Efficient Neural Network Robustness Certification with General Activation Functions

Huan Zhang1,3,†, Tsui-Wei Weng2,†, Pin-Yu Chen3, Cho-Jui Hsieh1, Luca Daniel2

1University of California, Los Angeles, Los Angeles CA 90095
2Massachusetts Institute of Technology, Cambridge, MA 02139
3MIT-IBM Watson AI Lab, IBM Research
huan@huan-zhang.com, twweng@mit.edu
Pin-Yu.Chen@ibm.com, chohsieh@cs.ucla.edu, dluca@mit.edu

Abstract
Finding minimum distortion of adversarial examples and thus certifying robustness in neural network classifiers is known to be a challenging problem. Nevertheless, recently it has been shown to be possible to give a non-trivial certified lower bound of minimum adversarial distortion, and some recent progress has been made towards this direction by exploiting the piece-wise linear nature of ReLU activations. However, a generic robustness certification for general activation functions still remains largely unexplored. To address this issue, in this paper we introduce CROWN, a general framework to certify robustness of neural networks with general activation functions. The novelty in our algorithm consists of bounding a given activation function with linear and quadratic functions, hence allowing it to tackle general activation functions including but not limited to the four popular choices: ReLU, tanh, sigmoid and arctan. In addition, we facilitate the search for a tighter certified lower bound by adaptively selecting appropriate surrogates for each neuron activation. Experimental results show that CROWN on ReLU networks can notably improve the certified lower bounds compared to the current state-of-the-art algorithm Fast-Lin, while having comparable computational efficiency. Furthermore, CROWN also demonstrates its effectiveness and flexibility on networks with general activation functions, including tanh, sigmoid and arctan. To the best of our knowledge, CROWN is the first framework that can efficiently certify non-trivial robustness for general activation functions in neural networks.

1 Introduction

While neural networks (NNs) have achieved remarkable performance and accomplished unprecedented breakthroughs in many machine learning tasks, recent studies have highlighted their lack of robustness against adversarial perturbations [1,2]. For example, in image learning tasks such as object classification [3,4,5,6] or content captioning [7], visually indistinguishable adversarial examples can be easily crafted from natural images to alter a NN’s prediction result. Beyond the white-box attack setting where the target model is entirely transparent, visually imperceptible adversarial perturbations can also be generated in the black-box setting by only using the prediction results of the target model [8,9,10,11]. In addition, real-life adversarial examples have been made possible through the lens of realizing physical perturbations [12,13,14]. As NNs are becoming a core technique deployed in a wide range of applications, including safety-critical tasks, certifying a NN’s robustness against adversarial perturbations has become an important research topic in machine learning.

†Equal contribution

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.
Although the CLEVER score is capable of reflecting the level of robustness in different NNs and is lower, the wise linear nature of ReLUs can be exploited to efficiently compute a non-trivial certified lower bound. Although certifying the largest possible robustness is challenging for ReLU networks, the piece-wise linear nature of ReLUs can be exploited to efficiently compute a non-trivial certified lower bound. Table 1 summarizes the differences of other approaches and methods for certifying the design of other activation functions towards improved robustness. In this paper, we tackle the preceding problem by proposing an efficient robustness certification framework for NNs with general activation functions. Our main contributions in this paper are summarized as follows:

- We propose a generic analysis framework CROWN for certifying NNs using linear or quadratic upper and lower bounds for general activation functions that are not necessarily piece-wise linear.
- Unlike previous works [18][20], CROWN allows flexible selections of upper and lower bounds for activation functions, enabling us to design an adaptive scheme to choose bounds that reduce the approximation error. Our experiments show up to 26% improvements in certified lower bounds.
- Our algorithm is efficient and can scale to large NNs with various activation functions. For a NN with over 10,000 neurons, we can give a certified lower bound in about 1 minute on 1 CPU core.

2 Background and Related Work

For ReLU networks, finding the minimum adversarial distortion can be cast as a mixed integer linear programming (MILP) problem [21][22][23]. Reluplex [15][24] uses a satisfiable modulo theory (SMT) solver to encode ReLU activations into linear constraints. Similarly, Planet [25] uses satisfiability (SAT) solvers. However, due to the NP-completeness for solving such a problem [15], these methods can only find minimum distortion for very small networks. It can take Reluplex several hours to find the minimum distortion of an example for a ReLU network with 5 inputs, 5 outputs and 300 neurons [15]. Instead of finding the minimum adversarial distortion, a computationally feasible alternative of robustness certificate is to providing a non-trivial and certified lower bound of minimum distortion. Some analytical lower bounds can be derived from the product of operator norms on the weight matrices [3] or the Jacobian matrix in NNs [17]. But these bounds do not take into account the special property of ReLU and can lead to loose bounds [20]. The bounds in [26][27] are based on the local Lipschitz constant. [20] assumes a continuous differentiable NN and hence excludes ReLU networks; a closed form lower-bound is also hard to derive for networks beyond 2 layers. [27] applies to ReLU networks and uses Extreme Value Theory to provide an estimated lower bound (CLEVER score). Although the CLEVER score is capable of reflecting the level of robustness in different NNs and is scalable to large networks, it is not a certified lower bound. On the other hand, Kolter and Wong [18] use the idea of a convex outer adversarial polytope in ReLU networks to compute a certified lower bound by relaxing the MILP certification problem to linear programming (LP). Raghunathan et al. [19] apply semidefinite programming for robustness certification in ReLU networks but their approach is limited to NNs with one hidden layer. Weng et al. [20] exploit the ReLU property to bound the activation function (or the local Lipschitz constant) and provide efficient algorithms (Fast-Lin and Fast-Lip) for computing a certified lower bound, achieving state-of-the-art performance. A recent framework, AI2 [28], uses abstract transformations to zonotopes for proving robustness property for ReLU networks. Nonetheless, there are still some application demands using non-ReLU activations, e.g., RNN and LSTM, thus a profound framework towards efficient computation of non-trivial and certified lower bounds for NNs with general activation functions is of great importance. Our proposed method CROWN aims to fill in this gap by generalizing efficient robustness certification to NNs with different activation functions. Additionally, on ReLU networks the flexibility in our framework can achieve a tighter lower bound. Table 1 summarizes the differences of other approaches and CROWN.
Some recent works (such as robust optimization based adversarial training [29] or region-based classification [30]) empirically exhibit strong robustness against several adversarial attacks, which is beyond the scope of provable robustness certification. In addition, Sinha et al. [16] provide distributional robustness certification based on Wasserstein distance between data distributions, which is different from the local ℓ_p ball robustness model considered in this paper.

3 CROWN: A general framework for certifying neural networks

Overview of our results. In this section, we present a general framework CROWN for computing certified lower bound of minimum adversarial distortion with general activation functions in NNs. CROWN enables fast computation of certified lower bounds of large NNs. We provide principles to derive output bounds of NNs when the inputs are perturbed within an ℓ_p ball and each neuron has different linear approximation bounds on its activation function. As shown in our experiments in Sec. 4, the adaptive selection of CROWN on the approximation bounds can achieve a tighter (larger) certified lower bound. In Section 3.2 we demonstrate how to provide robustness certification for four widely-used activation functions (ReLU, tanh, sigmoid and arctan) using CROWN. In particular, we show that the state-of-the-art Fast-Lin algorithm is a special case under the CROWN framework. In Section 3.3 we further highlight the flexibility of CROWN to incorporate quadratic approximations on the activation functions in addition to the linear approximations described in Section 3.1.

3.1 General framework

Notations. For an m-layer neural network with an input vector \(\mathbf{x} \in \mathbb{R}^{n_0} \), let the number of neurons in each layer be \(n_k, \forall k \in [m] \), where \([\cdot]\) denotes set \{1, 2, · · · , i\}. Let the k-th layer weight matrix be \(\mathbf{W}^{(k)} \in \mathbb{R}^{n_k \times n_{k-1}} \) and bias vector be \(\mathbf{b}^{(k)} \in \mathbb{R}^{n_k} \), and let \(\Phi_k : \mathbb{R}^{n_0} \to \mathbb{R}^{n_k} \) be the operator mapping from input to layer k. We have \(\Phi_k(x) = \sigma(\mathbf{W}^{(k)}\Phi_{k-1}(x) + \mathbf{b}^{(k)}), \forall k \in [m-1] \), where \(\sigma(\cdot) \) is the coordinate-wise activation function. While our methodology is applicable to any activation function of interest, we emphasize on four most widely-used activation functions, namely ReLU: \(\sigma(y) = \max(y, 0) \), hyperbolic tangent: \(\sigma(y) = \tanh(y) \), sigmoid: \(\sigma(y) = 1/(1 + e^{-y}) \) and \(\arctan(y) \). Note that the input \(\Phi_0(x) = x \), and the vector output of the NN is \(f(x) = \Phi_m(x) = \mathbf{W}^{(m)}\Phi_{m-1}(x) + \mathbf{b}^{(m)} \). The j-th output element is denoted as \(f_j(x) = [\Phi_m(x)]_j \).

