
Online Selection of Parameters in the Rocchio Algorithm

for Identifying Interesting News Articles
Raymond K. Pon
UC Los Angeles

420 Westwood Plaza
Los Angeles, CA 90095

rpon@cs.ucla.edu

Alfonso F. Cárdenas
UC Los Angeles

420 Westwood Plaza
Los Angeles, CA 90095

cardenas@cs.ucla.edu

David J. Buttler
Lawrence Livermore National

Laboratory
7000 East Ave

Livermore, CA 94550

buttler1@llnl.gov

ABSTRACT

We show that users have different reading behavior when

evaluating the interestingness of articles, calling for different

parameter configurations for information retrieval algorithms for

different users. Better recommendation results can be made if

parameters for common information retrieval algorithms, such as

the Rocchio algorithm, are learned dynamically instead of being

statically fixed a priori. By dynamically learning good parameter

configurations, Rocchio can adapt to differences in user behavior

among users. We show that by adaptively learning online the

parameters of a simple retrieval algorithm, similar

recommendation performance can be achieved as more complex

algorithms or algorithms that require extensive fine-tuning. Also

we have also shon that online parameter learning can yield 10%

better results than best performing filter from the TREC11

adaptive filter task.

Categories and Subject Descriptors
H3.3.1 [Information Storage and Retrieval]: Content Analysis

and Indexing, Retrieval Models, Search Process

General Terms
Algorithms, Management, Performance, Design, Experimentation,

Human Factors.

Keywords
News filtering, personalization, news recommendation

1. INTRODUCTION
An explosive growth of online news has taken place in the last

few years. Users are inundated with thousands of news articles,

only some of which are interesting. A system to filter out

uninteresting articles would aid users that need to read and

analyze many news articles daily, such as financial analysts,

government officials, and news reporters. Although it has been

shown that collaborative filtering can aid in personalized

recommendation systems [1], a large number of users is needed.

In a limited user environment, such as a small group of analysts

monitoring news events, collaborative filtering would be

ineffective so recommendation systems must rely solely on the

content of the articles in such environments.

In [2], we introduced iScore to address how interesting articles

can be identified in a continuous stream of news articles. In

iScore, a variety of information retrieval algorithms are used to

identify interesting articles. However, in many information

retrieval algorithms, such as the Rocchio algorithm [3],

parameters often must be fine-tuned to a particular data set

through extensive experimentation. For example, in [4], a

Rocchio variant of the algorithm’s performance depends

extensively on the weight that is given to negatively labeled

articles. This parameter is determined through extensive trial and

error experiments. If there are many different data sets that must

be evaluated, this process is often tedious and expensive, leading

many to simply fine-tune the parameters to one data set and

applying the parameters globally to all other data sets, which may

not be optimal.

In news recommendation, user reading behavior may vary from

user to user, and would result in different parameters for

recommendation algorithms. For example, with regards to the

weight that is applied to negatively labeled articles, one user may

want to “forget” an uninteresting article relatively quickly;

whereas, for another user, he may want to “forget” uninteresting

articles slowly. Ideally, each user would have his own set of

parameters for an algorithm like Rocchio, to identify his own set

of interesting articles.

This problem is magnified if there are many users with different

reading/learning behavior. It is not feasible for a news

recommendation engine to fine-tune parameters for every user

because it is very rare that validation data is available for fine-

tuning until a user begins reading articles recommended by the

system. Evenif such validation data was available, the task would

be too time-consuming for it to be done on every user.

To address this problem in news recommendation, we make the

following contributions:

1. We show that users have different learning/reading

behavior when evaluating the interestingness of news

articles.

2. Instead of using static parameters, we show that by

evaluating several different parameter configurations

simultaneously, better recommendation and retrieval

Copyright 2008 Association for Computing Machinery. ACM acknow-

ledges that this contribution was authored or co-authored by an

employee, contractor or affiliate of the U.S. Government. As such, the

Government retains a nonexclusive, royalty-free right to publish or

reproduce this article, or to allow others to do so, for Government

purposes only.

