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Abstract
Although adversarial examples and model robust-
ness have been extensively studied in the context
of linear models and neural networks, research
on this issue in tree-based models and how to
make tree-based models robust against adversar-
ial examples is still limited. In this paper, we
show that tree based models are also vulnerable
to adversarial examples and develop a novel algo-
rithm to learn robust trees. At its core, our method
aims to optimize the performance under the worst-
case perturbation of input features, which leads
to a max-min saddle point problem. Incorporat-
ing this saddle point objective into the decision
tree building procedure is non-trivial due to the
discrete nature of trees—a naive approach to find-
ing the best split according to this saddle point
objective will take exponential time. To make
our approach practical and scalable, we propose
efficient tree building algorithms by approximat-
ing the inner minimizer in this saddle point prob-
lem, and present efficient implementations for
classical information gain based trees as well as
state-of-the-art tree boosting models such as XG-
Boost. Experimental results on real world datasets
demonstrate that the proposed algorithms can sub-
stantially improve the robustness of tree-based
models against adversarial examples.

1. Introduction
The discovery of adversarial examples in various deep learn-
ing models (Szegedy et al., 2013; Kos et al., 2018; Cheng
et al., 2018; Chen et al., 2018a; Carlini & Wagner, 2018;
Huang et al., 2017) has led to extensive studies of deep
neural network (DNN) robustness under such maliciously
crafted subtle perturbations. Although deep learning-based
model robustness has been well-studied in the recent litera-
ture from both attack and defense perspectives, studies on
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the robustness of tree-based models are quite limited (Paper-
not et al., 2016a).

In our paper, we shed light on the adversarial robustness
of an important class of machine learning models — deci-
sion trees. Among machine learning models used in prac-
tice, tree-based methods stand out in many applications,
with state-of-the-art performance. Tree-based methods have
achieved widespread success due to their simplicity, effi-
ciency, interpretability, and scalability on large datasets.
They have been suggested as an advantageous alternative
to deep learning in some cases (Zhou & Feng, 2017). In
this paper, we study the robustness of tree-based models
under adversarial attacks, and more importantly, we propose
a novel robust training framework for tree-based models.
Below we highlight our major contributions:

• We study the robustness of decision tree-based machine
learning algorithms through the lens of adversarial examples.
We study both classical decision trees and state-of-the-art
ensemble boosting methods such as XGBoost. We show
that, similar to neural networks, tree-based models are also
vulnerable to adversarial examples.
• We propose a novel robust decision tree training frame-
work to improve robustness against adversarial examples.
This method seeks to optimize the worst case condition by
solving a max-min problem. This framework is quite gen-
eral and can be applied to tree-based models with any score
function used to choose splitting thresholds. To the best of
our knowledge, this is the first work contributing a general
robust decision tree training framework against adversarial
examples.
• We implement our framework in both classical informa-
tion gain based classification trees and state-of-the-art large-
scale tree boosting systems. To scale up our framework,
we make necessary and efficient approximations to handle
complex models and real world data sets. Our experimental
results show consistent and substantial improvements on
adversarial robustness.

2. Related Works
2.1. Decision Tree and Gradient Boosted Decision Tree

Decision tree learning methods are widely used in machine
learning and data mining. As considered here, the goal is to
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create a tree structure with each interior node corresponding
to one of the input features. Each interior node has two chil-
dren, and edges to child nodes represent the split condition
for that feature. Each leaf provides a prediction value of the
model, given that the input features satisfy the conditions
represented by the path from the root to that leaf. In practice,
decision tree learning algorithms are based on greedy search,
which builds a tree starting from its root by making locally
optimal decisions at each node. Classical decision tree train-
ing recursively chooses features, sets thresholds and splits
the examples on a node by maximizing a pre-defined score,
such as information gain or Gini impurity.

Decision trees are often used within ensemble methods.
A well-known gradient tree boosting method has been de-
veloped by Friedman et al. (2000); Friedman (2001) and
Friedman (2002) to allow optimization of an arbitrary dif-
ferentiable loss function. Later scalable tree boosting sys-
tems have been built to handle large datasets. For example,
pGBRT (Tyree et al., 2011) parallelizes the training pro-
cedure by data partitioning for faster and distributed train-
ing. XGBoost (Chen & Guestrin, 2016) is a prominent tree
boosting software framework; in data mining contests, 17
out of 29 published winning solutions at Kaggle’s blog in
2015 used XGBoost in their models. LightGBM (Ke et al.,
2017; Zhang et al., 2018) is another highly efficient boosting
framework that utilizes histograms on data features to signif-
icantly speed up training. mGBDT (Feng et al., 2018) learns
hierarchical representations by stacking multiple layers of
gradient boosted decision trees (GBDTs). Other variants
such as extreme multi-label GBDT (Si et al., 2017) and cost
efficient tree boosting approaches (Peter et al., 2017; Xu
et al., 2019) have also been proposed recently.

2.2. Adversarial Attack for Deep Neural Networks

An adversarial attack is a subtle modification of a benign
example. In a successful attack, the classifier will misclas-
sify this modified example, while the original example is
correctly classified. Such attacks can be roughly divided
into two categories, white-box attacks and black-box attacks.
White-box attacks assume that the model is fully exposed
to the attacker, including parameters and structures, while
in black-box attacks, the attacker can query the model but
has no (direct) access to any internal information inside the
model. FGSM (Goodfellow et al., 2015) is one of the first
methods in the white-box attack category. It computes the
gradient only once to generate an adversarial example. This
method is strengthened as Iterative-FGSM (or I-FGSM) (Ku-
rakin et al., 2017), which applies FGSM multiple times for
a higher attack success rate and smaller distortion. C&W
attack (Carlini & Wagner, 2017) formulates the attack as
an optimization problem with an `2 penalization. EAD-L1
attack (Chen et al., 2018b) uses a more general formulation
than C&W attack with elastic-net regularization. To bypass

some defenses with obfuscated gradients, the BPDA attack
introduced by Athalye et al. (2018) is shown to successfully
circumvent many defenses.

The white-box setting is often argued as being unrealistic in
the literature. In contrast, several recent works have studied
ways to fool the model given only model output scores or
probabilities. Methods in Chen et al. (2017) and Ilyas et al.
(2017) are able to craft adversarial examples by making
queries to obtain the corresponding probability outputs of
the model. A stronger and more general attack has been
developed recently by Cheng et al. (2019), which does not
rely on the gradient nor the smoothness of model output.
This enables attackers to successfully attack models that
only output hard labels.

2.3. Defenses for Deep Neural Networks

It is difficult to defend against adversarial examples, es-
pecially under strong and adaptive attacks. Some early
methods, including feature squeezing (Xu et al., 2017) and
defensive distillation (Papernot et al., 2016b) have been
proven ineffective against stronger attacks like C&W. Many
recently proposed defense methods are based on obfuscated
gradients (Guo et al., 2017; Song et al., 2017; Buckman
et al., 2018; Ma et al., 2018; Samangouei et al., 2018) and
are already overcome by the aforementioned BPDA attack.