Input perturbation and pre-activation bounds. Let \(x_0 \in \mathbb{R}^{n_0} \) be a given data point, and let the perturbed input vector \(\mathbf{x} \) be within an \(\epsilon \)-bounded \(\ell_p \)-ball centered at \(x_0 \), i.e., \(\mathbf{x} \in \mathcal{B}_p(x_0, \epsilon) \), where \(\mathcal{B}_p(x_0, \epsilon) := \{ x \mid \| x - x_0 \|_p \leq \epsilon \} \). For the r-th neuron in k-th layer, let its pre-activation input be \(y_r^{(k)} \), where \(y_r^{(k)} = \mathbf{W}_r^{(k)}\Phi_{k-1}(x) + \mathbf{b}_r^{(k)} \) and \(\mathbf{W}_r^{(k)} \) denotes the r-th row of matrix \(\mathbf{W}^{(k)} \). When \(x_0 \) is perturbed within a \(\epsilon \)-bounded \(\ell_p \)-ball, let \(\mathbf{t}_r^{(k)}, \mathbf{u}_r^{(k)} \in \mathbb{R} \) be the pre-activation lower bound and upper bound of \(y_r^{(k)} \), i.e., \(\mathbf{t}_r^{(k)} \leq y_r^{(k)} \leq \mathbf{u}_r^{(k)} \).

Below, we first define the linear upper bounds and lower bounds of activation functions in Definition 3.1 which are the key to derive explicit output bounds for a m-layer neural network with general activation functions. The formal statement of the explicit output bounds is shown in Theorem 3.2.

Definition 3.1 (Linear bounds on activation function). For the r-th neuron in k-th layer with pre-activation bounds \(\mathbf{t}_r^{(k)}, \mathbf{u}_r^{(k)} \) and the activation function \(\sigma(y) \), define two linear functions \(h_0^{(k)}, h_{\ell_p}^{(k)} : \mathbb{R} \to \mathbb{R} \), \(h_0^{(k)}(y) = \alpha_{U,r}^{(k)}(y + \beta_{U,r}^{(k)}) \), \(h_{\ell_p}^{(k)}(y) = \alpha_{L,r}^{(k)}(y + \beta_{L,r}^{(k)}) \), such that \(h_0^{(k)}(y) \leq \sigma(y) \leq h_{\ell_p}^{(k)}(y) \), \(y \in [\mathbf{t}_r^{(k)}, \mathbf{u}_r^{(k)}] \), \(\forall k \in [m-1], r \in [n_k] \) and \(\alpha_{U,r}, \alpha_{L,r} \in \mathbb{R}^+, \beta_{U,r}, \beta_{L,r} \in \mathbb{R} \).
As we demonstrate in the proof, when we replace the activation functions with the corresponding linear functions \(\gamma \), \(\gamma \) fixed values at the layer \(h \) in Definition 3.1. The central idea is to unwrap the activation functions layer by layer by considering the signs of the associated weights of each neuron and apply the two linear bounds \(h_{U,r}^k \) and \(h_{L,r}^k \).

Theorem 3.2 illustrates how a NN function \(f_j(x) \) can be bounded by two linear functions \(f_j^U(x) \) and \(f_j^L(x) \) when the activation function of each neuron is bounded by two linear functions \(h_{U,r}^k \) and \(h_{L,r}^k \) in Definition 3.1. The central idea is to unwrap the activation functions layer by layer by considering the signs of the associated weights of each neuron and apply the two linear bounds \(h_{U,r}^k \) and \(h_{L,r}^k \).

As we demonstrate in the proof, when we replace the activation functions with the corresponding linear upper and lower bounds at the layer \(m - 1 \), we can then define equivalent weights and biases based on the parameters of \(h_{U,r}^{(m-1)} \) and \(h_{L,r}^{(m-1)} \) (e.g. \(\Lambda(k) \), \(\Delta(k) \), \(\Omega(k) \), \(\Theta(k) \) are related to the terms \(\alpha_{U,r}^k \), \(\beta_{U,r}^k \), \(\alpha_{L,r}^k \), \(\beta_{L,r}^k \), respectively) and then repeat the procedure to “back-propagate” to the input layer. This allows us to obtain \(f^U_j(x) \) and \(f^L_j(x) \) in (1). The formal proof of Theorem 3.2 is in Appendix A. Note that for a neuron \(r \) in layer \(k \) the slopes of its linear upper and lower bounds \(e_{U,r}^k \), \(e_{L,r}^k \) of \(h_{U,r}^k \) and \(h_{L,r}^k \) can be different. This implies:

1. Fast-Lin [20] is a special case of our framework as they require the slopes \(e_{U,r}^k \), \(e_{L,r}^k \) to be the same; and it only applies to ReLU networks (cf. Sec. 3.2). In Fast-Lin, \(\Lambda(0) \) and \(\Omega(0) \) are identical.
2. Our CROWN framework allows adaptive selections on the linear approximation when computing certified lower bounds of minimum adversarial distortion, which is the main contributor to improve the certified lower bound as demonstrated in the experiments in section 4.

Uniform bounds. More importantly, since the input \(x \in \mathbb{B}_p(x_0, \epsilon) \), we can take the maximum, i.e. \(\max_{x \in \mathbb{B}_p(x_0, \epsilon)} f^U_j(x) \), and minimum, i.e. \(\min_{x \in \mathbb{B}_p(x_0, \epsilon)} f^L_j(x) \), as a pair of uniform upper and lower bound of \(f_j(x) \) — which in fact has closed-form solutions because \(f_j^U(x) \) and \(f_j^L(x) \) are two linear functions and \(x \in \mathbb{B}_p(x_0, \epsilon) \) is a convex norm constraint. This result is formally presented below:

Corollary 3.3 (Closed-form uniform bounds). Given a data point \(x_0 \in \mathbb{R}^{m_0}, \ell_p \) ball parameters \(p \geq 1 \) and \(\epsilon > 0 \). For an \(m \)-layer neural network function \(f : \mathbb{R}^{m_0} \rightarrow \mathbb{R}^{m_m} \), there exists two fixed values \(\gamma^U_j \) and \(\gamma^L_j \) such that \(\forall x \in \mathbb{B}_p(x_0, \epsilon) \) and \(\forall j \in [n_m], 1/q = 1 - 1/p \), the inequality \(\gamma^U_j \leq f_j(x) \leq \gamma^L_j \) holds true, where

\[
\gamma^U_j = \epsilon \| \Lambda^{(0)}_{j_r} \|_q + \Omega^{(0)}_{j_r} x_0 + \sum_{k=1}^m \Lambda^{(k)}_{j_r}(b^{(k)} + \Delta_{k,j}) , \quad \gamma^L_j = -\epsilon \| \Omega^{(0)}_{j_r} \|_q + \Omega^{(0)}_{j_r} x_0 + \sum_{k=1}^m \Omega^{(k)}_{j_r}(b^{(k)} + \Theta_{k,j}).
\]

It can be proved observing that \(x \) is only in term \(\Lambda^{(0)}_{j_r} x \) or \(\Omega^{(0)}_{j_r} x \) in (1) and apply Cauchy-Schwartz.
Table 2: Linear upper bound parameters of various activation functions: $\hat{h}^{(k)}_{U,L}(y) = a^{(k)}_{U,L}(y \pm \beta^{(k)}_{U,L})$

<table>
<thead>
<tr>
<th>Upper bound $h^{(k)}_{U,L}$</th>
<th>$r \in S^+_L$</th>
<th>$r \in S^0_L$</th>
<th>$r \in S^-_L$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha^{(k)}_{U,L}$</td>
<td>$\beta^{(k)}_{U,L}$</td>
<td>$\alpha^{(k)}_{U,L}$</td>
<td>$\beta^{(k)}_{U,L}$</td>
</tr>
<tr>
<td>ReLU</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sigmoid, tanh (denoted as $\sigma(y)$)</td>
<td>$\sigma'(d) \frac{\alpha^{(k)}{U,L} - \beta^{(k)}{U,L}}{\alpha^{(k)}_{U,L}}$</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* If $\alpha^{(k)}_{U,L}$ is close to 0, we suggest to calculate the intercept directly $\beta^{(k)}_{U,L} = \sigma(d) - \alpha^{(k)}_{U,L}d$ to avoid numerical issues in implementation. Same for other similar cases.