WIDM’08, October 30, 2008, Napa Valley, California, USA.

Copyright 2008 ACM 978-1-60558-260-3/08/10...$5.00.

results can be achieved.

3. We show that the performance gains are due to different

user behavior.

4. We show that by learning the parameters of a simple

information retrieval algorithm online, we can attain

similar performance as more complex information

retrieval algorithms, such as language modelling

classifiers, and algorithms that require fine-tuning, such

as Rocchio.

2. RELATED WORKS

2.1 Rocchio
The Rocchio algorithm, first introduced in [3], models documents

and queries as TF-IDF vectors. It aims at forming the optimal

query so that documents that are highly similar to the query are

marked as relevant. When applied to adaptive document filtering,

the query is continually updated. In general, the query profile Q
v

is updated as the following:

 ∑∑
∉∈

∗−∗+∗=
lDlD

orignew DDQQ
ReRe

vvvr
γχα (1)

The parameters χ and γ represent the weights when adding

positive and negatively tagged articles to the query profile. The χ

parameter represents rate of emphasizing the terms of positively

tagged articles. The γ represents the rate of deemphasizing terms

from negatively tagged articles. The vector D
v
is the TF-IDF

vector of an article. The set REL is the set of all relevant or

positively tagged articles. The vector newQ
v

 is the TF-IDF vector

of the query profile. The vector origQ
v

 is the TF-IDF vector of

some search query string. In a text filtering setting, there is often

no initial user-query so origQ
v

∗α is ignored [5], simplifying the

Rocchio formulation to the weighted sum of relevant documents

and irrelevant documents:

 ∑∑
∉∈

∗−∗=
lDlD

new DDQ
ReRe

vvr
γχ (2)

The Rocchio formulation can be incrementally computed as the

following:







∉−

∈+
=

lDDQ

lDiDQ
Q

old

old
new

Re if*

Re f*
vv

vv
r

γ

χ
 (3)

All negative components of the resulting profile are assigned a

zero value. A document is classified by Rocchio as relevant if its

cosine similarity with the query profile is above a threshold. The

cosine similarity between a document with a vector D
v
 and a

query profile Q
v
 is defined as:

||||

),cos(
QD

QD
QD vv

vv
vv •
= (4)

Other variations on Rocchio include the use of query zoning [6]

where only the set of non-relevant documents considered for the

profile update are those that relate well to the user’s interest (i.e.,

have high similarity to the query profile). Another variation makes

the distinction between soft negative articles (i.e., unlabeled

articles that are not relevant to the query) and hard negative

articles (i.e., labeled articles that are not relevant to the query).

For example, [7] uses different weights for negatively labeled

documents and unlabeled documents. In [7], Rocchio is further

extended using many more parameters, including the use of

multiple query profiles to represent the multiple interests of a

single user. In that algorithm, called MTT, the optimal set of

parameters may vary from user to user, depending on the users’

interests.

However, the problem with these Rocchio variants is that the

weighting schemes for the Rocchio formulation must be

predetermined ahead of time. Often, this requires fine-tuning the

parameters for the specific query and for the corpus. By pre-

setting the parameters, it is assumed that the tuned parameters are

the optimal ones for all users, which may not necessarily be the

case.

Other works have looked at Rocchio from a theoretical point of

view. For example, in [8], the lower bound of the number of

mistakes that Rocchio will make in different scenarios was

studied. In [9], the connection between Rocchio and probabilistic

classifiers, such as naïve Bayes, was identified.

2.2 iScore
Some of the Rocchio variants have been adapted into iScore [2].

The Rocchio variant discussed in this study can also be

incorporated into iScore. iScore aims to accurately predict

interesting news articles for a single user. News articles are

processed in a streaming fashion, much like the document

processing done in the TREC adaptive filter task [10]. Articles are

introduced to the system in chronological order based on their

publication time. Once the system classifies an article, an

Figure 1. iScore article classification pipeline.

interestingness judgment is made available to the system by the

user.