Adversarial training, first introduced in Kurakin et al. (2017),
is effective on DNNs against various attacks. In adversarial
training, adversarial examples are generated during the train-
ing process and are used as training data to increase model
robustness. This technique has been formally posed as a
min-max robust optimization problem in Madry et al. (2018)
and has achieved very good performance under adversarial
attacks. Several recent work have tried to improve over the
original adversarial training formulation (Liu & Hsieh, 2019;
Liu et al., 2019; Zhang et al., 2019). There are some other
methods in the literature seeking to give provable guarantees
on the robustness performance, such as distributional robust
optimization (Sinha et al., 2018), convex relaxations (Wong
& Kolter, 2018; Wong et al., 2018; Wang et al., 2018) and
semidefinite relaxations (Raghunathan et al., 2018). Some
of these methods can be deployed in medium-sized networks
and achieve satisfactory robustness.

However, all of the current defense methods assume the
model to be differentiable and use gradient based optimizers,
so none of them can be directly applied to decision tree
based models, which are discrete and non-differentiable.

3. Adversarial Examples of Decision Tree
Based Models

Recent developments in machine learning have resulted
in the deployment of large-scale tree boosting systems in
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critical applications such as fraud and malware detection.
Unlike deep neural networks (DNNs), tree based models are
non-smooth, non-differentiable and sometimes interpretable,
which might lead to the belief that they are more robust
than DNNs. However, the experiments in our paper show
that similar to DNNs, tree-based models can also be easily
compromised by adversarial examples. In this paper, we
focus on untargeted attacks, which are considered to be
successful as long as the model misclassifies the adversarial
examples.

Unlike DNNs, algorithms for crafting adversarial examples
for tree-based models are poorly studied. The main reason
is that tree-based models are discrete and non-differentiable,
thus we cannot use common gradient descent based methods
for white-box attack. An early attack algorithm designed for
single decision trees has been proposed by Papernot et al.
(2016a), based on greedy search. To find an adversarial
example, this method searches the neighborhood of the leaf
which produces the original prediction, and finds another
leaf labeled as a different class by considering the path from
the original leaf to the target leaf, and changing the feature
values accordingly to result in misclassification.

A white-box attack against binary classification tree ensem-
bles has been proposed by Kantchelian et al. (2016). This
method finds the exact smallest distortion (measured by
some `p norm) necessary to mislead the model. However,
the algorithm relies on Mixed Integer Linear Programming
(MILP) and thus can be very time-consuming when attack-
ing large scale tree models as arise in XGBoost. In this
paper, we use the `∞ version of Kantchelian’s attack as
one of our methods to evaluate small and mid-size binary
classification model robustness. Kantchelian et al. (2016)
also introduce a faster approximation to generate adversarial
examples using symbolic prediction with `0 norm minimiza-
tion and combine this method into an adversarial training
approach. Unfortunately, the demonstrated adversarial train-
ing is not very effective; despite increasing model robust-
ness for `0 norm perturbations, robustness for `1, `2 and `∞
norm perturbations are noticeably reduced compared to the
naturally (non-robustly) trained model.

In our paper, in addition to Kantchelian attacks we also use a
general attack method proposed in Cheng et al. (2019) which
does not rely on the gradient nor the smoothness of output
of a machine learning model. Cheng’s attack method has
been used to efficiently evaluate the robustness of complex
models on large datasets, even under black-box settings.
To deal with non-smoothness of model output, this method
focuses on the distance between the benign example and the
decision boundary, and reformulates the adversarial attack
as a minimization problem of this distance. Despite the non-
smoothness of model prediction, the distance to decision
boundary is usually smooth within a local region, and can
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(a)
pred.=2

(b)
`∞ dist.= 0.069
pred.=8

(c)
`∞ dist.= 0.344
pred.=8

(d)
pred.=“Ankle
Boot”

(e)
`∞ dist.= 0.074
pred.=“Shirt”

(f)
`∞ dist.= 0.394
pred.=“Bag”

Figure 1. MNIST and Fashion-MNIST examples and their ad-
versarial examples found using the untargeted attack proposed
by Cheng et al. (2019) on 200-tree gradient boosted decision tree
(GBDT) models trained using XGBoost with depth=8. Natural
GBDT models (nat.) are fooled by small `∞ perturbations (b,
e), while our robust (rob.) GBDT models require much larger
perturbations (c, f) for successful attacks. For both MNIST and
Fashion-MNIST robust models, we use ε = 0.3 (a robust training
hyper-parameter which will be introduced in Section 4). More
examples are shown in the appendix.

be found by binary search on vector length given a direction
vector. To minimize this distance without gradient, Cheng
et al. (2019) used a zeroth order optimization algorithm with
a randomized gradient-free method. In our paper, we use
the `∞ version of Cheng’s attack.

Some adversarial examples obtained by this method are
shown in Figure 1, where we display results on both MNIST
and Fashion-MNIST datasets. The models we test are nat-
ural GBDT models trained using XGBoost and our robust
GBDT models, each with 200 trees and a tree depth of
8. Cheng’s attack is able to craft adversarial examples
with very small distortions on natural models; for human
eyes, the adversarial distortion added to the natural model’s
adversarial examples appear as imperceptible noise. We
also conduct white-box attacks using the MILP formula-
tion (Kantchelian et al., 2016), which takes much longer
time to solve but the `∞ distortion found by MILP is com-
parable to Cheng’s method; see Section 5 for more details.
In contrast, for our robust GBDT model, the required ad-
versarial example distortions are so large that we can even
vaguely see a number 8 in subfigure (c). The substantial
increase in the `∞ distortion required to misclassify as well
as the increased visual impact of such distortions shows the
effectiveness of our robust decision tree training, which we
will introduce in detail next. In the main text, we use the
`∞ version of Kantchelian’s attack; we present results of `1
and `2 Kantchelian attacks in the appendix.
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Figure 2. (Best viewed in color) A simple example illustrating how
robust splitting works. Upper: A set of 10 points that can be easily
separated with a horizontal split on feature x(2). The accuracy
of this split is 0.8. Middle: The high accuracy horizontal split
cannot separate the `∞ balls around the data points and thus an
adversary can perturb any example xi within the indicated `∞ ball
to mislead the model. The worst case accuracy under adversarial
perturbations is 0 if all points are perturbed within the square boxes
(`∞ norm bounded noise). Lower: a more robust split would be
a split on feature x(1). The accuracy of this split is 0.7 under
all possible perturbations within the same size `∞ norm bounded
noise (square boxes).

4. Robust Decision Trees
4.1. Intuition

As shown in Section 3, tree-based models are vulnerable
to adversarial examples. Thus it is necessary to augment
the classical natural tree training procedure in order to ob-
tain reliable models robust against adversarial attacks. Our
method formulates the process of optimally finding best
split threshold in decision tree training as a robust optimiza-
tion problem. As a conceptual illustration, Figure 2 presents
a special case where the traditional greedy optimal splitting
may yield non-robust models. A horizontal split achieving
high accuracy or score on original points may be easily com-
promised by adversarial perturbations. On the other hand,
we are able to select a better vertical split considering pos-
sible perturbations in `∞ balls. At a high level, the robust
splitting feature and threshold take the distances between
data points into account (which is often ignored in most deci-
sion tree learning algorithms) and tries to optimize the worst
case performance under adversarial perturbations. Some
recent works in DNNs (Ilyas et al., 2019; Tsipras et al.,
2019) divided features into two categories, robust features
and non-robust features. In tree-based models, the effect of
this dichotomy on the robustness is straight forward, as seen
in the two different splits in Figure 2 using x(1) (a robust
feature) and x(2) (a non-robust feature).