Table 3: Linear lower bound parameters of various activation functions: $\hat{h}^{(k)}_{L,L}(y) = a^{(k)}_{L,L}(y \pm \beta^{(k)}_{L,L})$

<table>
<thead>
<tr>
<th>Lower bound $h^{(k)}_{L,L}$</th>
<th>$r \in S^+_L$</th>
<th>$r \in S^0_L$</th>
<th>$r \in S^-_L$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha^{(k)}_{L,L}$</td>
<td>$\beta^{(k)}_{L,L}$</td>
<td>$\alpha^{(k)}_{L,L}$</td>
<td>$\beta^{(k)}_{L,L}$</td>
</tr>
<tr>
<td>ReLU</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sigmoid, tanh (denoted as $\sigma(y)$)</td>
<td>$\sigma'(d) \frac{\alpha^{(k)}{L,L} - \beta^{(k)}{L,L}}{\alpha^{(k)}_{L,L}}$</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Certified lower bound of minimum distortion. Given an input example x_0 and an m-layer NN, let c be the predicted class of x_0 and $t \neq c$ be the targeted attack class. We aim to use the uniform bounds established in Corollary 3.3 to obtain the largest possible lower bound $\bar{\epsilon}$ and $\check{\epsilon}$ of targeted and untargeted attacks respectively, which can be formulated as follows:

$$\bar{\epsilon} = \max_{c \neq t} \epsilon \text{ s.t. } \gamma^L_c(\epsilon) - \gamma^L_t(\epsilon) > 0 \text{ and } \check{\epsilon} = \min_{t \neq c} \check{\epsilon}_t.$$

We note that although there is a linear ϵ term in $\check{\epsilon}$, other terms such as $\Delta^{(k)}$, $\Delta^{(k)}$, and $\Omega^{(k)}$, $\Theta^{(k)}$ also implicitly depend on ϵ. This is because the parameters $\alpha^{(k)}_{U,L}, \beta^{(k)}_{U,L}, \alpha^{(k)}_{L,L}, \beta^{(k)}_{L,L}$ depend on I_k, u_k, L, which may vary with c; thus the values in $\Delta^{(k)}$, $\Delta^{(k)}$, $\Omega^{(k)}$, $\Theta^{(k)}$ depend on c. It is therefore difficult to obtain an explicit expression of $\gamma^L_c(\epsilon) - \gamma^L_t(\epsilon)$ in terms of ϵ. Fortunately, we can still perform a binary search to obtain $\bar{\epsilon}_t$ with Corollary 3.3. More precisely, we first initialize $\bar{\epsilon}$ at some fixed positive value and apply Corollary 3.3 repeatedly to obtain I_k and u_k from $k = 1$ to m and $r \in [\hat{h}_k]$. We then check if the condition $\gamma^L_c - \gamma^L_t > 0$ is satisfied. If so, we increase ϵ; otherwise, we decrease ϵ; and we repeat the procedure until a given tolerance level is met.

Time Complexity. With Corollary 3.3 we can compute analytic output bounds efficiently without resorting to any optimization solvers for general ℓ_p distortion, and the time complexity for an m-layer ReLU network is polynomial time in contrast to Reblurp or Mixed-Integer Optimization-based approach [22,23] where SMT and MIO solvers are exponential-time. For a m layer network with n neurons per layer and n outputs, time complexity of CROWN is $O(m^2n^3)$. Forming $\Delta^{(0)}$ and $\Omega^{(0)}$ for the m-th layer involves multiplications of layer weights in a similar cost of forward propagation in $O(nm^3)$ time. Also, the bounds for all previous $k \in [m-1]$ layers need to be computed beforehand in $O(nm^3)$ time; thus the total time complexity is $O(m^2n^3)$.

3.2 Case studies: CROWN for ReLU, tanh, sigmoid and arctan activations

In Section 3.1 we showed that as long as one can identify two linear functions $h_{U,L}(y), h_{L,L}(y)$ to bound a general activation function $\sigma(y)$ for each neuron, we can use Corollary 3.3 with a binary search.

1The bound can be further improved by considering $g(x) := f_t(x) - f_t(x)$ and replacing the last layer’s weights by $W^{(m)}_{\epsilon_t} = W^{(m)}_{\epsilon_t}$. This is also used by [20].
we can set \(h^{(k)}_{L,r} \); red lines are the lower bounds \(h^{(k)}_{L,r} \) to obtain certified lower bounds of minimum distortion. In this section, we illustrate how to find parameters \(\alpha^{(k)}_{L,r}, \beta^{(k)}_{L,r} \) and \(\gamma^{(k)}_{L,r} \) of \(h_{U}(y), h_{L}(y) \) for four most widely used activation functions: ReLU, tanh, sigmoid and arctan. Other activations, including but not limited to leaky ReLU, ELU and softplus, can be easily incorporated into our framework following a similar procedure.

Segmenting activation functions. Based on the signs of \(l^{(k)}_r \) and \(u^{(k)}_r \), we define a partition \(\{S^+_k, S^-_k, S^0_k\} \) of set \([n_k]\) such that every neuron in \(k\)-th layer belongs to exactly one of the three sets. The formal definition of \(S^+_k, S^-_k \) and \(S^0_k \) is \(S^+_k = \{r \in [n_k] \mid 0 \leq l^{(k)}_r \leq u^{(k)}_r\} \), \(S^-_k = \{r \in [n_k] \mid l^{(k)}_r < u^{(k)}_r\} \), and \(S^0_k = \{r \in [n_k] \mid l^{(k)}_r \leq u^{(k)}_r\} \). For neurons in each partitioned set, we define corresponding upper bound \(h^{(k)}_{U,r} \) and lower bound \(h^{(k)}_{L,r} \) in terms of \(l^{(k)}_r \) and \(u^{(k)}_r \). As we will see shortly, segmenting the activation functions based on \(l^{(k)}_r \) and \(u^{(k)}_r \) is useful to bound a given activation function. We note there are multiple ways of segmenting the activation functions and defining the partitioned sets (e.g. based on the values of \(l^{(k)}_r \), \(u^{(k)}_r \) rather than their signs), and we can easily incorporate this into our framework to provide the corresponding explicit output bounds for the new partition sets. In the case study, we consider \(S^+_k, S^-_k \) and \(S^0_k \) for the four activations, as this partition reflects the curvature of tanh, sigmoid and arctan functions and activation states of ReLU.

Bounding tanh/sigmoid/arctan. For tanh activation, \(\sigma(y) = \frac{1-e^{-2y}}{1+e^{-2y}}; \) for sigmoid activation, \(\sigma(y) = \arctan(y) \). All functions are convex on one side \((y < 0)\) and concave on the other side \((y > 0)\), thus the same rules can be used to find \(h^{(k)}_{U,r} \) and \(h^{(k)}_{L,r} \).

Below we call \((l^{(k)}_r, \sigma(l^{(k)}_r))\) as left end-point and \((u^{(k)}_r, \sigma(u^{(k)}_r))\) as right end-point. For \(r \in S^+_k \), since \(\sigma(y) \) is concave, we can let \(h^{(k)}_{U,r} \) be any tangent line of \(\sigma(y) \) at point \(\bar{d} \in [l^{(k)}_r, u^{(k)}_r] \), and let \(h^{(k)}_{L,r} \) pass the two end-points. Similarly, \(\sigma(y) \) is concave for \(r \in S^-_k \), thus we can let \(h^{(k)}_{L,r} \) be any tangent line of \(\sigma(y) \) at point \(\bar{d} \in [l^{(k)}_r, u^{(k)}_r] \) and let \(h^{(k)}_{U,r} \) pass the two end-points. Lastly, for \(r \in S^0_k \), we can let \(h^{(k)}_{U,r} \) be the tangent line that passes the left end-point and \((d, \sigma(d))\) where \(d \geq 0 \) and \(h^{(k)}_{U,r} \) be the tangent line that passes the right end-point and \((d, \sigma(d))\) where \(d \leq 0 \). The value of \(d \) for transcendental functions can be found using a binary search. The plots of upper and lower bounds for tanh and sigmoid are in Figure 1 and 2 in Appendix. Plots for arctan are similar and so omitted.