The article classification pipeline consists of four phases, shown

in Figure 1. In the first phase, for an article d, a set of feature

extractors generate a set of feature scores F(d) ={f1(d),

f2(d),…,fn(d)}. In [2], several topic relevancy features, uniqueness

measurements and other features, such as source reputation,

freshness, subjectivity, and polarity of news articles were

implemented. Then a classifier C generates an overall

classification score, or an iScore I(d):

))(),...,(),(()(21 dfdfdfCdI n= (5)

In [2], we found that a naïve Bayesian classifier has acceptable

performance in identifying interesting articles. Next, an adaptive

thresholder thresholds the iScore to generate a binary

classification that indicates whether or not the article is interesting

to the user. The adaptive thresholder tries to find the optimal

threshold that yields the best metric result, such as F-Measure. In

the final phase, the user examines the article and provides his own

binary classification of interestingness (i.e., tagging) I′(d). This

feedback is used to update the feature extractors, the classifier,

and the thresholder. The process continues similarly for the next

document in the pipeline. Because of iScore’s extensibility, new

recommendation algorithms, such as the one discussed here, can

be added to the system as a new feature extractor.

3. eROCCHIO
Given the shortcomings of existing IR algorithms such MTT and

Rocchio and its variants that require fine-tuning parameters before

the algorithms are run on live data, we have taken a different

approach. Rather than predetermining the weighting scheme in the

Rocchio formulation in Equation 3, multiple instances of the

Rocchio formulation are evaluated in parallel, each with a

different weighting scheme. In Equation 3, there are two unknown

parameters χ and γ, the relative weights for positively labeled

Figure 2. eRocchio evaluation pipeline.

Figure 3.Each area curve is the normalized final F-Measure (y-axis) of each instantiation (x-axis). Curves for each interest-driven

feeds from the Yahoo! News collection are shown (z-axis).

articles and for negatively labeled articles, respectively. However,

because γ is a weight relative to χ, we will evaluate multiple γ-

values simultaneously while holding χ to 1. We call this scheme

eRocchio.

Each document is evaluated by multiple instantiations of the

Rocchio formulation in parallel, each with a different negative

article weight γ, as shown in Figure 2. In our experiments, we

evaluated all possible γ-values between 0 and 2, inclusive, in

intervals of 0.01. Because the cosine similarity between the query

profile and the document is a real number bounded between 0 and

1, and a binary decision must be made, the similarity is

thresholded such that articles with a high similarity with the

profile are labeled as interesting and articles with low similarity

are labeled as uninteresting. Rather than use a static threshold, the

efficacy of every threshold between 0 and 1 in increments of 0.01

is evaluated. Each Rocchio instantiation has its own adaptive

thresholder to optimize its corresponding instantiation.

Consequently, no particular distribution of interesting and

uninteresting articles is assumed. And in the case of ties between

utility measures, the threshold that yields the largest separation

between interesting and uninteresting articles is used. Each

instantiation of Rocchio has its own unique γ and adaptive

thresholder.

After each adaptive thresholder has generated a binary score from

its corresponding Rocchio instantiation’s generated similarity

score, the evaluator must generate a final answer. The best

Rocchio instantiation and its corresponding threshold are chosen

by selecting the Rocchio instantiation and the threshold

combination that has had the best utility measure up to that point.

In our experiments, we use Fβ-measure, which is the harmonic

average of precision and recall, defined as:

()

recallprecision

recallprecision
F

+
+

=
*

*1

β
β

β (6)

|Re|

|Re|

trievedArticles

trievedgArticlesInterestin
precision = (7)

||

|Re|

gArticlesInterestin

trievedgArticlesInterestin
recall = (8)

For β, we use β=0.5, weighting precision twice as much as recall,

which is consistent with the utility measure used in the TREC

adaptive filter task [10].