4.2. General Robust Decision Tree Framework

In this section we formally introduce our robust decision
tree training framework. For a training set with N examples
and d real valued features D = {(xi, yi)} (1 ≤ i ≤ N ,

yi ∈ R, xi = [x
(1)
i , x

(2)
i , . . . , x

(j)
i , . . . , x

(d)
i ] ∈ Rd), we

first normalize the feature values to [0, 1] such that xi ∈
[0, 1]d (the best feature value for split will also be scaled
accordingly, but it is irrelevant to model performance). For a
general decision tree based learning model, at a given node,
we denote I ⊆ D as the set of points at that node. For a
split on the j-th feature with a threshold η, the sets that will
be mentioned in Sections 4.2, 4.3 and 4.4 are summarized
in Table 1.

Notation Definition
I set of examples on the current node
I0 I ∩ {(xi, yi)|yi = 0} (for classification)
I1 I ∩ {(xi, yi)|yi = 1} (for classification)
IL I ∩ {(xi, yi)|x(j) < η}
IR I ∩ {(xi, yi)|x(j) ≥ η}
∆I I ∩ {(xi, yi)|η − ε ≤ x(j) ≤ η + ε}
∆IL ∆I ∩ IL
∆IR ∆I ∩ IR
IoL IL \∆I
IoR IR \∆I

Table 1. Notations of different sets in Section 4. We assume a split
is made on the j-th feature with a threshold η, and this feature can
be perturbed by ±ε.

In classical tree based learning algorithms (which we refer
to as “natural” trees in this paper), the quality of a split on
a node can be gauged by a score function S(·): a function
of the splits on left and right child nodes (IL and IR), or
equivalently on the chosen feature j to split and a corre-
sponding threshold value η. Since IL and IR are deter-
mined by j, η and I, we abuse the notation and define
S(j, η, I) := S(IL, IR).

Traditionally, people consider different scores for choosing
the “best” split, such as information gain used by ID3 (Quin-
lan, 1986) and C4.5 (Quinlan, 1986), or Gini impurity in
CART (Breiman, 1984). Modern software packages (Chen
& Guestrin, 2016; Ke et al., 2017; Dorogush et al., 2018)
typically find the best split that minimize a loss function
directly, allowing decision trees to be used in a large class
of problems (i.e., mean square error loss for regression, lo-
gistic loss for classification, and ranking loss for ranking
problems). A regular (“natural”) decision tree training pro-
cess will either exactly or approximately evaluate the score
function, for all possible features and split thresholds on the
leaf to be split, and select the best j, η pair:

j∗, η∗ = arg max
j, η

S(IL, IR) = arg max
j, η

S(j, η, I).

(1)
In our setting, we consider the case where features of exam-
ples in IL and IR can be perturbed by an adversary. Since
a typical decision tree can only split on a single feature at
one time, it is natural to consider adversarial perturbations
within an `∞ ball of radius ε around each example xi:

B∞ε (xi) := [x
(1)
i − ε, x

(1)
i + ε]×· · ·× [x

(d)
i − ε, x

(d)
i + ε].
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Such perturbations enable the adversary to minimize the
score obtained by our split. So instead of finding a split with
highest score, an intuitive approach for robust training is to
maximize the minimum score value obtained by all possible
perturbations in an `∞ ball with radius ε,

j∗, η∗ = arg max
j, η

RS(j, η, I), (2)

where RS(·) is a robust score function defined as

RS(j, η, I) := min
I′={(x′i, yi)}

S(j, η, I ′)

s.t. x′i ∈ B∞ε (xi), for all x′i ∈ I ′.
(3)

In other words, each xi ∈ I can be perturbed individually
under an `∞ norm bounded perturbation to form a new
set of training examples I ′. We consider the worst case
perturbation, such that the set I ′ triggers the worst case
score after split with feature j and threshold η. The training
objective (2) becomes a max-min optimization problem.

Note that there is an intrinsic consistency between bound-
aries of the `∞ balls and the decision boundary of a decision
tree. For the split on the j-th feature, perturbations along
features other than j do not affect the split. So we only need
to consider perturbations within ±ε along the j-th feature.
We define ∆I as the ambiguity set, containing examples
with feature j inside the [η − ε, η + ε] region (see Table 1).
Only examples in ∆I may be perturbed from IL to IR or
from IR to IL to reduce the score. Perturbing points in
I \ ∆I will not change the score or the leaves they are
assigned to. We denote IoL and IoR as the set of examples
that are certainly on the left and right child leaves under
perturbations (see Table 1 for definitions). Then we intro-
duce 0-1 variables si = {0, 1} denoting an example in the
ambiguity set ∆I to be assigned to IL and IR, respectively.
Then theRS can be formulated as a 0-1 integer optimization
problem with |∆I| variables, which is NP-hard in general.
Additionally, we need to scan through all d features of all
examples and solve O(|I|d) minimization problems for a
single split at a single node. This large number of problems
to solve makes this computation intractable. Therefore, we
need to find an approximation for the RS(j, η, I). In Sec-
tions 4.3 and 4.4, we present two different approximations
and corresponding implementations of our robust decision
tree framework, first for classical decision trees with in-
formation gain score, and then for modern tree boosting
systems which can minimize any loss function.

It is worth mentioning that we normalize features to [0, 1]d

for the sake of simplicity in this paper. One can also define
ε1, ε2, . . . , εd for each feature and then the adversary is
allowed to perturb xi within [x

(1)
i − ε1, x

(1)
i + ε1]× · · · ×

[x
(d)
i − εd, x

(d)
i + εd]. In this case, we would not need to

normalize the features. Also, ε is a hyper-parameter in our
robust model. Models trained with larger ε are expected to

be more robust and when ε = 0, the robust model is the
same as a natural model.

4.3. Robust Splitting for Decision Trees with
Information Gain Score

Here we consider a decision tree for binary classification,
yi ∈ {0, 1}, with information gain as the metric for node
splitting. The information gain score is

S(j, η, I) := IG(j, η) = H(y)−H(y|x(j) < η),

where H(·) and H(·|·) are entropy and conditional entropy
on the empirical distribution. For simplicity, we denote
N0 := |I0|, N1 := |I1|, n0 := |IL ∩ I0| and n1 := |IL ∩
I1|. The following theorem shows adversary’s perturbation
direction to minimize the information gain.

Theorem 1. If n0

N0
< n1

N1
and n0+1

N0
≤ n1

N1
, perturbing

one example in ∆IR with label 0 to IL will decrease the
information gain.

Similarly, if n1

N1
< n0

N0
and n1+1

N1
≤ n0

N0
, perturbing one

example in ∆IR with label 1 to IL will decrease the infor-
mation gain. The proof of this theorem will be presented in
Section A in the appendix. Note that we also have a similar
conclusion for Gini impurity score, which will be shown in
Section B in the appendix. Therefore, to decrease the infor-
mation gain score, the adversary needs to perturb examples
in ∆I such that n0

N0
and n1

N1
are close to each other (the ideal

case n0

N0
= n1

N1
may not be achieved because n0, n1, N0 and

N1 are integers). The robust split finding algorithm is shown
in Algorithm 1. In this algorithm we find a perturbation that
minimizes

∣∣∣ n0

N0
− n1

N1

∣∣∣ as an approximation and upper bound
to the optimal solution. Algorithm 3 in Section A in the
appendix shows an O(|I|) procedure to find such perturba-
tion to approximately minimize the information gain. Since
the algorithm scans through {x(j)

1 , . . . , x
(j)
d } in the sorted

order, the sets ∆I, IoL, IoR can be maintained in amortized
O(1) time in the inner loop. Therefore, the computational
complexity of the robust training algorithm is O(d|I|2) per
split.