Bounding ReLU. For ReLU activation, \(\sigma(y) = \max(0, y) \). If \(r \in S^+_k \), we have \(\sigma(y) = y \) and so we can set \(h^{(k)}_{U,r} = h^{(k)}_{L,r} = y \); if \(r \in S^-_k \), we have \(\sigma(y) = 0 \), and thus we can set \(h^{(k)}_{U,r} = h^{(k)}_{L,r} = 0 \); if \(r \in S^0_k \), we can set \(h^{(k)}_{U,r} = u^{(k)}_r \) and \(h^{(k)}_{L,r} = ay \) for \(a \leq 1 \). Setting \(a = \frac{u^{(k)}_r}{u^{(k)}_r - l^{(k)}_r} \) leads to the linear lower bound used in Fast-Lin 20. Thus, Fast-Lin is a special case under our framework. We propose to adaptively choose \(a \), where we set \(a = 1 \) when \(u^{(k)}_r \geq |l^{(k)}_r| \) and \(a = 0 \) when \(u^{(k)}_r < |l^{(k)}_r| \). In this way, the area between the lower bound \(h^{(k)}_{L,r} = ay \) and \(\sigma(y) \) (which reflects the gap between the lower bound and the ReLU function) is always minimized. As shown in our experiments, the adaptive selection of \(h^{(k)}_{L,r} \) based on the value of \(u^{(k)}_r \) and \(l^{(k)}_r \) helps to achieve a tighter certified lower bound. Figure 3 in Appendix illustrates the idea discussed here.
Summary. We summarized the above analysis on choosing valid linear functions \(f^{(k)}_{U,r} \) and \(f^{(k)}_{U,r} \) in Table 2 and 3. In general, as long as \(f^{(k)}_{U,r} \) and \(f^{(k)}_{U,r} \) are identified for the activation functions, we can use Corollary 3.3 to compute certified lower bound for general activation functions. Note that there remain many other choices of \(f^{(k)}_{U,r} \) and \(f^{(k)}_{L,r} \) as valid upper/lower bounds of \(\sigma(y) \), but ideally, we would like them to be close to \(\sigma(y) \) in order to achieve a tighter lower bound of minimum distortion.

3.3 Extension to quadratic bounds

In addition to the linear bounds on activation functions, the proposed CROWN framework can also incorporate quadratic bounds by adding a quadratic term to \(f^{(k)}_{U,r} \) and \(f^{(k)}_{L,r} \), \(f^{(k)}_{U,r}(y) = \eta^{(k)}_{U,r} y^2 + \alpha^{(k)}_{U,r}(y + \beta^{(k)}_{U,r}) \), \(f^{(k)}_{L,r}(y) = \eta^{(k)}_{L,r} y^2 + \alpha^{(k)}_{L,r}(y + \beta^{(k)}_{L,r}) \), where \(\eta^{(k)}_{U,r}, \eta^{(k)}_{L,r} \in \mathbb{R} \). Following the procedure of unwrapping the activation functions at the layer \(m - 1 \), we show in Appendix B that the output upper bound and lower bound with quadratic approximations are:

\[
\begin{align*}
 f^{U}_{j}(x) &= \Phi_{m-2}(x)^\top Q^{(m-1)} U_{j} \Phi_{m-2}(x) + 2P^{(m-1)} U_{j} \Phi_{m-2}(x) + s^{(m-1)} U_{j}, \\
 f^{L}_{j}(x) &= \Phi_{m-2}(x)^\top Q^{(m-1)} L_{j} \Phi_{m-2}(x) + 2P^{(m-1)} L_{j} \Phi_{m-2}(x) + s^{(m-1)} L_{j},
\end{align*}
\]

where \(Q^{(m-1)} U_{j} = W^{(m-1)} U_{j} \Phi_{m-2}(x) \), \(Q^{(m-1)} L_{j} = W^{(m-1)} L_{j} \Phi_{m-2}(x) \), \(P^{(m-1)} U_{j} = W^{(m-1)} U_{j} \Phi_{m-2}(x) \), \(P^{(m-1)} L_{j} = W^{(m-1)} L_{j} \Phi_{m-2}(x) \), and \(s^{(m-1)} U_{j} \) and \(s^{(m-1)} L_{j} \) are defined in Appendix B due to page limit. When \(m = 2 \), \(\Phi_{m-2}(x) = x \) and we can directly optimize over \(x \in \mathbb{R}^p(x_0, \epsilon) \); otherwise, we can use the post activation bounds of layer \(m - 2 \) as the constraints. \(\mathbf{D}^{(m-1)} U_{j} \) in (3) is a diagonal matrix with \(i \)-th entry being \(W^{(m)} j,i \eta^{(m-1)} j,i, \) if \(W^{(m)} j,i \geq 0 \) or \(W^{(m)} j,i \eta^{(m-1)} j,i, \) if \(W^{(m)} j,i < 0 \). Thus, in general, \(\mathbf{C}^{(m-1)} U_{j} \) is indefinite, resulting in a non-convex optimization when finding the global bounds as in Corollary 3.3. Fortunately, by properly choosing the quadratic bounds, we can make the problem \(\max_{x \in \mathbb{R}^p(x_0, \epsilon)} f^{(m-1)} U_{j}(x) \) into a convex Quadratic Programming problem; for example, we can set \(\eta^{(m-1)} j,i = 0 \) for all \(W^{(m)} j,i > 0 \) and let \(\eta^{(m-1)} j,i > 0 \) to make \(\mathbf{D}^{(m-1)} U_{j} \) have only negative and zero diagonals for the maximization problem – this is equivalent to applying a linear upper bound and a quadratic lower bound to bound the activation function. Similarly, for \(\mathbf{D}^{(m-1)} L_{j} \), we let \(\eta^{(m-1)} j,i = 0 \) for all \(W^{(m)} j,i < 0 \) and let \(\eta^{(m-1)} j,i > 0 \) to make \(\mathbf{D}^{(m-1)} L_{j} \) have non-negative diagonals and hence the problem \(\min_{x \in \mathbb{R}^p(x_0, \epsilon)} f^{(m-1)} U_{j}(x) \) is convex.

We can solve this convex program with projected gradient descent (PGD) for \(x \in \mathbb{R}^p(x_0, \epsilon) \) and Armijo line search. Empirically we find that PGD usually converges within a few iterations.

4 Experiments

Methods. For ReLU networks, CROWN-Ada is CROWN with adaptive linear bounds (Sec. 3.2), CROWN-Quad is CROWN with quadratic bounds (Sec. 3.3). Fast-Lin and Fast-Lip are state-of-the-art fast certified lower bound proposed in [20]. Reluplex can solve the exact minimum adversarial distortion but is only computationally feasible for very small networks. LP-Full is based on the LP formulation in [18] and we solve LPs for each neuron exactly to achieve the best possible bound. For networks with other activation functions, CROWN-general is our proposed method.

Model and Dataset. We evaluate CROWN and other baselines on multi-layer perceptron (MLP) models trained for MNIST and CIFAR-10 datasets. We denote a feed-forward network with \(m \) layers and \(n \) neurons per layer as \(m \times n \). For models with ReLU activation, we use pretrained models provided by [20] and also evaluate the same set of 100 random test images and random attack targets as in [20] (according to their released code) to make our results comparable. For training NN models with other activation functions, we search for best learning rate and weight decay parameters to achieve a similar level of accuracy as ReLU models.

Implementation and Setup. We implement our algorithm using Python (numpy with numba). Most computations in our method are matrix operations that can be automatically parallelized by the BLAS library; however, we set the number of BLAS threads to 1 for a fair comparison to other methods. Experiments were conducted on a Intel Skylake server CPU running at 2.0 GHz on Google Cloud.

Results on Small Networks. Figure 2 shows the certified lower bound for \(\ell_2 \) and \(\ell_\infty \) distortions found by different algorithms on small networks, where Reluplex is feasible and we can observe the
Figure 2: Certified lower bounds and min distortion comparisons for \(\ell_2\) and \(\ell_\infty\) distortions. Left y-axis is distortion and right y-axis (black line) is computation time (seconds, logarithmic scale). On the top of figures are the avg. CLEVER score and the upper bound found by C&W attack [6]. From left to right in (a)-(d): CROWN-Ada, (CROWN-Quad), Fast-Lin, Fast-Lip, LP-Full and (Reluplex).

Table 4: Comparison of certified lower bounds on large ReLU networks. Bounds are the average over 100 images (skipped misclassified images) with random attack targets. Percentage improvements are calculated against Fast-Lin as Fast-Lip is worse than Fast-Lin.