In summary, a document is evaluated with the following steps:

1. A TF-IDF vector for the document is generated. Stop

words are removed and the remaining terms are

stemmed.

2. For each Rocchio instantiation, the cosine similarity of

the document with the instantiations’ stored profile

(also a TF-IDF vector) is evaluated, using Equation 4.

3. For each Rocchio instantiation, the cosine similarity,

computed in the previous step, is thresholded with the

instantiation’s currently best threshold, generating a

binary score.

4. The binary score generated by the currently best

instantiation is used as the final output of eRocchio.

After the actual interestingness of the document is revealed,

eRocchio is updated as follows:

1. For each Rocchio instantiation, the profiles are updated

using Equation 3.

2. The Fβ-measure statistic for each instantiation is

updated.

3. The adaptive threshold for each instantiation is updated

by updating the Fβ-measure statistic of every possible

threshold for the instantiation.

It is expected that the computational cost for running eRocchio is

proportional to the number of γ-values evaluated and the runtime

of Rocchio. Thus, the runtime performance would be O(VR),

where V is the number of γ-values evaluated and R is the runtime

of Rocchio. Although, this runtime may seem large, with the

availability of large-scale cluster computing, the multiple

instantiations may be evaluated in parallel.

4. EXPERIMENTAL RESULTS
The eRocchio algorithm and iScore are implemented with the

Apache UIMA framework [11]. The source code is available at

[12].

We evaluate eRocchio and other classifiers from the machine

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1000 31000 61000 91000 121000

Documents Processed

S
e
le
c
te
d
 G
a
m
m
a Top Stories

Most Emailed

Highest Rated

Most Viewed

Figure 4. γ-values over time for a select number of feeds from

the Yahoo! News collection.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

+
/-
 o
v
e
r
A
v
e
ra
g
e
 F
-

M
e
a
s
u
re
 f
o
r
U
s
e
r

Gamma

Figure 5. Each area curve is the normalized final F-Measure

(y-axis) of each instantiation (x-axis). Curves for each of the

users from the volunteer tagger collection are shown.

learning community for two different tasks: recommending

interesting articles and recommending relevant articles. Classifiers

evaluate the interestingness/relevancy of articles, one at a time, in

publication order. The classifiers are given no prior training data

so they must learn as documents are streamed to the classifier.

Only when the classifier makes a determination regarding the

interestingness/relevancy of the article is the actual

interestingness/relevancy revealed to the classifier. The classifier

then is allowed to update itself with this new knowledge in

preparation for the evaluation of the next article.

An interesting article is an article that an arbitrary user finds

interesting. For interesting article recommendation task, two

datasets were used. The first dataset is a set of 123,653 news

articles from all Yahoo! News RSS feeds [13], collected over a

span of one year. The interesting classification task is to identify

the most interesting articles from this entire pool of articles for

different communities of users. A community of users is

determined by an interest-driven RSS feed from the Yahoo!

articles collection. The 43 interest-driven RSS feeds considered

for labeling are feeds of the form: “Top Stories [category]”,

“Most Viewed [category]”, “Most Emailed [category]”, and

“Most Highly Rated [category],” including category-independent

feeds such as the “Top Stories,” “Most Emailed,” “Most Viewed,”

and “Highest Rated” feeds. For example, RSS feeds such as

“Most Viewed Technology” is a good proxy of what the most

interesting articles are for technologists. Other categories, such as

“Top Stories Politics,” are a collection of news stories that the

Yahoo! political news editors deem to be of interest to their

audience, so the feed also would serve well as a proxy for

interestingness. Note that these feeds are interest-driven and not

category-driven, so the classification task is not the classical

category classification task, but rather a more complex interest

classification task. In the interest classification task, two articles

that belong to the same topic may not necessarily of equal interest

to a user or a community of users.