Although it is possible to extend our conclusion to other
traditional scores of classification trees, we will focus on
the modern scenario where we use a regression tree to fit
any loss function in Section 4.4.

4.4. Robust Splitting for GBDT models

We now introduce the regression tree training process used
in many modern tree boosting packages including XG-
Boost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017)
and CatBoost (Dorogush et al., 2018). Specifically, we fo-
cus on the formulation of gradient boosted decision tree
(GBDT), which is one of the most successful ensemble
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Algorithm 1 Robust Split with Information Gain

Input: Training set {(xi, yi)}|Ni=1, xi ∈ [0, 1]d, yi ∈
{0, 1}.
Input: The instance set of the current node I .
Input: ε, the radius of the `∞ ball.
Output: Optimal split of the current node.
I0 ← {(xi, yi)|yi = 0}, I1 ← {(xi, yi)|yi = 1};
N0 ← |I ∩ I0|, N1 ← |I ∩ I1|;
for j ← 1 to d do

for m in sorted(I, ascending order by xjm) do
η ← 1

2 (xjm +xjm+1), ∆I ← I ∩{(xi, yi)|η− ε ≤
x(j) ≤ η + ε};
IoL ← {(xi, yi)|x(j) < η − ε}, IoR ←
{(xi, yi)|x(j) > η + ε};
no0 ← |IoL ∩ I0|, no1 ← |IoL ∩ I1|;
Find ∆n∗0, ∆n∗1 to minimize |∆n

∗
0+no

0

N0
− ∆n∗1+no

1

N1
|

using Algorithm 3 in Section A in the appendix;
From ∆I, add ∆n∗0 points with y = 0 and ∆n∗1
points with y = 1 to IoL and obtain IL;
Add remaining points in ∆I to IoR and obtain IR;
RS(j, η)← IG(IL, IR);

end for
end for
j∗, η∗ ← arg maxj, η RS(j, η);
Split on feature j∗ with a threshold η∗;

models and has been widely used in industry. GBDT is an
additive tree ensemble model φ(·) combining outputs of K
trees

ŷi = φK(xi) =

K∑
k=1

fk(xi)

where each fk is a decision tree and ŷi is the final output for
xi. Here we only focus on regression trees where ŷi ∈ R.
Note that even for a classification problem, the modern
treatment in GBDT is to consider the data with logistic loss,
and use a regression tree to minimize this loss.

During GBDT training, the trees fk are generated in an
additive manner: when we consider the tree fK , all previous
trees fk, k ∈ {1, · · · ,K − 1} are kept unchanged. For a
general convex loss function l (such as MSE or logistic loss),
we desire to minimize the following objective

L(φ,D) =

N∑
i=1

l(yi, ŷi) +

K∑
k=1

Ω(fk)

=

N∑
i=1

l (yi, φK−1(xi) + fK(xi)) +

K−1∑
k=1

Ω(fk) + Ω(fK)

where Ω(f) is a regularization term to penalize complex
trees; for example, in XGBoost, Ω(f) = γT + 1

2λ‖ω‖
2,

where T is the number of leaves, ω is a vector of all leaf
predictions and λ, γ ≥ 0 are regularization constants. Im-
portantly, when we consider fK , φK−1 is a constant. The

Algorithm 2 Robust Split for Boosted Tree

Input: training set {(xi, yi)}|Ni=1, xi ∈ [0, 1]d, yi ∈ R.
Input: The instance set of the current node I .
Input: ε, the radius of the `∞ ball.
Output: Optimal split of the current node.
for j ← 1 to d do

for m in sorted(I, ascending order by xjm) do
η ← 1

2 (xjm + xjm+1);
IoL ← {(xi, yi)|x(j) < η − ε},∆IL ← I ∩
{(xi, yi)|η − ε ≤ x(j) < η};
IoR ← {(xi, yi)|x(j) > η + ε}, ∆IR ← I ∩
{(xi, yi)|η ≤ x(j) ≤ η + ε};
S1 = S(IL, IR), S2 = S(IoL, IoR ∪ ∆I), S3 =
S(IoL ∪∆I, IoR), S4 = S(IoL ∪∆IR, IoR ∪∆IL);
RS(j, η)← min{S1, S2, S3, S4};

end for
end for
j∗, η∗ ← arg maxj, η RS(j, η);
Split on feature j∗ with a threshold η∗;

impact of fK(xi) on l(yi, ŷi) can be approximated using a
second order Taylor expansion:

l(yi, φK(xi)) ≈ l̂(yi, φK(xi))

:= l(yi, φK−1(xi)) + gifK(xi) +
1

2
hi(fK(xi))

2

where gi = ∂l(yi,φK(xi))
∂fK(xi)

and hi = ∂2l(yi,φK(xi))
∂f2

K(xi)
are the

first and second order derivatives on the loss function with
respect to the prediction of decision tree fK on point xi.
Conceptually, ignoring the regularization terms, the score
function can be given as:

S(IL, IR) =
∑
i∈IL

l̂(yi, φK(xi))|φK(xi)=ωL

+
∑
i∈IR

l̂(yi, φK(xi))|φK(xi)=ωR
−
∑
i∈I

l̂(yi, φK(xi))|φK(xi)=ωP

where ωL, ωR and ωP are the prediction values of the left,
right and parent nodes. The score represents the improve-
ments on reducing the loss function L for all data examples
in I. The exact form of score used in XGBoost with regu-
larization terms is given in (Chen & Guestrin, 2016):

S(j, η, I) = S(IL, IR)

:=
1

2

[
(
∑
i∈IL gi)

2∑
i∈IL hi + λ

+
(
∑
i∈IR gi)

2∑
i∈IR hi + λ

−
(
∑
i∈I gi)

2∑
i∈I hi + λ

]
− γ,

where γ is a regularization constant. Again, to minimize the
score by perturbing points in ∆I, the adversary needs to
solve an intractable 0-1 integer optimization at each possible
splitting position. Since GBDT is often deployed in large
scale data mining tasks with a large amount of training
data to scan through at each node, and we need to solve RS
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O(|I|d) times, we cannot afford any expensive computation.
For efficiency, our robust splitting procedure for boosted
decision trees, as detailed in Algorithm 2, approximates
the minimization by considering only four representative
cases: (1) no perturbations: S1 = S(IL, IR); (2) perturb
all points in ∆I to the right: S2 = S(IoL, IoR ∪ ∆I); (3)
perturb all points in ∆I to the left: S3 = S(IoL ∪∆I, IoR);
(4) swap the points in ∆I: S4 = S(IoL ∪∆IR, IoR ∪∆IL).
We take the minimum among the four representative cases
as an approximation of the RS:

RS(j, η, I) ≈ min{S1, S2, S3, S4}. (4)

Though this method only takes O(1) time to give a rough
approximation of the RS at each possible split position, it
is effective empirically as demonstrated next in Section 5.