<table>
<thead>
<tr>
<th>Network</th>
<th>(\ell_p) norm</th>
<th>Certified Bounds</th>
<th>Improvement (%)</th>
<th>Average Computation Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST 4 x [1024]</td>
<td>(\ell_1)</td>
<td>1.57649</td>
<td>0.72800</td>
<td>1.88217</td>
</tr>
<tr>
<td></td>
<td>(\ell_2)</td>
<td>0.18891</td>
<td>0.06487</td>
<td>0.22811</td>
</tr>
<tr>
<td></td>
<td>(\ell_\infty)</td>
<td>0.00823</td>
<td>0.00264</td>
<td>0.00997</td>
</tr>
<tr>
<td>CIFAR-10 7 x [1024]</td>
<td>(\ell_1)</td>
<td>0.86468</td>
<td>0.09239</td>
<td>1.09067</td>
</tr>
<tr>
<td></td>
<td>(\ell_2)</td>
<td>0.05937</td>
<td>0.00407</td>
<td>0.07496</td>
</tr>
<tr>
<td></td>
<td>(\ell_\infty)</td>
<td>0.00134</td>
<td>0.00008</td>
<td>0.00169</td>
</tr>
</tbody>
</table>

Table 5: Comparison of certified lower bounds by CROWN-Ada on ReLU networks and CROWN-general on networks with tanh, sigmoid and arctan activations. CIFAR models with sigmoid activations achieve much worse accuracy than other networks and are thus excluded.

<table>
<thead>
<tr>
<th>Network</th>
<th>(\ell_p) norm</th>
<th>Certified Bounds by CROWN-Ada and CROWN-general</th>
<th>Average Computation Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST 3 x [1024]</td>
<td>(\ell_1)</td>
<td>3.00231</td>
<td>2.48407</td>
</tr>
<tr>
<td></td>
<td>(\ell_2)</td>
<td>0.50841</td>
<td>0.27287</td>
</tr>
<tr>
<td></td>
<td>(\ell_\infty)</td>
<td>0.02576</td>
<td>0.01182</td>
</tr>
<tr>
<td>CIFAR-10 6 x [2048]</td>
<td>(\ell_1)</td>
<td>0.91201</td>
<td>0.44059</td>
</tr>
<tr>
<td></td>
<td>(\ell_2)</td>
<td>0.05245</td>
<td>0.02538</td>
</tr>
<tr>
<td></td>
<td>(\ell_\infty)</td>
<td>0.00114</td>
<td>0.00055</td>
</tr>
</tbody>
</table>

5 Conclusion

We propose a general framework CROWN to efficiently compute a certified lower bound of minimum distortion in neural networks. CROWN features adaptive bounds for improved robustness certification and applies to general activation functions. Moreover, experiments show that (1) CROWN outperforms state-of-the-art baselines on ReLU networks; and (2) CROWN can efficiently certify non-trivial lower bounds for large networks with over 10K neurons and with different activation functions.
Acknowledgement

This work was supported in part by NSF IIS-1719097, Intel faculty award, Google Cloud Credits for Research Program and GPUs donated by NVIDIA.

References

A Proof of Theorem 3.2

Given an \(m \)-layer neural network function \(f : \mathbb{R}^{n_0} \rightarrow \mathbb{R}^{n_m} \) with pre-activation bounds \(l^{(k)} \) and \(u^{(k)} \) for \(x \in B_\rho(x_0, \epsilon) \) and \(\forall k \in [m - 1] \), let the pre-activation inputs for the \(i \)-th neuron at layer \(m - 1 \) be \(y_i^{(m-1)} := W_{i,:}^{(m-1)} \Phi_{m-2}(x) + b_i^{(m-1)} \). The \(j \)-th output of the neural network is the following:

\[
f_j(x) = \sum_{i=1}^{n_{m-1}} W_{j,i}^{(m)} \Phi_{m-1}(x) + b_j^{(m)},
\]

\[
= \sum_{i=1}^{n_{m-1}} W_{j,i}^{(m)} \sigma(y_i^{(m-1)}) + b_j^{(m)},
\]

\[
= \sum_{j,i \geq 0} W_{j,i}^{(m)} \sigma(y_i^{(m-1)}) + \sum_{j,i < 0} W_{j,i}^{(m)} \sigma(y_i^{(m-1)}) + b_j^{(m)}. \tag{6}
\]

Assume the activation function \(\sigma(y) \) is bounded by two linear functions \(h_{U,i}^{(m-1)}, h_{L,i}^{(m-1)} \) in Definition 3.1 we have

\[
h_{L,i}^{(m-1)}(y_i^{(m-1)}) \leq \sigma(y_i^{(m-1)}) \leq h_{U,i}^{(m-1)}(y_i^{(m-1)}).
\]

Thus, if the associated weight \(W_{j,i}^{(m)} \) to the \(i \)-th neuron is non-negative (terms in \(S_1 \)), we have

\[
W_{j,i}^{(m)} \cdot h_{U,i}^{(m-1)}(y_i^{(m-1)}) \leq W_{j,i}^{(m)} \sigma(y_i^{(m-1)}) \leq W_{j,i}^{(m)} \cdot h_{U,i}^{(m-1)}(y_i^{(m-1)});
\]

otherwise for terms in \(S_2 \), we have

\[
W_{j,i}^{(m)} \cdot h_{L,i}^{(m-1)}(y_i^{(m-1)}) \leq W_{j,i}^{(m)} \sigma(y_i^{(m-1)}) \leq W_{j,i}^{(m)} \cdot h_{L,i}^{(m-1)}(y_i^{(m-1)}). \tag{8}
\]

Upper bound. Let \(f_{j,U,m-1}(x) \) be an upper bound of \(f_j(x) \). To compute \(f_{j,U,m-1}(x) \), \(f_{j,L,m-1}(x) \) and \(f_j(x) \) are the key equations. Precisely, for the \(W_{j,i}^{(m)} \geq 0 \) terms in \(S_1 \), the upper bound is the right-hand-side (RHS) in \(\ref{eq:6} \); and for the \(W_{j,i}^{(m)} < 0 \) terms in \(S_2 \), the upper bound is the RHS in \(\ref{eq:8} \). Thus, we obtain:

\[
f_{j,U,m-1}(x) = \sum_{j,i \geq 0} W_{j,i}^{(m)} \cdot h_{U,i}^{(m-1)}(y_i^{(m-1)}) + \sum_{j,i < 0} W_{j,i}^{(m)} \cdot h_{L,i}^{(m-1)}(y_i^{(m-1)}) + b_j^{(m)}, \tag{9}
\]

\[
= \sum_{j,i \geq 0} W_{j,i}^{(m)} \alpha_{U,i}^{(m-1)}(y_i^{(m-1)}) + \beta_{L,i}^{(m-1)} + b_j^{(m)}, \tag{10}
\]

\[
= \sum_{i=1}^{n_{m-1}} W_{j,i}^{(m)} \lambda_{j,i}^{(m-1)}(y_i^{(m-1)}) + \Delta_{j,i}^{(m-1)} + b_j^{(m)}, \tag{11}
\]

\[
= \sum_{i=1}^{n_{m-1}} W_{j,i}^{(m)} \Phi_{m-2}(x) + b_i^{(m-1)} + \Delta_{i,j}^{(m-1)} + b_j^{(m)}, \tag{12}
\]

\[
= \sum_{i=1}^{n_{m-1}} \Lambda_{j,i}^{(m-1)}(\sum_{r=1}^{n_{m-2}} W_{i,r}^{(m-1)} [\Phi_{m-2}(x)]_r + b_i^{(m-1)} + \Delta_{i,j}^{(m-1)}) + b_j^{(m)}, \tag{13}
\]

\[
= \sum_{i=1}^{n_{m-1}} \sum_{r=1}^{n_{m-2}} \Lambda_{j,i}^{(m-1)} W_{i,r}^{(m-1)} [\Phi_{m-2}(x)]_r + \sum_{i=1}^{n_{m-1}} \Lambda_{j,i}^{(m-1)} (b_i^{(m-1)} + \Delta_{i,j}^{(m-1)}) + b_j^{(m)}, \tag{14}
\]

\[
= \sum_{i=1}^{n_{m-2}} \Lambda_{j,i}^{(m-1)} W_{i,r}^{(m-1)} [\Phi_{m-2}(x)]_r + \sum_{i=1}^{n_{m-1}} \Lambda_{j,i}^{(m-1)} (b_i^{(m-1)} + \Delta_{i,j}^{(m-1)}) + b_j^{(m)}, \tag{15}
\]

\[
= \sum_{i=1}^{n_{m-2}} \Lambda_{j,i}^{(m-1)} W_{i,r}^{(m-1)} [\Phi_{m-2}(x)]_r + b_j^{(m-1)}. \tag{16}
\]
From (9) to (10), we replace $h^{(m-1)}_{i,k,i}(\mathbf{y}^{(m-1)}_i)$ and $h^{(m-1)}_{k,i}(\mathbf{y}^{(m-1)}_i)$ by their definitions; from (10) to (11), we use variables $\lambda^{(m-1)}_{j,i}$ and $\Delta^{(m-1)}_{i,j}$ to denote the slopes in front of $\mathbf{y}^{(m-1)}_i$ and the intercepts in the parentheses:

$$
\lambda^{(m-1)}_{j,i} = \begin{cases}
\alpha^{(m)}_{U,i} & \text{if } \mathbf{W}^{(m)}_{j,i} \geq 0 \quad (\iff \Lambda^{(m)}_{j,i} \mathbf{W}^{(m)}_{j,i} \geq 0); \\
\alpha^{(m)}_{L,i} & \text{if } \mathbf{W}^{(m)}_{j,i} < 0 \quad (\iff \Lambda^{(m)}_{j,i} \mathbf{W}^{(m)}_{j,i} < 0);
\end{cases}
\tag{16}
$$

$$
\Delta^{(m-1)}_{i,j} = \begin{cases}
\beta^{(m-1)}_{U,i} & \text{if } \mathbf{W}^{(m)}_{j,i} \geq 0 \quad (\iff \Lambda^{(m)}_{j,i} \mathbf{W}^{(m)}_{j,i} \geq 0); \\
\beta^{(m-1)}_{L,i} & \text{if } \mathbf{W}^{(m)}_{j,i} < 0 \quad (\iff \Lambda^{(m)}_{j,i} \mathbf{W}^{(m)}_{j,i} < 0).
\end{cases}
\tag{17}
$$