The second data set consists of articles collected from volunteer

news readers that tag articles as they read their daily news on the

web. A user can tag an article using a Firefox plugin or a Google

News GreaseMonkey script add-on for Firefox. When a user tags

an article as interesting or uninteresting, the plug-in or script

records the webpage’s URL and the user’s tag as well as all the

URLs contained within the referring webpage. Articles that are

pointed by links from the referring webpage that have not been

read by the user are considered as uninteresting for the user since

the user deemed the title of the article to be uninteresting enough

to not click on. The webpages are downloaded every night.

Webpages that are non-articles (e.g., advertisements, table of

contents, videos) are manually removed from the collection. We

have 10 users that have read and tagged at least 50 articles. The

entire document collection consists of 33,343 articles. A classifier

is run for each user over only the documents that have been seen

by a user as indicated by a user tagging or by existing on a

referring page of a tagged article.

A relevant article is an article that is relevant to a specific query.

We evaluate the relevancy classification task using the dataset and

evaluation framework used in TREC11 [10]. The data set used for

evaluating relevancy performance is the Reuters RCV1 corpus

and a set of assessor manual taggings for 50 topics, such as

“Economic Espionage.” For example, a relevant article to the

“Economic Espionage” query would be one that is related to

economic espionage. The corpus is a collection of 723,432 news

articles from 1996 to 1997. While the TREC adaptive filter task

aims to evaluate algorithms that can return articles that are

relevant to a query, not all articles that are relevant to a query are

interesting. For example, articles that provide the same

information may be relevant to a query, but are not necessarily

interesting. Although the TREC adaptive filter work addresses

topic relevancy and not necessarily interestingness, the task is

done in a similar online and adaptive fashion as in iScore.

4.1 User-dependent Variations for γ
Figures 3 and 5 show that that the choice of the optimal γ can be

radically different, depending on the target feed/user. Each area

curve is the normalized final F-Measure of each instantiation. The

final F-Measure statistic has been normalized such that the graph

shows the deviation from the average final F-Measure for a given

feed/user.

Figure 3 shows the normalized F-Measure performance of each

interest-driven feed from the Yahoo! News collection. Depending

on the feed, the rate of deemphasizing uninteresting articles

varies. For a feed such as “Most Emailed Travel,” the best γ

weight is near 0, meaning that uninteresting terms are forgotten

very slowly. For “Most Emailed Top Stories” feed, the best γ

weight is between 0.2 and 0.4 For the “Highest Rated Science”

0.153
0.189

0.115

0.194
0.218 0.232

0.265

0.354

0.233

0.379 0.377 0.375

0.323

0.471

0.314

0.554

0.501 0.486

0

0.1

0.2

0.3

0.4

0.5

0.6

R
oc
ch
io

R
oc
ch
io
 V
ar
ia
nt

N
ai
ve
B
ay
es
LM
C
la
ss
ifi
er

LM
C
la
ss
ifi
er

M
TT

eR
oc
ch
io

Classifier

F
-M
e
a
s
u
re

Bottom 10 Average

Average

Top 10 Average

Figure 6. Average, low, and high F-Measure of different

classifiers for the Yahoo! News collection.

0.107 0.111 0.112
0.075 0.092 0.098

0.374
0.422

0.363
0.388 0.388

0.416

0.828
0.792

0.736
0.792 0.797 0.802

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
oc
ch
io

R
oc
ch
io
 V
ar
ia
nt

N
ai
ve
Ba
ye
sL
M
C
la
ss
ifi
er

LM
C
la
ss
ifi
er

M
TT

eR
oc
ch
io

Classifier

F
-M
e
a
s
u
re

Min

Average

Max

Figure 7. Average, low, and high F-Measure of different

classifiers for the volunteer tagger collection.

feed, the best γ weight is between 0.4 and 0.8. And for the “Most

Emailed Business” feed, the best γ weight is much higher,

between 1.0 and 1.4, meaning uninteresting terms are forgotten

more quickly than the rate that interesting terms are reinforced.