5. Experiments
Our code is at https://github.com/chenhongge/RobustTrees.

5.1. Robust Information Gain Decision Trees

We present results on three small datasets with robust in-
formation gain based decision trees using Algorithm 1. We
focus on untargeted adversarial attacks. For each dataset
we test on 100 examples (or the whole test set), and we
only attack correctly classified images. Attacks proceed
until the attack success rate is 100%; the differences in
robustness are reflected in the distortion of the adversar-
ial examples required to achieve a successful attack. In
Table 2, we present the average `∞ distortion of the adver-
sarial examples of both classical natural decision trees and
our robust decision trees trained on different datasets. We
use Papernot’s attack as well as `∞ versions of Cheng’s and
Kantchelian’s attacks. The `1 and `2 distortion found by
Kantchelian’s `1 and `2 attacks are presented in Table 4 in
the appendix. The adversarial examples found by Cheng’s,
Papernot’s and Kantchelian’s attacks have much larger `∞
norm for our robust trees compared to those for the natural
trees, demonstrating that our robust training algorithm im-
proves the decision tree robustness substantially. In some
cases our robust decision trees also have higher test accuracy
than the natural trees. This may be due to the fact that the
robust score tends to encourage the tree to split at thresholds
where fewer examples are in the ambiguity set, and thus
the split is also robust against random noise in the training
set. Another possible reason is the implicit regularization in
the robust splitting. The robust score is always lower than
the regular score and thus our splitting is more conserva-
tive. Also, from results in Table 2 we see that most of the
adversarial examples found by Papernot’s attack have larger
`∞ norm than those found by Cheng’s `∞ attack. This sug-
gests that the straight-forward greedy search attack is not as
good as a sophisticated general attack for attacking decision
trees. Cheng’s attack is able to achieve similar `∞ distortion

as Kantchelian’s attack, without solving expensive MILPs.
While not scalable to large datasets, Kantchelian’s attack
can find the minimum adversarial examples, reflecting the
true robustness of a tree-based model.

5.2. Robust GBDT Models

In this subsection, we evaluate our algorithm in the tree
boosting setting, where multiple robust decision trees are
created in an ensemble to improve model accuracy. We
implement Algorithm 2 by slightly modifying the node split-
ting procedure in XGBoost. Our modification is only rele-
vant to computing the scores for selecting the best split, and
is compatible with other existing features of XGBoost. We
also use XGBoost to train natural (undefended) GBDT mod-
els. Again, we focus on untargeted adversarial attacks. We
consider nine real world large or medium sized datasets and
two small datasets (Chang & Lin, 2011), spanning a variety
of data types (including both tabular and image data). For
small datasets we use 100 examples and for large or medium
sized datasets, we use 5000 examples for robustness evalua-
tion, except for MNIST 2 vs. 6, where we use 100 examples.
MNIST 2 vs. 6 is a subset of MNIST to only distinguish
between 2 and 6. This is the dataset tested in Kantchelian
et al. (2016). We use the same number of trees, depth and
step size shrinkage as in Kantchelian et al. (2016) to train
our robust and natural models. Same as Kantchelian et al.
(2016), we only test 100 examples for MNIST 2 vs. 6 since
the model is relatively large. In Table 3, we present the aver-
age `∞ distortion of adversarial examples found by Cheng’s
`∞ attack for both natural GBDT and robust GBDT models
trained on those datasets. For small and medium binary clas-
sification models, we also present results of Kantchelian’s
`∞ attack, which finds the minimum adversarial example in
`∞ norm. The `1 and `2 distortion found by Kantchelian’s
`1 and `2 attacks are presented in Table 5 in the appendix.
Kantchelian’s attack can only handle binary classification
problems and small scale models due to its time-consuming
MILP formulation. Papernot’s attack is inapplicable here
because it is for attacking a single tree only. The natural
and robust models have the same number of trees for com-
parison. We only attack correctly classified images and all
examples are successfully attacked. We see that our robust
GBDT models consistently outperform the natural GBDT
models in terms of `∞ robustness.

For some datasets, we need to increase tree depth in robust
GBDT models in order to obtain accuracy comparable to
the natural GBDT models. The requirement of larger model
capacity is common in the adversarial training literature: in
the state-of-the-art defense for DNNs, Madry et al. (2018)
argues that increasing the model capacity is essential for
adversarial training to obtain good accuracy.

Figure 3 and Figure 5 in the appendix show the distortion

https://github.com/chenhongge/RobustTrees


Robust Decision Trees Against Adversarial Examples

Dataset training test # of # of robust ε depth test acc.
avg. `∞ dist.

by Cheng’s `∞ attack
avg. `∞ dist.

by Papernot’s attack
avg. `∞ dist.

by Kantchelian’s `∞ attack
set size set size features classes robust natural robust natural robust natural robust natural robust natural

breast-cancer 546 137 10 2 0.3 5 5 .948 .942 .531 .189 .501 .368 .463 .173
diabetes 614 154 8 2 0.2 5 5 .688 .747 .206 .065 .397 .206 .203 .060

ionosphere 281 70 34 2 0.2 4 4 .986 .929 .388 .109 .408 .113 .358 .096

Table 2. Test accuracy and robustness of information gain based single decision tree model. The robustness is evaluated by the average
`∞ distortion of adversarial examples found by Cheng’s, Papernot’s and Kantchelian’s attacks. Average `∞ distortion of robust decision
tree models found by three attack methods are consistently larger than that of the naturally trained ones.

Dataset training test # of # of # of robust depth test acc.
avg. `∞ dist.

by Cheng’s `∞ attack dist.
avg. `∞ dist.

by Kantchelian’s `∞ attack dist.

set size set size features classes trees ε robust natural robust natural robust natural improv. robust natural improv.
breast-cancer 546 137 10 2 4 0.3 8 6 .978 .964 .411 .215 1.91X .406 .201 2.02X

covtype 400,000 181,000 54 7 80 0.2 8 8 .847 .877 .081 .061 1.31X not binary not binary —
cod-rna 59,535 271,617 8 2 80 0.2 5 4 .880 .965 .062 .053 1.16X .054 .034 1.59X
diabetes 614 154 8 2 20 0.2 5 5 .786 .773 .139 .060 2.32X .114 .047 2.42X

Fashion-MNIST 60,000 10,000 784 10 200 0.1 8 8 .903 .903 .156 .049 3.18X not binary not binary —
HIGGS 10,500,000 500,000 28 2 300 0.05 8 8 .709 .760 .022 .014 1.57X time out time out —
ijcnn1 49,990 91,701 22 2 60 0.1 8 8 .959 .980 .054 .047 1.15X .037 .031 1.19X

MNIST 60,000 10,000 784 10 200 0.3 8 8 .980 .980 .373 .072 5.18X not binary not binary —
Sensorless 48,509 10,000 48 11 30 0.05 6 6 .987 .997 .035 .023 1.52X not binary not binary —
webspam 300,000 50,000 254 2 100 0.05 8 8 .983 .992 .049 .024 2.04X time out time out —

MNIST 2 vs. 6 11,876 1,990 784 2 1000 0.3 6 4 .997 .998 .406 .168 2.42X .315 .064 4.92X

Table 3. The test accuracy and robustness of GBDT models. Average `∞ distortion of our robust GBDT models are consistently larger
than those of the naturally trained models. The robustness is evaluated by the average `∞ distortion of adversarial examples found by
Cheng’s and Kantchelian’s attacks. Only small or medium sized binary classification models can be evaluated by Kantchelian’s attack, but
it finds the minimum adversarial example with smallest possible distortion.