From (11) to (12), we replace $\mathbf{y}^{(m-1)}_i$ with its definition and let $\Lambda^{(m)}_{j,i} := 1$. From (12) to (13), we collect the constant terms that are not related to \mathbf{x}. From (13) to (14), we swap the summation order of i and r, and the coefficients in front of $[\Phi_{m-2}(\mathbf{x})]_r$ can be combined into a new equivalent weight $\mathbf{W}^{(m-1)}_{j,r}$ and the constant term can combined into a new equivalent bias $\mathbf{b}^{(m-1)}_j$ in (15):

$$
\mathbf{W}^{(m-1)}_{j,r} = \sum_{i=1}^{n_{m-1}} \Lambda^{(m-1)}_{j,i} \mathbf{W}^{(m-1)}_{i,r} = \Lambda^{(m-1)}_{j,:} \mathbf{W}^{(m-1)}_{:,r},
$$

$$
\mathbf{b}^{(m-1)}_j = \sum_{i=1}^{n_{m-1}} \Lambda^{(m-1)}_{j,i} (\mathbf{b}^{(m-1)}_{j})_i + \Delta^{(m-1)}_{i,j} + \mathbf{b}^{(m)}_j = \Lambda^{(m-1)}_{j,:} (\mathbf{b}^{(m-1)} + \Delta^{(m-1)}_{i,j}) + \mathbf{b}^{(m)}_j.
$$

Notice that after defining the new equivalent weight $\mathbf{W}^{(m-1)}_{j,r}$ and equivalent bias $\mathbf{b}^{(m-1)}_j$, $f^{U,m-1}_j(\mathbf{x})$ in (15) and $f_j(\mathbf{x})$ in (5) are in the same form. Thus, we can repeat the above procedure again to obtain an upper bound of $f^{U,m-1}_j(\mathbf{x})$, i.e. $f^{U,m-2}_j(\mathbf{x})$:}

$$
\lambda^{(m-2)}_{j,i} = \mathbf{W}^{(m-1)}_{j,i} \lambda_{j,i}^{(m-2)} = \Lambda^{(m-1)}_{j,i} \mathbf{W}^{(m-1)}_{j,i} \lambda_{j,i}^{(m-2)}
\tag{16}
$$

$$
\mathbf{W}^{(m-2)}_{j,:} = \Lambda^{(m-2)}_{j,:} \mathbf{W}^{(m-2)}_{:,r},
$$

$$
\mathbf{b}^{(m-2)}_j = \Lambda^{(m-2)}_{j,:} (\mathbf{b}^{(m-2)} + \Delta^{(m-2)}_{i,j} + \mathbf{b}^{(m-1)}_j)
\tag{17}
$$

and repeat again iteratively until obtain the final upper bound $f^{U,1}_j(\mathbf{x})$, where $f_j(\mathbf{x}) \leq f^{U,m-1}_j(\mathbf{x}) \leq f^{U,m-2}_j(\mathbf{x}) \leq \ldots \leq f^{U,1}_j(\mathbf{x})$. We let $f_j(\mathbf{x})$ denote the final upper bound $f^{U,1}_j(\mathbf{x})$, and we have

$$
f^{U}_j(\mathbf{x}) = \mathbf{A}^{(0)}_{j,:} \mathbf{x} + \sum_{k=1}^{m} \mathbf{A}^{(k)}_{j,:} (\mathbf{b}^{(k)} + \Delta^{(k)}_{i,j})
$$

and (\odot is the Hadamard product)

$$
\mathbf{A}^{(k-1)}_{j,:} = \begin{cases}
\mathbf{e}^T_{j} & \text{if } k = m + 1; \\
(\mathbf{A}^{(k)}_{j,:} \mathbf{W}(k)) \odot \mathbf{A}^{(k-1)}_{j,:} & \text{if } k \in [m],
\end{cases}
$$

and $\forall i \in [n_k]$,

$$
\lambda^{(k)}_{j,i} = \begin{cases}
\alpha^{(k)}_{U,i} & \text{if } k \in [m-1], \mathbf{A}^{(k+1)}_{j,i} \mathbf{W}^{(k+1)}_{j,i} \geq 0; \\
\alpha^{(k)}_{L,i} & \text{if } k \in [m-1], \mathbf{A}^{(k+1)}_{j,i} \mathbf{W}^{(k+1)}_{j,i} < 0; \\
1 & \text{if } k = 0.
\end{cases}
\tag{16}
$$

$$
\Delta^{(k)}_{i,j} = \begin{cases}
\beta^{(k)}_{U,i} & \text{if } k \in [m-1], \mathbf{A}^{(k+1)}_{j,i} \mathbf{W}^{(k+1)}_{j,i} \geq 0; \\
\beta^{(k)}_{L,i} & \text{if } k \in [m-1], \mathbf{A}^{(k+1)}_{j,i} \mathbf{W}^{(k+1)}_{j,i} < 0; \\
0 & \text{if } k = m.
\end{cases}
\tag{17}
$$
Lower bound. The above derivations of upper bound can be applied similarly to deriving lower bounds of \(f_j(x) \), and the only difference is now we need to use the LHS of (7) and (8) (rather than RHS when deriving upper bound) to bound the two terms in (6). Thus, following the same procedure in deriving the upper bounds, we can iteratively unwrap the activation functions and obtain a final lower bound \(f_j^{L,1}(x) \), where \(f_j(x) \geq f_j^{L,m-1}(x) \geq f_j^{L,m-2}(x) \geq \ldots \geq f_j^{L,1}(x) \). Let \(f_j^{L}(x) = f_j^{L,1}(x) \), we have:

\[
f_j^{L}(x) = \Omega_j^{(0)} x + \sum_{k=1}^{m} \Omega_j^{(k)} (b^{(k)} + \Theta_j^{(k)})
\]

\[
\Omega_j^{(k)} = \begin{cases}
 e_j^T & \text{if } k = m + 1; \\
 (\Omega_j^{(k-1)}) \odot \omega_j^{(k-1)} & \text{if } k \in [m].
\end{cases}
\]

and \(\forall i \in [n_k] \),

\[
\omega_j^{(k)} = \begin{cases}
 \omega_{j,i}^{(k)} & \text{if } k \in [m - 1], \Omega_j^{(k+1)} \mathbf{W}_j^{(k+1)} \geq 0; \\
 \omega_{j,i}^{(k)} & \text{if } k \in [m - 1], \Omega_j^{(k+1)} \mathbf{W}_j^{(k+1)} < 0; \\
 1 & \text{if } k = 0.
\end{cases}
\]

\[
\Theta_j^{(k)} = \begin{cases}
 \Theta_{j,i}^{(k)} & \text{if } k \in [m - 1], \Omega_j^{(k+1)} \mathbf{W}_j^{(k+1)} \geq 0; \\
 \Theta_{j,i}^{(k)} & \text{if } k \in [m - 1], \Omega_j^{(k+1)} \mathbf{W}_j^{(k+1)} < 0; \\
 0 & \text{if } k = m.
\end{cases}
\]

Indeed, \(\lambda_j^{(k)} \) and \(\omega_j^{(k)} \) only differs in the conditions of selecting \(\alpha_{j,i}^{(k)} \) or \(\alpha_{L,i}^{(k)} \), similarly for \(\Delta_{j,i}^{(k)} \) and \(\Theta_{j,i}^{(k)} \).