Figure 4 shows the selected γ-values by eRocchio for the topic-

independent interest-driven feeds from the Yahoo! News

collection. For most of these feeds, eRocchio settles on a γ-value

less than 1.0, except for “Top Stories,” in which eRocchio selects

a γ-value that seems to continually grow. This variation of γ-

values over time is likely due to the behavior and type of news

read by users represented by the feed. For example, users

represented by the “Top Stories” feed may continually want to

deemphasize terms from old uninteresting news very quickly;

whereas for users represented by the “Most Viewed” feed do not

want to deemphasize terms from old news as quickly.

Figure 5 shows the normalized F-measure performance of each

user from the volunteer tagger collection. For half of the users, a

low γ weight is optimal; whereas, for the other half of users, a

high γ weight is ideal.

4.2 Recommendation Performance
Figure 6 shows the average F-Measure performance of several

classifiers on the Yahoo! News collection, such as Rocchio, a

Rocchio variant that was the best performing of in the last run of

the TREC Adaptive Filter Task [4], a naïve Bayesian language

model classifier (NaiveBayesLMClassifier) [14], and a state-of-

the-art language model classifier (LMClassifier) [14], multiple

topic tracking (MTT) [7], and eRocchio. The figure also shows

the average of the top 10 and bottom 10 performing feeds. The

figure shows that eRocchio performs as well as the top classifiers,

LMClassifier and MTT, despite its simpler algorithm, compared

to LMClassifier, and the lack of parameter tuning, compared to

MTT. It also shows that eRocchio outperforms the Rocchio

variant by a significant 2.1 F-Measure points (6% improvement),

indicating that online parameter selection can outperform a static

a priori parameter selection. Although, eRocchio does not

perform as well as the top classifiers with regards to the top 10

average, eRocchio performs better than all the other classifiers for

the bottom 10 feeds, which are the most difficult to recommend

articles for.

Figure 7 shows the average F-Measure performance of the same

classifiers on the volunteer tagger collection. The figure also

shows the worst and best performing users. In this dataset, in

contrast to the previous dataset, LMClassifier and MTT do not

perform as well as the Rocchio variant. However, eRocchio

performs as well as the Rocchio variant, despite eRocchio’s lack

of parameter tuning that is required of the Rocchio variant.

Figure 8 shows several different iScore configurations evaluating

the Yahoo! News collection. The basic iScore configuration

(iScore) includes all the features detailed in [2], including

Rocchio, the Rocchio variant, NaiveBayesLMClassifier, and

LMClassifier. The iScore + MTT configuration includes MTT in

addition to all features in iScore. The iScore + eRocchio

configuration includes eRocchio in addition to all features in

iScore. The figure shows that when MTT or eRocchio is added to

the original iScore features, performance improves marginally,

with the greatest improvement for the most difficult feeds. The

figure also shows that when MTT is replaced with the much

simpler eRocchio, performance remains relatively the same.

Figure 9 shows the same iScore configurations for the volunteer

tagger dataset. Although replacement of MTT with eRocchio does

improve recommendation results, it achieves as good of a

performance as iScore with the original features with this dataset,

0.172
0.150 0.162

0.490 0.476 0.488

0.794 0.787 0.782

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

iS
co
re

iS
co
re
 +
 M
TT

iS
co
re
 +
 e
R
oc
ch
io

Classifier

F
-M
e
a
s
u
re

Min

Average

Max

Figure 8. Average, low, and high F-measure of different iScore

configurations for the volunteer tagger collection.

0.265
0.277 0.276

0.456 0.460 0.457

0.632 0.631 0.630

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

iS
co
re

iS
co
re
 +
 M
TT

iS
co
re
 +
 e
R
oc
ch
io

Classifier

F
-M
e
a
s
u
re

Bottom 10 Average

Average

Top 10 Average

Figure 9. Average, low, and high F-measure of different iScore

configurations for the Yahoo! News collection.