and accuracy of MNIST and Fashion-MNIST models with
different number of trees. The adversarial examples are
found by Cheng’s `∞ attack. Models with k trees are the
first k trees during a single boosting run ofK (K ≥ k) trees.
The `∞ distortion of robust models are consistently much
larger than those of the natural models. For MNIST dataset,
our robust GBDT model loses accuracy slightly when the
model has only 20 trees. This loss is gradually compensated
as more trees are added to the model; regardless of the num-
ber of trees in the model, the robustness improvement is
consistently observed, as our robust training is embedded
in each tree’s building process and we create robust trees
beginning from the very first step of boosting. Adversarial
training in Kantchelian et al. (2016), in contrast, adds ad-
versarial examples with respect to the current model at each
boosting round so adversarial examples produced in the later
stages of boosting are only learned by part of the model.
The non-robust trees in the first few rounds of boosting still
exist in the final model and they may be the weakness of
the ensemble. Similar problems are not present in DNN
adversarial training since the whole model is exposed to
new adversarial examples throughout the training process.
This may explain why adversarial training in Kantchelian
et al. (2016) failed to improve `1, `2, or `∞ robustness
on the MNIST 2 vs. 6 model, while our method achieves
significant robustness improvement with the same training
parameters and evaluation metrics, as shown in Tables 3
and 5. Additionally, we also evaluate the robustness of nat-
ural and robust models with different number of trees on a
variety of datasets using Cheng’s `∞ attack, presented in
Table 7 in the appendix.
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Figure 3. (Best viewed in color) `∞ distortion vs. classification
accuracy of GBDT models on MNIST dataset with different num-
bers of trees (circle size). The adversarial examples are found by
Cheng’s `∞ attack. The robust training parameter ε = 0.3 for
MNIST. With robust training (purple) the distortion needed to fool
a model increases dramatically with less than 1% accuracy loss.

We also test our framework on random forest models and
the results are shown in Section G in the appendix.
6. Conclusion
In this paper, we study the robustness of tree-based machine
learning models under adversarial attacks. Our experiments
show that just as in DNNs, tree-based models are also vul-
nerable to adversarial attacks. To address this issue, we
propose a novel robust decision tree training framework.
We make necessary approximations to ensure scalability
and implement our framework in both classical decision
tree and tree boosting settings. Extensive experiments on a
variety of datasets show that our method substantially im-
proves model robustness. Our framework can be extended
to other tree-based models such as Gini impurity based
classification trees, random forest, and CART.



Robust Decision Trees Against Adversarial Examples

Acknowledgements
The authors thank Aleksander Mądry for fruitful discussions.
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A. Proof of Theorem 1
Here we prove Theorem 1 for information gain score.

Proof. H(y) and H(y|x(j) < η) are defined as

H(y) = −|I0|
|I|

log(
|I0|
|I|

)− |I1|
|I|

log(
|I1|
|I|

),

and

H(y|x(j) < η) =

− |IL|
|I|

[
|IL ∩ I0|
|IL|

log(
|IL ∩ I0|
|IL|

) +
|IL ∩ I1|
|IL|

log(
|IL ∩ I1|
|IL|

)

]
− |IR|
|I|

[
|IR ∩ I0|
|IR|

log(
|IR ∩ I0|
|IR|

) +
|IR ∩ I1|
|IR|

log(
|IR ∩ I1|
|IR|

)

]
.

For simplicity, we denote N0 := |I0|, N1 := |I1|, n0 :=
|IL ∩I0| and n1 := |IL ∩I1|. The information gain of this
split can be written as a function of n0 and n1:

IG = C1[n0 log(
n0

N0(n1 + n0)
) + n1 log(

n1

N1(n1 + n0)
)

+ (N0 − n0) log(
N0 − n0

N0(N1 +N0 − n1 − n0)
)

+ (N1 − n1) log(
N1 − n1

N1(N1 +N0 − n1 − n0)
)] + C2,

(5)

where C1 > 0 and C2 are constants with respect to n0.
Taking n0 as a continuous variable, we have

∂IG

∂n0
= C1 · log(1 +

n0N1 −N0n1

(N0 − n0)(n1 + n0)
) (6)

When ∂IG
∂n0

< 0, perturbing one example in ∆IR with label
0 to IL will increase n0 and decrease the information gain.
It is easy to see that ∂IG∂n0

< 0 if and only if n0

N0
< n1

N1
. This

indicates that when n0

N0
< n1

N1
and n0+1

N0
≤ n1

N1
, perturbing

one example with label 0 to IL will always decrease the
information gain.

Similarly, if n1

N1
< n0

N0
and n1+1

N1
≤ n0

N0
, perturbing one

example in ∆IR with label 1 to IL will decrease the infor-
mation gain. As mentioned in the main text, to decrease the
information gain score in Algorithm 1, the adversary needs
to perturb examples in ∆I such that n0

N0
and n1

N1
are close to

each other. Algorithm 3 gives an O(|∆I|) method to find
∆n∗0 and ∆n∗1, the optimal number of points in ∆I with
label 0 and 1 to be added to the left.

B. Gini Impurity Score
We also have a theorem for Gini impurity score similar to
Theorem 1.

Algorithm 3 Finding ∆n∗0 and ∆n∗1 to Minimize Informa-
tion Gain or Gini Impurity

Input: N0 and N1, number of instances with label 0 and
1. no0 and no1, number of instances with label 0 and 1 that
are certainly on the left.
Input: |∆I ∩ I0| and |∆I ∩ I1|, number of instances
with label 0 and 1 that can be perturbed.
Output: ∆n∗0, ∆n∗1, optimal number of points with label
0 and 1 in ∆I to be place on the left.
∆n∗0 ← 0, ∆n∗1 ← 0, min_diff← | n

o
0

N0
− no

1

N1
|;

for ∆n0 ← 0 to |∆I ∩ I0| do
ceil← dN1(no

0+∆n0)
N0

e − no1;

floor← bN1(no
0+∆n0)
N0

c − no1;
for ∆n′1 in {ceil, floor} do

∆n1 ← max{min{∆n′1, |∆I ∩ I1|}, 0};
if min_diff > |∆n0+n0

0

N0
− ∆n1+n0

1

N1
| then

∆n∗0 ← ∆n0, ∆n∗1 ← ∆n1, min_diff ←
|∆n0+n0

0

N0
− ∆n1+n0

1

N1
|;

end if
end for

end for
Return ∆n∗0 and ∆n∗1;

Theorem B.1. If n0

N0
< n1

N1
and n0+1

N0
≤ n1

N1
, perturbing

one example in ∆IR with label 0 to IL will decrease the
Gini impurity.

Proof. The Gini impurity score of a split with threshold η
on feature j is

Gini = (1− |I0|2

|I|2
− |I1|2

|I|2
)

− |IL|
|I|

(1− |I0 ∩ IL|2

|IL|2
− |I1 ∩ IL|2

|IL|2
)

− |IR|
|I|

(1− |I0 ∩ IR|2

|IR|2
− |I1 ∩ IR|2

|IR|2
)

= C3[
n2

0 + n2
1

n1 + n0
+

(N0 − n0)2 + (N1 − n1)2

(N0 +N1 − n0 − n1)
] + C4,

(7)

where we use the same notation as in (5). C3 > 0 and C4

are constants with respect to n0. Taking n0 as a continuous
variable, we have

∂ Gini

∂n0
= 2C3

m1m0(n0m1 + n1m0 + 2n1m1)

(n0 + n1)2(m0 +m1)2
(
n0

m0
− n1

m1
),

(8)

where m0 := N0−n0 and m1 := N1−n1. Then ∂ Gini
∂n0

<
0 holds if n0

m0
< n1

m1
, which is equivalent to n0

N0
< n1

N1
.