B Proof of Corollary 3.3

Definition B.1 (Dual norm). Let \(\| \cdot \| \) be a norm on \(\mathbb{R}^n \). The associated dual norm, denoted as \(\| \cdot \|_\ast \), is defined as

\[
\|a\|_\ast = \{ \sup_{y} a^\top y \mid \|y\| \leq 1 \}.
\]

Global upper bound. Our goal is to find a global upper and lower bound for the \(m \)-th layer network output \(f_j(x) \), \(\forall x \in \mathbb{B}_p(x_0, \epsilon) \). By Theorem 3.2, for \(x \in \mathbb{B}_p(x_0, \epsilon) \), we have \(f_j^U(x) \leq f_j(x) \leq f_j^{U}(x) \) and \(f_j^U(x) = \Lambda_j^{(0)} x + \sum_{k=1}^{m} \Lambda_j^{(k)} (b^{(k)} + \Delta_{j,i}^{(k)}) \). Thus define \(\gamma_j^U := \max_{x \in \mathbb{B}_p(x_0, \epsilon)} f_j^U(x) \), and we have

\[
f_j(x) \leq f_j^U(x) \leq \max_{x \in \mathbb{B}_p(x_0, \epsilon)} f_j^U(x) = \gamma_j^U,
\]

since \(\forall x \in \mathbb{B}_p(x_0, \epsilon) \). In particular,

\[
\max_{x \in \mathbb{B}_p(x_0, \epsilon)} f_j^U(x) = \max_{x \in \mathbb{B}_p(x_0, \epsilon)} \left[\Lambda_j^{(0)} x + \sum_{k=1}^{m} \Lambda_j^{(k)} (b^{(k)} + \Delta_{j,i}^{(k)}) \right]
\]

\[
= \left[\max_{x \in \mathbb{B}_p(x_0, \epsilon)} \Lambda_j^{(0)} x \right] + \sum_{k=1}^{m} \left[\Lambda_j^{(k)} (b^{(k)} + \Delta_{j,i}^{(k)}) \right] \quad (18)
\]

\[
= \epsilon \left[\max_{y \in \mathbb{B}_p(0,1)} \Lambda_j^{(0)} y \right] + \Lambda_j^{(0)} x_0 + \sum_{k=1}^{m} \left[\Lambda_j^{(k)} (b^{(k)} + \Delta_{j,i}^{(k)}) \right] \quad (19)
\]

\[
= \epsilon \|\Lambda_j^{(0)}\|_q + \Lambda_j^{(0)} x_0 + \sum_{k=1}^{m} \left[\Lambda_j^{(k)} (b^{(k)} + \Delta_{j,i}^{(k)}) \right]. \quad (20)
\]

From (13) to (19), let \(y := \frac{x - x_0}{\epsilon} \), and thus \(y \in \mathbb{B}_p(0,1) \). From (19) to (20), apply Definition B.1 and use the fact that \(\ell_q \) norm is dual of \(\ell_p \) norm for \(p, q \in [1, \infty] \).
Global lower bound. Similarly, let $\gamma^L_j := \min_{x \in \mathbb{R}_p(x_0, r)} f^L_j(x)$, we have

$$f^L_j(x) \geq f^L_j(x) \geq \min_{x \in \mathbb{R}_p(x_0, r)} f^L_j(x) = \gamma^L_j.$$

Since $f^L_j(x) = \Omega^{(0)}_{j, r} x + \sum_{k=1}^m \Omega^{(k)}_{j, r} (b^{(k)} + \Theta^{(k)}_{j, r})$, we can derive γ^L_j (similar to the derivation of γ^U_j) below:

$$\min_{x \in \mathbb{B}_p(x_0, r)} f^L_j(x) = \min_{x \in \mathbb{B}_p(x_0, r)} \left[\Omega^{(0)}_{j, r} x + \sum_{k=1}^m \Omega^{(k)}_{j, r} (b^{(k)} + \Theta^{(k)}_{j, r}) \right]$$

$$= \min_{x \in \mathbb{B}_p(x_0, r)} \Omega^{(0)}_{j, r} x + \sum_{k=1}^m \Omega^{(k)}_{j, r} (b^{(k)} + \Theta^{(k)}_{j, r})$$

$$= -\epsilon \left[\max_{y \in \mathbb{B}_p(0, 1)} -\Omega^{(0)}_{j, r} y + \Omega^{(0)}_{j, r} x_0 + \sum_{k=1}^m \Omega^{(k)}_{j, r} (b^{(k)} + \Theta^{(k)}_{j, r}) \right]$$

$$= -\epsilon \|\Omega^{(0)}_{j, r}\|_q + \Omega^{(0)}_{j, r} x_0 + \sum_{k=1}^m \Omega^{(k)}_{j, r} (b^{(k)} + \Theta^{(k)}_{j, r}).$$

Thus, we have

(global upper bound) $\gamma^U_j = \epsilon \|\Lambda^{(0)}_{j, r}\|_q + \Lambda^{(0)}_{j, r} x_0 + \sum_{k=1}^m \Lambda^{(k)}_{j, r} (b^{(k)} + \Delta^{(k)}_{j, r}),$

(global lower bound) $\gamma^L_j = -\epsilon \|\Omega^{(0)}_{j, r}\|_q + \Omega^{(0)}_{j, r} x_0 + \sum_{k=1}^m \Omega^{(k)}_{j, r} (b^{(k)} + \Theta^{(k)}_{j, r}),$

C Illustration of linear upper and lower bounds Sigmoid activation function.

D \(f^U_j(x) \) and \(f^L_j(x) \) using Quadratic approximation

Upper bound. Let $f^U_j(x)$ be an upper bound of $f_j(x)$. To compute $f^U_j(x)$ with quadratic approximations, we can still apply (7) and (8) except that $h^{(k)}_{U, r}(y)$ and $h^{(k)}_{L, r}(y)$ are replaced by the following quadratic functions:

$$h^{(k)}_{U, r}(y) = \eta^{(k)}_{U, r} y^2 + \alpha^{(k)}_{U, r} (y + \beta^{(k)}_{U, r}), \quad h^{(k)}_{L, r}(y) = \eta^{(k)}_{L, r} y^2 + \alpha^{(k)}_{L, r} (y + \beta^{(k)}_{L, r}).$$
Figure 4: The linear upper and lower bounds for $\sigma(y) = \text{ReLU}$. For the cases (a) and (b), the linear upper bound and lower bound are exactly the function $\sigma(y)$ in the region (gray-shaded). For (c), we plot three out of many choices of lower bound, and they are $h^{(k)}_{L,r}(y) = 0$ (dashed-dotted), $h^{(k)}_{L,r}(y) = y$ (dashed), and $h^{(k)}_{L,r}(y) = \frac{w^{(k)}}{u^{(k)} - v^{(k)}} y$ (dotted).

Therefore,

$$f_j^{(m)}(x) = \sum_{W_{j,i}^{(m)} \geq 0} W_{j,i}^{(m)} \cdot h^{(m-1)}_{L,r}(y_i^{(m-1)}) + \sum_{W_{j,i}^{(m)} < 0} W_{j,i}^{(m)} \cdot h^{(m-1)}_{L,r}(y_i^{(m-1)}) + b_j^{(m)},$$

$$= \sum_{i=1}^{m-1} W_{j,i}^{(m)} \left(\tau_{j,i}^{(m-1)} y_i^{(m-1)2} + \lambda_{j,i}^{(m-1)} (y_i^{(m-1)} + \Delta_{i,j}^{(m-1)}) \right) + b_j^{(m)},$$

$$= y^{(m-1)} \top \text{diag}(q_{j,i}^{(m-1)}) y^{(m-1)} + A_{j,i}^{(m-1)} y^{(m-1)} + W_{j,i}^{(m)} \Delta_{i,j}^{(m-1)},$$

$$= \Phi_{m-2}(x) \top Q_{i,j}^{(m-1)} \Phi_{m-2}(x) + 2p_{j,i}^{(m-1)} \Phi_{m-2}(x) + s_{j,i}^{(m-1)},$$

From (21) to (22), we replace $h^{(m-1)}_{L,r}(y_i^{(m-1)})$ and $h^{(m-1)}_{L,r}(y_i^{(m-1)})$ by their definitions and let

$$(\tau_{j,i}^{(m-1)}, \lambda_{j,i}^{(m-1)}, \Delta_{i,j}^{(m-1)}) = \left\{ \begin{array}{ll} \eta_{U,i}^{(m-1)}, \alpha_{U,i}^{(m-1)}, \beta_{U,i}^{(m-1)} \\ \eta_{L,i}^{(m-1)}, \alpha_{L,i}^{(m-1)}, \beta_{L,i}^{(m-1)} \end{array} \right\}$$

if $W_{j,i}^{(m)} \geq 0$;

and

if $W_{j,i}^{(m)} < 0$.

