoms random subsets for
multiple subset sizes (5%, 10%, 30%, 50%).

Table 12: Caltech256 (w/o pretraining) /ResNet50, 400 epochs, R = 40

Random Ours

5% 10% 30% 50% 5% 10% 30% 50%

17.26 35.38 58.2 64.67 20.58 38.20 60.30 65.17

D.9 Training on full data and augmenting small subsets re-selected every epoch

We apply our proposed method to select a new subset for augmentation every epoch (i.e. using
R = 1) and compare our results with other approaches using accuracy and percentage of data not
selected (NS). We see that while the max-loss policy selects a small fraction of data points over
and over and random uniformly selects all the data points, our approach successfully finds the
smallest subset of data points that are the most crucial for data augmentation. Hence, it can achieve
a superior accuracy than max-loss policy, while augmenting only slightly more examples. This
confirms the data-efficiency of our approach. This is especially evident when using coresets of size
0:2%. Furthermore, despite the random baseline using a significantly larger percentage of data, it is
outperformed by our approach in both data-efficiency and accuracy. We emphasize that results in this
table is different from that of Table 7, as default augmentations on the full training data are performed
once every R = 1 epochs instead of every R = 20 epochs. Since selecting subsets at every epoch
can be computationally expensive, we only perform these experiments on small coresets and hence
still enjoy good speedups compared to full data augmentation. This shows that our approach is still
effective at very small subset sizes, hence can be computationally efficient even when subsets are
re-selected every epoch.

Table 13: Training on full data and selecting a new subset for augmentation every epoch (R = 1).

Subset Random Max-loss Policy Ours

Acc NS (%) Acc NS (%) Acc NS (%)

0% 91:96� 0:12 � 91:96� 0:12 � 91:96� 0:12 �
0:2% 92:22� 0:22 67:03� 0:04 91:94� 0:12 86:70� 0:15 92:26� 0:13 79:19� 1:10
0:5% 92:06� 0:17 36:70� 0:18 92:20� 0:13 76:80� 0:31 92:27� 0:08 63:23� 0:35

D.10 Additional visualizations for training on coresets and its augmentations - Measuring
training dynamics over time

We include additional visualizations in Figure 6 for training on coresets and its augmentations as
supplementary plots to Figure 9(c) and Table 1. We plot metrics obtained during each point (epoch)

25




	Introduction
	Additional Related Work
	Problem Formulation
	Data Augmentation Improves Learning
	Effect of Augmentation on Eigenvalues of the NTK
	Effect of Augmentation on Eigenvectors of the NTK
	Augmentation Improves Training & Generalization

	Effective Subsets for Data Augmentation
	Coreset vs. Max-loss Data Augmentation

	Experiments
	Training on Coresets and their Augmentations
	Training on Full Data and Augmented Coresets
	Training on Random Data and Augmented Coresets

	Conclusion
	Acknowledgements
	Proof of Main Results
	Proof for Lemma 4.1
	Proof of Corollary 4.2
	Proof of Lemma 5.1
	Proof of Theorem 5.2
	Finding Subsets

	Additional Theoretical Results
	Convergence analysis for training on augmented full data
	Proof of Theorem B.1
	Convergence analysis for training on the coreset and its augmentation
	Lemma for eigenvalues of coreset
	Augmentation as Linear Transformation: Linear Model Analysis

	Singular spectrum analysis
	Experiment details
	Real-world strong augmentations

	Experiment Setup and Additional Experiments
	Experiment setup
	Experiment setup
	Full Results for Table 4
	Supplementary results for Tab. 1
	Training dynamics vs generalization
	Augmentations applied through appending vs in-place
	Speed-up measurements
	End to end training on Caltech256
	Training on full data and augmenting small subsets re-selected every epoch
	Additional visualizations for training on coresets and its augmentations - Measuring training dynamics over time
	Intersection of max-loss policy and coresets