Since the conditions of Theorem 1 and Theorem B.1 are the
same, Algorithm 1 and Algorithm 3 also work for tree-based
models using Gini impurity score.
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C. Decision Boundaries of Robust and
Natural Models

Figure 4 shows the decision boundaries and test accuracy of
natural trees as well as robust trees with different ε values on
two dimensional synthetic datasets. All trees have depth 5
and we plot training examples in the figure. The results
show that the decision boundaries of our robust decision
trees are simpler than the decision boundaries in natural
decision trees, agreeing with the regularization argument in
the main text.

training data

test acc:0.84

Decision Tree

test acc:0.84

Robust Tree =0.05

test acc:0.82

Robust Tree =0.1

training data

test acc:0.77

Decision Tree

test acc:0.76

Robust Tree =0.05

test acc:0.63

Robust Tree =0.1

training data

test acc:0.93

Decision Tree

test acc:0.96

Robust Tree =0.05

test acc:0.94

Robust Tree =0.1

Figure 4. (Best viewed in color) The decision boundaries and test
accuracy of natural decision trees and robust decision trees with
depth 5 on synthetic datasets with two features.

D. Omitted Results on `1 and `2 distortion
In Tables 4 and 5 we present the `1 and `2 distortions of
vanilla (information gain based) decision trees and GBDT
models obtained by Kantchelian’s `1 and `2 attacks. Again,
only small or medium sized binary classification models can
be evaluated by Kantchelian’s attack. From the results we
can see that although our robust decision tree training algo-
rithm is designed for `∞ perturbations, it can also improve
models `1 and `2 robustness significantly.

E. Omitted Results on Models with Different
Number of Trees

Figure 5 shows the `∞ distortion and accuracy of Fashion-
MNIST GBDT models with different number of trees. In
Table 7 we present the test accuracy and `∞ distortion of
models with different number of trees obtained by Cheng’s
`∞ attack. For each dataset, models are generated during
a single boosting run. We can see that the robustness of

robustly trained models consistently outperforms that of
natural models with the same number of trees. Another
interesting finding is that for MNIST and Fashion-MNIST
datasets in Figures 3 (in the main text) and 5, models with
more trees are generally more robust. This may not be true
in other datasets; for example, results from Table 7 in the
Appendix shows that on some other datasets, the natural
GBDT models lose robustness when more trees are added.
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Figure 5. (Best viewed in color) `∞ distortion vs. classification
accuracy of GBDT models on Fashion-MNIST datasets with dif-
ferent numbers of trees (circle size). The adversarial examples
are found by Cheng’s `∞ attack. The robust training parameter
ε = 0.1 for Fashion-MNIST. With robust training (purple) the
distortion needed to fool a model increases dramatically with less
than 1% accuracy loss.

F. Reducing Depth Does Not Improve
Robustness

One might hope that one can simply reduce the depth of trees
to improve robustness since shallower trees provide stronger
regularization effects. Unfortunately, this is not true. As
demonstrated in Figure 6, the robustness of naturally trained
GBDT models are much worse when compared to robust
models, no matter how shallow they are or how many trees
are in the ensemble. Also, when the number of trees in
the ensemble model is limited, reducing tree depth will
significantly lower the model accuracy.

G. Random Forest Model Results
We test our robust training framework on random forest (RF)
models and our results are in Table 6. In these experiments
we build random forest models with 0.5 data sampling rate
and 0.5 feature sampling rate. We test the robust and natural
random forest model on three datasets and in each dataset,
we tested 100 points using Cheng’s and Kantchelian’s `∞
attacks. From the results we can see that our robust deci-
sion tree training framework can also significantly improve
random forest model robustness.
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Figure 6. (Best viewed in color) Robustness vs. classification ac-
curacy plot of GBDT models on MNIST dataset with different
depth and different numbers of trees. The adversarial examples
are found by Cheng’s `∞ attack. The robust training parameter
ε = 0.3. Reducing the model depth cannot improve robustness
effectively compared to our proposed robust training procedure.

H. More MNIST and Fashion-MNIST
Adversarial Examples

In Figure 7 we present more adversarial examples for
MNIST and Fashion-MNIST datasets using GBDT models.
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Dataset training test # of # of robust ε depth test acc.
avg. `1 dist.

by Kantchelian’s `1 attack
avg. `2 dist.

by Kantchelian’s `2 attack
set size set size features classes robust natural robust natural robust natural robust natural

breast-cancer 546 137 10 2 0.3 5 5 .948 .942 .534 .270 .504 .209
diabetes 614 154 8 2 0.2 5 5 .688 .747 .204 .075 .204 .065

ionosphere 281 70 34 2 0.2 4 4 .986 .929 .358 .127 .358 .106

Table 4. The test accuracy and robustness of information gain based single decision tree models. The robustness is evaluated by the
average `1 and `2 distortions of adversarial examples found by Kantchelian’s `1 and `2 attacks. Average `∞ distortions of robust decision
tree models found by the two attack methods are consistently larger than those of the naturally trained ones.

Dataset training test # of # of # of robust depth test acc.
avg. `1 dist.

by Kantchelian’s `1 attack dist.
avg. `2 dist.

by Kantchelian’s `2 attack dist.

set size set size features classes trees ε robust natural robust natural robust natural improv. robust natural improv.
breast-cancer 546 137 10 2 4 0.3 8 6 .978 .964 .488 .328 1.49X .431 .251 1.72X

cod-rna 59,535 271,617 8 2 80 0.2 5 4 .880 .965 .065 .059 1.10X .062 .047 1.32X
diabetes 614 154 8 2 20 0.2 5 5 .786 .773 .150 .081 1.85X .135 .059 2.29X
ijcnn1 49,990 91,701 22 2 60 0.1 8 8 .959 .980 .057 .051 1.12X .048 .042 1.14X

MNIST 2 vs. 6 11,876 1,990 784 2 1000 0.3 6 4 .997 .998 1.843 .721 2.56X .781 .182 4.29X

Table 5. The test accuracy and robustness of GBDT models. Average `1 and `2 distortions of robust GBDT models are consistently larger
than those of the naturally trained models. The robustness is evaluated by the average `1 and `2 distortions of adversarial examples found
by Kantchelian’s `1 and `2 attacks.