Figure 10. eRocchio pipeline with weights for soft and hard

negatively-labeled articles.

which is consistent with the results of Figure 7. Figure 7 shows

that MTT does not perform as well as the Rocchio variant so it is

expected that the inclusion of MTT would not improve

recommendation results as indicated in Figure 9. However,

eRocchio performs as well as the best of the base classifiers (i.e.,

the Rocchio Variant), so its inclusion into iScore yields similar

performance. A larger dataset with more users may be necessary

to make a more conclusive conclusion with regards to iScore and

iScore + MTT.

4.3 TREC11 Retrieval Performance
Although the TREC11 adaptive filter task is to retrieve all articles

relevant to a query, regardless of its interestingness to a user, we

want to see how well eRocchio perform against other adaptive

filters from TREC11. eRocchio is compared with the best filters

from each participating group in TREC11 on the TREC11’S

RCV1 corpus in Figure 11. In this set of experiments, eRocchio is

adapted to learn from the initial training articles and the query

description in an identical fashion to ICTAdaFT11Ub [4]. Also

eRocchio is augmented to handle both soft and hard negative

articles as shown in Figure 10. Consequently, instead of learning a

parameter configuration consisting of only one parameter,

eRocchio, in this set of experiments, learns a parameter

configuration consisting of two parameters, one for hard negative

articles and one for soft negative articles. The soft and hard

negative article weights considered are between 0 and 2.0 in

increments of 0.1. Each possible pair of soft and hard negative

article weights are evaluated in parallel as the articles are

processed one at a time.

Figure 11 shows that eRocchio outperforms the best classifier,

ICTAdaFT11Ub, from the TREC11 run by a very significant 4.3

F-Measure points (10%. improvement). ICTAdaFT11Ub is the

same algorithm as the Rocchio variant in the pervious

experiments. This is a significant improvement in this area of

work, where even small improvements are difficult to achieve.

The improvement is due to the large increase in precision by

eRocchio over ICTAdaFT11Ub, despite the slight drop in recall.

eRocchio is similar to ICTAdaFT11Ub except that instead of

using fixed static weights for negative articles across all query

topics, eRocchio learns dynamically those parameters that are

more suited to an individual query topic. The figure shows that

the online learning of parameters specific for a query can also

improve information retrieval results in addition to news article

recommendations.

5. CONCLUSION
Future work will focus on studying eRocchio on a much larger

volunteer tagger collection so that a more significant conclusion

can be made between eRocchio and the Rocchio variant. Other

work will also look at finding ways to efficiently search the

parameter space for more complex algorithms, such as MTT and

language model classifiers.

We have shown that optimal learning behavior for a classifier

varies from user to user, so instead of using a fixed parameter

configuration across all users, better recommendation results can

be achieved by tailoring the parameters to a specific user. By

evaluating the efficacy of several parameter configurations as

documents are processed, a good parameter configuration can be

determined in an online fashion, adapting to changes in the data

0
.4
7
1

0
.4
2
8

0
.4
2
2

0
.4
2
2

0
.4
2
1

0
.3
7
8

0
.3
6
9

0
.3
4
6

0
.3
2
7

0
.1
9
6

0
.1
7
4

0
.1
1
8

0
.0
1
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

e
R
o
c
c
h
io

IC
T
A
d
a
F
T
1
1
U
b

C
M
U
D
IR
U
D
E
S
C

th
u
T
1
1
a
f2

o
k
1
1
a
f1
u

K
e
rM
IT
T
1
1
a
f1

re
lie
fs
t1
1
u

F
D
U
T
1
1
A
F
2

ir
it
s
ig
a
2

p
ir
c
2
F
0
1

U
Io
w
a
0
2
F
ilt

a
p
l1
1
F
a
q
2

c
e
d
a
r0
2
a
ff
b
0

Classifier

FMeasure

Precision

Recall

Figure 11. Performance in the TREC11 Adaptive Filter Task.

set and user behavior. Because of the effectiveness, simplicity,

and adaptability of the eRocchio, it can replace algorithms such as

Rocchio and MTT in iScore.