From (22) to (23), we let $q_{j,i}^{(m-1)} = W_{j,i}^{(m)} \odot \tau_{j,i}^{(m-1)}$, and write in the matrix form. From (23) to (24), we substitute $y^{(m-1)}$ by its definition: $y^{(m-1)} = W^{(m-1)} \Phi_{m-2}(x) + b^{(m-1)}$ and then collect the quadratic terms, linear terms and constant terms of $\Phi_{m-2}(x)$, where

$$Q_{i,j}^{(m-1)} = W^{(m-1)} \top \text{diag}(q_{j,i}^{(m-1)}) W^{(m-1)},$$

$$P_{i,j}^{(m-1)} = b^{(m-1) \top} \odot q_{j,i}^{(m-1)} + \Lambda_{j,i}^{(m-1)},$$

$$S_{j,i}^{(m-1)} = P_{j,i}^{(m-1) \top} b^{(m-1)} + W_{j,i}^{(m)} \Delta_{i,j}^{(m-1)}.$$

Lower bound. Similar to the above derivation, we can simply swap $h_{L,r}^{(k)}$ and $h_{L,r}^{(k)}$ and obtain lower bound $f_j^{(m)}(x)$:

$$f_j^{(m)}(x) = \sum_{W_{j,i}^{(m)} < 0} W_{j,i}^{(m)} \cdot h^{(m-1)}_{L,r}(y_i^{(m-1)}) + \sum_{W_{j,i}^{(m)} \geq 0} W_{j,i}^{(m)} \cdot h^{(m-1)}_{L,r}(y_i^{(m-1)}) + b_j^{(m)},$$

where

$$Q_{i,j}^{(m-1)} = W^{(m-1)} \top \text{diag}(q_{j,i}^{(m-1)}) W^{(m-1)},$$

$$P_{i,j}^{(m-1)} = b^{(m-1) \top} \odot q_{j,i}^{(m-1)} + \Lambda_{j,i}^{(m-1)},$$

$$S_{j,i}^{(m-1)} = P_{j,i}^{(m-1) \top} b^{(m-1)} + W_{j,i}^{(m)} \Delta_{i,j}^{(m-1)},$$

and

$$(\nu_{j,i}^{(m-1)}, \omega_{j,i}^{(m-1)}, \Theta_{j,i}^{(m-1)}) = \left\{ \begin{array}{ll} \eta_{U,i}^{(m-1)}, \alpha_{U,i}^{(m-1)}, \beta_{U,i}^{(m-1)} \\ \eta_{L,i}^{(m-1)}, \alpha_{L,i}^{(m-1)}, \beta_{L,i}^{(m-1)} \end{array} \right\}$$

if $W_{j,i}^{(m)} \geq 0$;

and

if $W_{j,i}^{(m)} < 0$.
E Additional Experimental Results

E.1 Results on CROWN-Ada

Table 6: Comparison of our proposed certified lower bounds for ReLU with adaptive lower bounds (CROWN-Ada), Fast-Lin and Fast-Lin and Op-norm. LP-full and Reluplex cannot finish within a reasonable amount of time for all the networks reported here. We also include Op-norm, where we directly compute the operator norm (for example, for $p = 2$ it is the spectral norm) for each layer and use their products as a global Lipschitz constant and then compute the robustness lower bound. CLEVER is an estimated robustness lower bound, and attacking algorithms (including CW [6] and EAD [31]) provide upper bounds of the minimum adversarial distortion. For each norm, we consider the robustness against three targeted attack classes: the runner-up class (with the second largest probability), a random class and the least likely class. It is clear that CROWN-Ada notably improves the lower bound comparing to Fast-Lin, especially for larger and deeper networks, the improvements can be up to 28%.

<table>
<thead>
<tr>
<th>Networks</th>
<th>Lower bounds and upper bounds (Avg.)</th>
<th>Time per Image (Avg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config</td>
<td>Lower Bound (Certified)</td>
<td>Uncertified</td>
</tr>
<tr>
<td></td>
<td>Fast-Lin</td>
<td>Fast-Lin</td>
</tr>
<tr>
<td></td>
<td>Op norm</td>
<td>CROWN-Ada</td>
</tr>
<tr>
<td></td>
<td>Our algorithm</td>
<td>CROWN-Ada</td>
</tr>
<tr>
<td></td>
<td>improvements over Fast-Lin</td>
<td>CROWN-Ada</td>
</tr>
<tr>
<td></td>
<td>CROWN-Ada</td>
<td>CROWN-Ada</td>
</tr>
</tbody>
</table>
Table 7: Comparison of certified lower bounds by CROWN-Ada on ReLU networks and CROWN-general on networks with tanh, sigmoid and arctan activations. CIFAR models with sigmoid activations achieve much worse accuracy than other networks and are thus excluded. For each norm, we consider the robustness against three targeted attack classes: the runner-up class (with the second largest probability), a random class and the least likely class.

<table>
<thead>
<tr>
<th>Network</th>
<th>ℓ_p norm</th>
<th>target</th>
<th>tanh</th>
<th>sigmoid</th>
<th>arctan</th>
<th>Average Computation Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST $3 \times [1024]$</td>
<td>ℓ_∞</td>
<td>runner-up</td>
<td>0.0164</td>
<td>0.0225</td>
<td>0.0169</td>
<td>0.3374</td>
</tr>
<tr>
<td>MNIST $3 \times [1024]$</td>
<td>ℓ_2</td>
<td>runner-up</td>
<td>0.3546</td>
<td>0.4513</td>
<td>0.3616</td>
<td>0.3159</td>
</tr>
<tr>
<td>MNIST $4 \times [1024]$</td>
<td>ℓ_∞</td>
<td>runner-up</td>
<td>0.0091</td>
<td>0.0162</td>
<td>0.0107</td>
<td>1.6794</td>
</tr>
<tr>
<td>MNIST $5 \times [1024]$</td>
<td>ℓ_2</td>
<td>runner-up</td>
<td>0.2086</td>
<td>0.3359</td>
<td>0.2348</td>
<td>1.6416</td>
</tr>
<tr>
<td>CIFAR-10 $5 \times [2048]$</td>
<td>ℓ_∞</td>
<td>runner-up</td>
<td>0.0060</td>
<td>0.0150</td>
<td>0.0062</td>
<td>3.9916</td>
</tr>
<tr>
<td>CIFAR-10 $6 \times [2048]$</td>
<td>ℓ_2</td>
<td>runner-up</td>
<td>0.1369</td>
<td>0.3153</td>
<td>0.1426</td>
<td>4.1634</td>
</tr>
<tr>
<td>CIFAR-10 $7 \times [1024]$</td>
<td>ℓ_∞</td>
<td>runner-up</td>
<td>0.0006</td>
<td>-</td>
<td>-</td>
<td>20.8612</td>
</tr>
<tr>
<td>CIFAR-10 $7 \times [1024]$</td>
<td>ℓ_2</td>
<td>runner-up</td>
<td>0.0219</td>
<td>-</td>
<td>-</td>
<td>47.4896</td>
</tr>
<tr>
<td>CIFAR-10 $8 \times [2048]$</td>
<td>ℓ_∞</td>
<td>runner-up</td>
<td>0.0040</td>
<td>-</td>
<td>-</td>
<td>59.5020</td>
</tr>
<tr>
<td>CIFAR-10 $9 \times [2048]$</td>
<td>ℓ_2</td>
<td>runner-up</td>
<td>0.0177</td>
<td>-</td>
<td>-</td>
<td>78.8081</td>
</tr>
<tr>
<td>CIFAR-10 $10 \times [2048]$</td>
<td>ℓ_∞</td>
<td>runner-up</td>
<td>0.0006</td>
<td>-</td>
<td>-</td>
<td>80.9831</td>
</tr>
<tr>
<td>CIFAR-10 $11 \times [2048]$</td>
<td>ℓ_2</td>
<td>runner-up</td>
<td>0.0126</td>
<td>-</td>
<td>-</td>
<td>86.2997</td>
</tr>
<tr>
<td>CIFAR-10 $12 \times [2048]$</td>
<td>ℓ_∞</td>
<td>runner-up</td>
<td>0.0006</td>
<td>-</td>
<td>-</td>
<td>87.2094</td>
</tr>
<tr>
<td>CIFAR-10 $13 \times [2048]$</td>
<td>ℓ_2</td>
<td>runner-up</td>
<td>0.0012</td>
<td>-</td>
<td>-</td>
<td>91.3457</td>
</tr>
</tbody>
</table>