Dataset training test # of # of # of robust depth test acc.
avg. `∞ dist.

by Cheng’s `∞ attack dist.
avg. `∞ dist.

by Kantchelian’s `∞ attack dist.

set size set size features classes trees ε robust natural robust natural robust natural improv. robust natural improv.
breast-cancer 546 137 10 2 60 0.3 8 6 .993 .993 .406 .297 1.37X .396 .244 1.62X

diabetes 614 154 8 2 60 0.2 5 5 .753 .760 .185 .093 1.99X .154 .072 2.14X

Table 6. The test accuracy and robustness of random forest models. Average `∞ distortion of our robust GBDT models are consistently
larger than those of the naturally trained models. The robustness is evaluated by the average `∞ distortion of adversarial examples found
by Cheng’s and Kantchelian’s attacks.
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breast-cancer (2)
ε = 0.3

depthr = 8, depthn = 6

train test feat. # of trees 1 2 3 4 5 6 7 8 9 10
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

546 137 10 tst. acc. .985 .942 .971 .964 .978 .956 .978 .964 .985 .964 .985 .964 .985 .971 .993 .971 .993 .971 1.00 .971
`∞ dist. .383 .215 .396 .229 .411 .216 .411 .215 .406 .226 .407 .229 .406 .248 .439 .234 .439 .238 .437 .241

covtype (7)
ε = 0.2

depthr = depthn = 8

train test feat. # of trees 20 40 60 80 100 120 140 160 180 200
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

400,000 181,000 54 tst. acc. .775 .828 .809 .850 .832 .865 .847 .877 .858 .891 .867 .902 .875 .912 .882 .921 .889 .926 .894 .930
`∞ dist. .125 .066 .103 .064 .087 .062 .081 .061 .079 .060 .077 .059 .077 .058 .075 .056 .075 .056 .073 .055

cod-rna (2)
ε = 0.2

depthr = 5, depthn = 4

train test feat. # of trees 20 40 60 80 100 120 140 160 180 200
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

59,535 271,617 8 tst. acc. .810 .947 .861 .959 .874 .963 .880 .965 .892 .966 .900 .967 .903 .967 .915 .967 .922 .967 .925 .968
`∞ dist. .077 .057 .066 .055 .063 .054 .062 .053 .059 .053 .057 .052 .056 .052 .056 .052 .056 .052 .058 .052

diabetes (2)
ε = 0.2

depthr = depthn = 5

train test feat. # of trees 2 4 6 8 10 12 14 16 18 20
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

614 154 8 tst. acc. .760 .753 .760 .753 .766 .753 .773 .753 .773 .734 .779 .727 .779 .747 .779 .760 .779 .773 .786 .773
`∞ dist. .163 .066 .163 .065 .154 .071 .151 .071 .152 .073 .148 .072 .146 .067 .144 .062 .138 .062 .139 .060

Fashion-MNIST (10)
ε = 0.1

depthr = depthn = 8

train test feat. # of trees 20 40 60 80 100 120 140 160 180 200
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

60,000 10,000 784 tst. acc. .877 .876 .889 .889 .894 .892 .898 .896 .899 .899 .900 .901 .902 .902 .902 .901 .902 .903 .903 .903
`∞ dist. .131 .029 .135 .035 .139 .041 .144 .043 .147 .045 .149 .047 .151 .048 .153 .048 .154 .049 .156 .049

HIGGS (2)
ε = 0.05

depthr = depthn = 8

train test feat. # of trees 50 100 150 200 250 300 350 400 450 500
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

10,500,000 500,000 28 tst. acc. .676 .747 .688 .753 .700 .755 .702 .758 .705 .759 .709 .760 .711 .762 .712 .764 .716 .763 .718 .764
`∞ dist. .023 .013 .023 .014 .022 .014 .022 .014 .022 .014 .022 .014 .021 .015 .021 .015 .021 .015 .021 .015

ijcnn1 (2)
ε = 0.1

depthr = depthn = 8

train test feat. # of trees 10 20 30 40 50 60 70 80 90 100
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

49,990 91,701 22 tst. acc. .933 .973 .942 .977 .947 .977 .952 .979 .958 .980 .959 .980 .962 .980 .964 .980 .967 .980 .968 .980
`∞ dist. .065 .048 .061 .047 .058 .048 .057 .047 .054 .048 .054 .047 .054 .047 .053 .047 .052 .047 .052 .047

MNIST (10)
ε = 0.3

depthr = depthn = 8

train test feat. # of trees 20 40 60 80 100 120 140 160 180 200
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

60, 000 10, 000 784 tst. acc. .964 .966 .973 .975 .977 .977 .978 .978 .978 .978 .979 .979 .979 .979 .980 .979 .980 .979 .980 .980
`∞ dist. .330 .033 .343 .049 .352 .057 .359 .062 .363 .065 .367 .067 .369 .069 .370 .071 .371 .072 .373 .072

Sensorless (11)
ε = 0.05

depthr = depthn = 6

train test feat. # of trees 3 6 9 12 15 18 21 24 27 30
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

48,509 10,000 48 tst. acc. .834 .977 .867 .983 .902 .987 .923 .991 .945 .992 .958 .994 .966 .996 .971 .996 .974 .997 .978 .997
`∞ dist. .037 .022 .036 .022 .035 .023 .035 .023 .035 .023 .035 .023 .035 .023 .035 .023 .035 .023 .035 .023

webspam (2)
ε = 0.05

depthr = depthn = 8

train test feat. # of trees 10 20 30 40 50 60 70 80 90 100
model rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat. rob. nat.

300, 000 50, 000 254 tst. acc. .950 .976 .964 .983 .970 .986 .973 .989 .976 .990 .978 .990 .980 .991 .981 .991 .982 .992 .983 .992
`∞ dist. .049 .010 .048 .015 .049 .019 .049 .021 .049 .023 .049 .024 .049 .024 .049 .024 .048 .024 .049 .024

Table 7. The test accuracy and robustness of GBDT models. Here depthn is the depth of natural trees and depthr is the depth of robust
trees. Robustness is evaluated by the average `∞ distortion of adversarial examples found by Cheng’s attack (Cheng et al., 2019). The
number in the parentheses after each dataset name is the number of classes. Models are generated during a single boosting run. We can
see that the robustness of our robust models consistently outperforms that of natural models with the same number of trees.
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Original
Adversarial of

nat. GBDT
Adversarial of

rob. GBDT Original
Adversarial of

nat. GBDT
Adversarial of

rob. GBDT

(a)
pred.=7

(b)
`∞ dist.= 0.002
pred.=9

(c)
`∞ dist.= 0.305
pred.=9

(d)
pred.=0

(e)
`∞ dist.= 0.018
pred.=8

(f)
`∞ dist.= 0.327
pred.=5

(g)
pred.=9

(h)
`∞ dist.= 0.025
pred.=4

(i)
`∞ dist.= 0.402
pred.=4

(j)
pred.=6

(k)
`∞ dist.= 0.014
pred.=8

(l)
`∞ dist.= 0.329
pred.=8

(m)
pred.=“Sneaker”

(n)
`∞ dist.= 0.025
pred.=“Bag”

(o)
`∞ dist.= 0.482
pred.=“Sandal”

(p)
pred.=“Dress”

(q)
`∞ dist.= 0.024
pred.=“T-shirt/top”

(r)
`∞ dist.= 0.340
pred.=“Trouser”

(s)
pred.=“Pullover”

(t)
`∞ dist.= 0.017
pred.=“Bag”

(u)
`∞ dist.= 0.347
pred.=“Coat”

(v)
pred.=“Bag”

(w)
`∞ dist.= 0.033
pred.=“Shirt”

(x)
`∞ dist.= 0.441
pred.=“Coat”

Figure 7. MNIST and Fashion-MNIST examples and their adversarial examples found using the untargeted Cheng’s `∞ attack (Cheng
et al., 2019) on 200-tree gradient boosted decision tree (GBDT) models trained using XGBoost with depth=8. For both MNIST and
Fashion-MNIST robust models, we use ε = 0.3.