We have shown that online learning of parameter configurations

can yield better news recommendation results from the Yahoo!

news feeds. We have also shown that by adapting our algorithm, it

can yield 10% better results than best performing filter from the

TREC11 adaptive filter task. By learning parameters of a simple

algorithm online for a specific user, similar recommendation

performance can be achieved as more complex algorithms or

algorithms that require extensively fine-tuning.

6. ACKNOWLEDGMENTS
This work (LLNL-CONF-405224) was performed under the

auspices of the U.S. Department of Energy by Lawrence

Livermore National Laboratory under Contract DE-AC52-

07NA27344.

7. REFERENCES
[1] J. Wang, A. P. de Vries, and M. J. T. Reinders, “Unifying

user-based and item-based collaborative filtering approaches

by similarity fusion,” in Proceedings of 29th annual Intl.

ACM SIGIR Conf. on Research and development in

information retrieval, 2006.

[2] R. K. Pon, A. F. Cardenas, D. Buttler, and T. Critchlow,
“iScore: Measuring the interestingness of articles in a limited

user environment,” in IEEE Symposium on Computational

Intelligence and Data Mining 2007, (Honolulu, HI), April

2007.

[3] J. Rocchio, Relevance Feedback in Information Retrieval,
ch. 14, pp. 313–323. Prentice-Hall, 1971.

[4] H. Xu, Z. Yang, B. Wang, B. Liu, J. Cheng, Y. Liu, Z. Yang,

X. Cheng, and S. Bai, “TREC-11 experiments at CAS-ICT:

Filtering and web,” in TREC11, 2002

[5] R. E. Schapire, Y. Singer, and A. Singhal, “Boosting and
rocchio applied to text filtering,” in Proceedings of SIGIR-

98, 21st ACM International Conference on Research and

Development in Information Retrieval (W. B. Croft, A.

Moffat, C. J. van Rijsbergen, R. Wilkinson, and J. Zobel,

eds.), (Melbourne, AU), pp. 215–223, ACM Press, New

York, US, 1998.

[6] A. Singhal, M. Mitra, and C. Buckley, “Learning routing

queries in a query zone,” in Proceedings of the Twentieth

Annual Internal ACM SIGIR Conference on Research and

Development in Information Retrieval, pp. 25–32, July 1997.

[7] R. K. Pon, A. F. Cardenas, D. Buttler, and T. Critchlow,
“Tracking multiple topics for finding interesting articles,” in

KDD ’07: Proceedings of the 13th ACM SIGKDD

international conference on knowledge discovery and data

mining, (New York, NY, USA), pp. 560–569, ACM Press,

2007.

[8] Z. Chen and B. Zhu, “Some formal analysis of Rocchio’s

similarity-based relevance feedback algorithm,” Inf. Retr.,

vol. 5, no. 1, pp. 61–86, 2002.

[9] T. Joachims, “A probabilistic analysis of the Rocchio

algorithm with TF-IDF for text categorization,” Tech. Rep.

CMU-CS-96-118, Carnegie Mellon University, 1996.

[10] S. Robertson and I. Soboroff, “The TREC 2002 filtering
track report,” in TREC 2002, 2002.

[11] Apache, “Apache UIMA.” [Online]

http://incubator.apache.org/uima/, 2008.

[12] R.K. Pon, “iScore.” [Online]

http://sourceforge.net/projects/iscore/, 2008.

[13] Yahoo, “Yahoo news RSS feeds.” [Online]

http://news.yahoo.com/rss, 2008.

[14] Alias-I, “LingPipe,” [Online]. http://www.alias-

i.com/lingpipe/index.html, 2008.

